ocr_rec.go 3.3 KB
Newer Older
L
LKKlein 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
package ocr

import (
	"log"
	"time"

	"github.com/LKKlein/gocv"
)

type TextRecognizer struct {
	*PaddleModel
	batchNum int
	textLen  int
	shape    []int
	charType string
	labels   []string
}

func NewTextRecognizer(modelDir string, args map[string]interface{}) *TextRecognizer {
	shapes := []int{3, 32, 320}
	if v, ok := args["rec_image_shape"]; ok {
		for i, s := range v.([]interface{}) {
			shapes[i] = s.(int)
		}
	}
	labelpath := getString(args, "rec_char_dict_path", "./config/ppocr_keys_v1.txt")
	labels := readLines2StringSlice(labelpath)
	if getBool(args, "use_space_char", true) {
		labels = append(labels, " ")
	}
	rec := &TextRecognizer{
		PaddleModel: NewPaddleModel(args),
		batchNum:    getInt(args, "rec_batch_num", 30),
		textLen:     getInt(args, "max_text_length", 25),
		charType:    getString(args, "rec_char_type", "ch"),
		shape:       shapes,
		labels:      labels,
	}
	if checkModelExists(modelDir) {
		modelDir, _ = downloadModel("./inference/rec/ch", modelDir)
	} else {
		log.Panicf("rec model path: %v not exist! Please check!", modelDir)
	}
	rec.LoadModel(modelDir)
	return rec
}

func (rec *TextRecognizer) Run(imgs []gocv.Mat, bboxes [][][]int) []OCRText {
	recResult := make([]OCRText, 0, len(imgs))
	batch := rec.batchNum
	var recTime int64 = 0
	c, h, w := rec.shape[0], rec.shape[1], rec.shape[2]
	for i := 0; i < len(imgs); i += batch {
		j := i + batch
		if len(imgs) < j {
			j = len(imgs)
		}

		maxwhratio := 0.0
		for k := i; k < j; k++ {
			h, w := imgs[k].Rows(), imgs[k].Cols()
			ratio := float64(w) / float64(h)
			if ratio > maxwhratio {
				maxwhratio = ratio
			}
		}

		if rec.charType == "ch" {
			w = int(32 * maxwhratio)
		}
		normimgs := make([]float32, (j-i)*c*h*w)

		for k := i; k < j; k++ {
			data := crnnPreprocess(imgs[k], rec.shape, []float32{0.5, 0.5, 0.5},
				[]float32{0.5, 0.5, 0.5}, 255.0, maxwhratio, rec.charType)
			copy(normimgs[(k-i)*c*h*w:], data)
		}

		st := time.Now()
		rec.input.SetValue(normimgs)
		rec.input.Reshape([]int32{int32(j - i), int32(c), int32(h), int32(w)})

		rec.predictor.SetZeroCopyInput(rec.input)
		rec.predictor.ZeroCopyRun()
		rec.predictor.GetZeroCopyOutput(rec.outputs[0])
		rec.predictor.GetZeroCopyOutput(rec.outputs[1])

		recIdxBatch := rec.outputs[0].Value().([][]int64)
		recIdxLod := rec.outputs[0].Lod()

		predictBatch := rec.outputs[1].Value().([][]float32)
		predictLod := rec.outputs[1].Lod()
		recTime += int64(time.Since(st).Milliseconds())

		for rno := 0; rno < len(recIdxLod)-1; rno++ {
			predIdx := make([]int, 0, 2)
			for beg := recIdxLod[rno]; beg < recIdxLod[rno+1]; beg++ {
				predIdx = append(predIdx, int(recIdxBatch[beg][0]))
			}
			if len(predIdx) == 0 {
				continue
			}
			words := ""
			for n := 0; n < len(predIdx); n++ {
				words += rec.labels[predIdx[n]]
			}

			score := 0.0
			count := 0
			blankPosition := int(rec.outputs[1].Shape()[1])
			for beg := predictLod[rno]; beg < predictLod[rno+1]; beg++ {
				argMaxID, maxVal := argmax(predictBatch[beg])
				if blankPosition-1-argMaxID > 0 {
					score += float64(maxVal)
					count++
				}
			}
			score = score / float64(count)
			recResult = append(recResult, OCRText{
				BBox:  bboxes[i+rno],
				Text:  words,
				Score: score,
			})
		}
	}
	log.Println("rec num: ", len(recResult), ", rec time elapse: ", recTime, "ms")
	return recResult
}