tps.py 10.3 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.param_attr import ParamAttr
import numpy as np


class LocalizationNetwork(object):
    def __init__(self, params):
        super(LocalizationNetwork, self).__init__()
        self.F = params['num_fiducial']
        self.loc_lr = params['loc_lr']
        self.model_name = params['model_name']

    def conv_bn_layer(self,
                      input,
                      num_filters,
                      filter_size,
                      stride=1,
                      groups=1,
                      act=None,
                      name=None):
        conv = layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
        bn_name = "bn_" + name
        return layers.batch_norm(
            input=conv,
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

    def get_initial_fiducials(self):
        """ see RARE paper Fig. 6 (a) """
        F = self.F
        ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
        ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2))
        ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2))
        ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
        ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
        initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
        return initial_bias

    def __call__(self, image):
        F = self.F
        loc_lr = self.loc_lr
        if self.model_name == "large":
            num_filters_list = [64, 128, 256, 512]
            fc_dim = 256
        else:
            num_filters_list = [16, 32, 64, 128]
            fc_dim = 64
        for fno in range(len(num_filters_list)):
            num_filters = num_filters_list[fno]
            name = "loc_conv%d" % fno
            if fno == 0:
                conv = self.conv_bn_layer(
                    image, num_filters, 3, act='relu', name=name)
            else:
                conv = self.conv_bn_layer(
                    pool, num_filters, 3, act='relu', name=name)

            if fno == len(num_filters_list) - 1:
                pool = layers.adaptive_pool2d(
                    input=conv, pool_size=[1, 1], pool_type='avg')
            else:
                pool = layers.pool2d(
                    input=conv,
                    pool_size=2,
                    pool_stride=2,
                    pool_padding=0,
                    pool_type='max')
        name = "loc_fc1"
        stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
        fc1 = layers.fc(input=pool,
                        size=fc_dim,
                        param_attr=fluid.param_attr.ParamAttr(
                            learning_rate=loc_lr,
                            initializer=fluid.initializer.Uniform(-stdv, stdv),
                            name=name + "_w"),
                        act='relu',
                        name=name)

        initial_bias = self.get_initial_fiducials()
        initial_bias = initial_bias.reshape(-1)
        name = "loc_fc2"
        param_attr = fluid.param_attr.ParamAttr(
            learning_rate=loc_lr,
            initializer=fluid.initializer.NumpyArrayInitializer(
                np.zeros([fc_dim, F * 2])),
            name=name + "_w")
        bias_attr = fluid.param_attr.ParamAttr(
            learning_rate=loc_lr,
            initializer=fluid.initializer.NumpyArrayInitializer(initial_bias),
            name=name + "_b")
        fc2 = layers.fc(input=fc1,
                        size=F * 2,
                        param_attr=param_attr,
                        bias_attr=bias_attr,
                        name=name)
        batch_C_prime = layers.reshape(x=fc2, shape=[-1, F, 2], inplace=False)
        return batch_C_prime


class GridGenerator(object):
    def __init__(self, params):
        super(GridGenerator, self).__init__()
        self.eps = 1e-6
        self.F = params['num_fiducial']

    def build_C(self):
        """ Return coordinates of fiducial points in I_r; C """
        F = self.F
        ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
        ctrl_pts_y_top = -1 * np.ones(int(F / 2))
        ctrl_pts_y_bottom = np.ones(int(F / 2))
        ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
        ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
        C = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
        return C  # F x 2

    def build_P(self, I_r_size):
        I_r_width, I_r_height = I_r_size
        I_r_grid_x = (np.arange(-I_r_width, I_r_width, 2) + 1.0)\
            / I_r_width  # self.I_r_width
        I_r_grid_y = (np.arange(-I_r_height, I_r_height, 2) + 1.0)\
            / I_r_height  # self.I_r_height
        # P: self.I_r_width x self.I_r_height x 2
        P = np.stack(np.meshgrid(I_r_grid_x, I_r_grid_y), axis=2)
        # n (= self.I_r_width x self.I_r_height) x 2
        return P.reshape([-1, 2])

    def build_inv_delta_C(self, C):
        """ Return inv_delta_C which is needed to calculate T """
        F = self.F
        hat_C = np.zeros((F, F), dtype=float)  # F x F
        for i in range(0, F):
            for j in range(i, F):
                r = np.linalg.norm(C[i] - C[j])
                hat_C[i, j] = r
                hat_C[j, i] = r
        np.fill_diagonal(hat_C, 1)
        hat_C = (hat_C**2) * np.log(hat_C)
        # print(C.shape, hat_C.shape)
        delta_C = np.concatenate(  # F+3 x F+3
            [
                np.concatenate(
                    [np.ones((F, 1)), C, hat_C], axis=1),  # F x F+3
                np.concatenate(
                    [np.zeros((2, 3)), np.transpose(C)], axis=1),  # 2 x F+3
                np.concatenate(
                    [np.zeros((1, 3)), np.ones((1, F))], axis=1)  # 1 x F+3
            ],
            axis=0)
        inv_delta_C = np.linalg.inv(delta_C)
        return inv_delta_C  # F+3 x F+3

    def build_P_hat(self, C, P):
        F = self.F
        eps = self.eps
        n = P.shape[0]  # n (= self.I_r_width x self.I_r_height)
        #P_tile: n x 2 -> n x 1 x 2 -> n x F x 2
        P_tile = np.tile(np.expand_dims(P, axis=1), (1, F, 1))
        C_tile = np.expand_dims(C, axis=0)  # 1 x F x 2
        P_diff = P_tile - C_tile  # n x F x 2
        #rbf_norm: n x F
        rbf_norm = np.linalg.norm(P_diff, ord=2, axis=2, keepdims=False)
        #rbf: n x F
        rbf = np.multiply(np.square(rbf_norm), np.log(rbf_norm + eps))
        P_hat = np.concatenate([np.ones((n, 1)), P, rbf], axis=1)
        return P_hat  # n x F+3

    def get_expand_tensor(self, batch_C_prime):
        name = "ex_fc"
        initializer = fluid.initializer.ConstantInitializer(value=0.0)
        param_attr = fluid.param_attr.ParamAttr(
            learning_rate=0.0, initializer=initializer, name=name + "_w")
        bias_attr = fluid.param_attr.ParamAttr(
            learning_rate=0.0, initializer=initializer, name=name + "_b")
        batch_C_ex_part_tensor = fluid.layers.fc(input=batch_C_prime,
                                                 size=6,
                                                 param_attr=param_attr,
                                                 bias_attr=bias_attr,
                                                 name=name)
        batch_C_ex_part_tensor = fluid.layers.reshape(
            x=batch_C_ex_part_tensor, shape=[-1, 3, 2])
        return batch_C_ex_part_tensor

    def __call__(self, batch_C_prime, I_r_size):
        C = self.build_C()
        P = self.build_P(I_r_size)
        inv_delta_C = self.build_inv_delta_C(C).astype('float32')
        P_hat = self.build_P_hat(C, P).astype('float32')

        inv_delta_C_tensor = layers.create_tensor(dtype='float32')
        layers.assign(inv_delta_C, inv_delta_C_tensor)
        inv_delta_C_tensor.stop_gradient = True
        P_hat_tensor = layers.create_tensor(dtype='float32')
        layers.assign(P_hat, P_hat_tensor)
        P_hat_tensor.stop_gradient = True

        batch_C_ex_part_tensor = self.get_expand_tensor(batch_C_prime)
        #         batch_C_ex_part_tensor = create_tmp_var(
        #             fluid.default_main_program(),
        #             name='batch_C_ex_part_tensor', 
        #             dtype='float32', shape=[-1, 3, 2])
        #         layers.py_func(func=get_batch_C_expand, 
        #             x=[batch_C_prime], out=[batch_C_ex_part_tensor])

        batch_C_ex_part_tensor.stop_gradient = True

        batch_C_prime_with_zeros = layers.concat(
            [batch_C_prime, batch_C_ex_part_tensor], axis=1)
        batch_T = layers.matmul(inv_delta_C_tensor, batch_C_prime_with_zeros)
        batch_P_prime = layers.matmul(P_hat_tensor, batch_T)
        return batch_P_prime


class TPS(object):
    def __init__(self, params):
        super(TPS, self).__init__()
        self.loc_net = LocalizationNetwork(params)
        self.grid_generator = GridGenerator(params)

    def __call__(self, image):
        batch_C_prime = self.loc_net(image)
        I_r_size = [image.shape[3], image.shape[2]]
        batch_P_prime = self.grid_generator(batch_C_prime, I_r_size)
        batch_P_prime = layers.reshape(
            x=batch_P_prime, shape=[-1, image.shape[2], image.shape[3], 2])
        batch_I_r = layers.grid_sampler(x=image, grid=batch_P_prime)
        image.stop_gradient = False
        return batch_I_r