train_re.py 9.6 KB
Newer Older
文幕地方's avatar
add re  
文幕地方 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

import random
import numpy as np
import paddle

from paddlenlp.transformers import LayoutXLMTokenizer, LayoutXLMModel, LayoutXLMForRelationExtraction

from xfun import XFUNDataset
from utils import parse_args, get_bio_label_maps, print_arguments
from data_collator import DataCollator
from metric import re_score

from ppocr.utils.logging import get_logger


def set_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    paddle.seed(seed)


def cal_metric(re_preds, re_labels, entities):
    gt_relations = []
    for b in range(len(re_labels)):
        rel_sent = []
        for head, tail in zip(re_labels[b]["head"], re_labels[b]["tail"]):
            rel = {}
            rel["head_id"] = head
            rel["head"] = (entities[b]["start"][rel["head_id"]],
                           entities[b]["end"][rel["head_id"]])
            rel["head_type"] = entities[b]["label"][rel["head_id"]]

            rel["tail_id"] = tail
            rel["tail"] = (entities[b]["start"][rel["tail_id"]],
                           entities[b]["end"][rel["tail_id"]])
            rel["tail_type"] = entities[b]["label"][rel["tail_id"]]

            rel["type"] = 1
            rel_sent.append(rel)
        gt_relations.append(rel_sent)
    re_metrics = re_score(re_preds, gt_relations, mode="boundaries")
    return re_metrics


def evaluate(model, eval_dataloader, logger, prefix=""):
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = {}".format(len(eval_dataloader.dataset)))

    re_preds = []
    re_labels = []
    entities = []
    eval_loss = 0.0
    model.eval()
    for idx, batch in enumerate(eval_dataloader):
        with paddle.no_grad():
            outputs = model(**batch)
            loss = outputs['loss'].mean().item()
            if paddle.distributed.get_rank() == 0:
                logger.info("[Eval] process: {}/{}, loss: {:.5f}".format(
                    idx, len(eval_dataloader), loss))

            eval_loss += loss
        re_preds.extend(outputs['pred_relations'])
        re_labels.extend(batch['relations'])
        entities.extend(batch['entities'])
    re_metrics = cal_metric(re_preds, re_labels, entities)
    re_metrics = {
        "precision": re_metrics["ALL"]["p"],
        "recall": re_metrics["ALL"]["r"],
        "f1": re_metrics["ALL"]["f1"],
    }
    model.train()
    return re_metrics


def train(args):
    logger = get_logger(log_file=os.path.join(args.output_dir, "train.log"))
    print_arguments(args, logger)

    # Added here for reproducibility (even between python 2 and 3)
    set_seed(args.seed)

    label2id_map, id2label_map = get_bio_label_maps(args.label_map_path)
    pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index

    # dist mode
    if paddle.distributed.get_world_size() > 1:
        paddle.distributed.init_parallel_env()

    tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path)

    model = LayoutXLMModel.from_pretrained(args.model_name_or_path)
    model = LayoutXLMForRelationExtraction(model, dropout=None)

    # dist mode
    if paddle.distributed.get_world_size() > 1:
        model = paddle.distributed.DataParallel(model)

    train_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.train_data_dir,
        label_path=args.train_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        max_seq_len=args.max_seq_length,
        pad_token_label_id=pad_token_label_id,
        contains_re=True,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')

    eval_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.eval_data_dir,
        label_path=args.eval_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        max_seq_len=args.max_seq_length,
        pad_token_label_id=pad_token_label_id,
        contains_re=True,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')

    train_sampler = paddle.io.DistributedBatchSampler(
        train_dataset, batch_size=args.per_gpu_train_batch_size, shuffle=True)
    args.train_batch_size = args.per_gpu_train_batch_size * \
                            max(1, paddle.distributed.get_world_size())
    train_dataloader = paddle.io.DataLoader(
        train_dataset,
        batch_sampler=train_sampler,
        num_workers=8,
        use_shared_memory=True,
        collate_fn=DataCollator())

    eval_dataloader = paddle.io.DataLoader(
        eval_dataset,
        batch_size=args.per_gpu_eval_batch_size,
        num_workers=8,
        shuffle=False,
        collate_fn=DataCollator())

    t_total = len(train_dataloader) * args.num_train_epochs

    # build linear decay with warmup lr sch
    lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
        learning_rate=args.learning_rate,
        decay_steps=t_total,
        end_lr=0.0,
        power=1.0)
    if args.warmup_steps > 0:
        lr_scheduler = paddle.optimizer.lr.LinearWarmup(
            lr_scheduler,
            args.warmup_steps,
            start_lr=0,
            end_lr=args.learning_rate, )
    grad_clip = paddle.nn.ClipGradByNorm(clip_norm=10)
    optimizer = paddle.optimizer.Adam(
        learning_rate=args.learning_rate,
        parameters=model.parameters(),
        epsilon=args.adam_epsilon,
        grad_clip=grad_clip,
        weight_decay=args.weight_decay)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = {}".format(len(train_dataset)))
    logger.info("  Num Epochs = {}".format(args.num_train_epochs))
    logger.info("  Instantaneous batch size per GPU = {}".format(
        args.per_gpu_train_batch_size))
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = {}".
        format(args.train_batch_size * paddle.distributed.get_world_size()))
    logger.info("  Total optimization steps = {}".format(t_total))

    global_step = 0
    model.clear_gradients()
    train_dataloader_len = len(train_dataloader)
    best_metirc = {'f1': 0}
    model.train()

    for epoch in range(int(args.num_train_epochs)):
        for step, batch in enumerate(train_dataloader):
            outputs = model(**batch)
            # model outputs are always tuple in ppnlp (see doc)
            loss = outputs['loss']
            loss = loss.mean()

            logger.info(
                "epoch: [{}/{}], iter: [{}/{}], global_step:{}, train loss: {}, lr: {}".
                format(epoch, args.num_train_epochs, step, train_dataloader_len,
                       global_step, np.mean(loss.numpy()), optimizer.get_lr()))

            loss.backward()
            optimizer.step()
            optimizer.clear_grad()
            # lr_scheduler.step()  # Update learning rate schedule

            global_step += 1

            if (paddle.distributed.get_rank() == 0 and args.eval_steps > 0 and
                    global_step % args.eval_steps == 0):
                # Log metrics
                if (paddle.distributed.get_rank() == 0 and args.
                        evaluate_during_training):  # Only evaluate when single GPU otherwise metrics may not average well
                    results = evaluate(model, eval_dataloader, logger)
                    if results['f1'] > best_metirc['f1']:
                        best_metirc = results
                        output_dir = os.path.join(args.output_dir,
                                                  "checkpoint-best")
                        os.makedirs(output_dir, exist_ok=True)
                        model.save_pretrained(output_dir)
                        tokenizer.save_pretrained(output_dir)
                        paddle.save(args,
                                    os.path.join(output_dir,
                                                 "training_args.bin"))
                        logger.info("Saving model checkpoint to {}".format(
                            output_dir))
                    logger.info("eval results: {}".format(results))
                    logger.info("best_metirc: {}".format(best_metirc))

            if (paddle.distributed.get_rank() == 0 and args.save_steps > 0 and
                    global_step % args.save_steps == 0):
                # Save model checkpoint
                output_dir = os.path.join(args.output_dir, "checkpoint-latest")
                os.makedirs(output_dir, exist_ok=True)
                if paddle.distributed.get_rank() == 0:
                    model.save_pretrained(output_dir)
                    tokenizer.save_pretrained(output_dir)
                    paddle.save(args,
                                os.path.join(output_dir, "training_args.bin"))
                    logger.info("Saving model checkpoint to {}".format(
                        output_dir))
    logger.info("best_metirc: {}".format(best_metirc))


if __name__ == "__main__":
    args = parse_args()
    os.makedirs(args.output_dir, exist_ok=True)
    train(args)