whl_en.md 18.4 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11
# paddleocr package

## Get started quickly
### install package
install by pypi
```bash
pip install paddleocr
```

build own whl package and install
```bash
W
WenmuZhou 已提交
12
python3 setup.py bdist_wheel
W
WenmuZhou 已提交
13
pip install dist/paddleocr-x.x.x-py3-none-any.whl # x.x.x is the version of paddleocr
W
WenmuZhou 已提交
14 15 16
```
### 1. Use by code

W
WenmuZhou 已提交
17 18 19
* detection classification and recognition
```python
from paddleocr import PaddleOCR,draw_ocr
20 21 22
# Paddleocr supports Chinese, English, French, German, Korean and Japanese.
# You can set the parameter `lang` as `zh`, `en`, `french`, `german`, `korean`, `japan`
# to switch the language model in order.
W
WenmuZhou 已提交
23
ocr = PaddleOCR(use_angle_cls=True, lang='en') # need to run only once to download and load model into memory
W
WenmuZhou 已提交
24 25 26 27 28
img_path = 'PaddleOCR/doc/imgs_en/img_12.jpg'
result = ocr.ocr(img_path, cls=True)
for line in result:
    print(line)

29

W
WenmuZhou 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
# draw result
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

Output will be a list, each item contains bounding box, text and recognition confidence
```bash
[[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
[[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
[[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
......
```

Visualization of results

<div align="center">
    <img src="../imgs_results/whl/12_det_rec.jpg" width="800">
</div>

W
WenmuZhou 已提交
55 56 57
* detection and recognition
```python
from paddleocr import PaddleOCR,draw_ocr
W
WenmuZhou 已提交
58
ocr = PaddleOCR(lang='en') # need to run only once to download and load model into memory
W
WenmuZhou 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
img_path = 'PaddleOCR/doc/imgs_en/img_12.jpg'
result = ocr.ocr(img_path)
for line in result:
    print(line)

# draw result
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

Output will be a list, each item contains bounding box, text and recognition confidence
```bash
[[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
[[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
[[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
W
WenmuZhou 已提交
80
......
W
WenmuZhou 已提交
81 82 83 84 85 86 87 88
```

Visualization of results

<div align="center">
    <img src="../imgs_results/whl/12_det_rec.jpg" width="800">
</div>

W
WenmuZhou 已提交
89 90 91
* classification and recognition
```python
from paddleocr import PaddleOCR
W
WenmuZhou 已提交
92
ocr = PaddleOCR(use_angle_cls=True, lang='en') # need to run only once to load model into memory
W
WenmuZhou 已提交
93 94 95 96 97 98 99 100 101 102 103
img_path = 'PaddleOCR/doc/imgs_words_en/word_10.png'
result = ocr.ocr(img_path, det=False, cls=True)
for line in result:
    print(line)
```

Output will be a list, each item contains recognition text and confidence
```bash
['PAIN', 0.990372]
```

W
WenmuZhou 已提交
104 105 106
* only detection
```python
from paddleocr import PaddleOCR,draw_ocr
W
WenmuZhou 已提交
107
ocr = PaddleOCR() # need to run only once to download and load model into memory
W
WenmuZhou 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
img_path = 'PaddleOCR/doc/imgs_en/img_12.jpg'
result = ocr.ocr(img_path,rec=False)
for line in result:
    print(line)

# draw result
from PIL import Image

image = Image.open(img_path).convert('RGB')
im_show = draw_ocr(image, result, txts=None, scores=None, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

Output will be a list, each item only contains bounding box
```bash
[[756.0, 812.0], [805.0, 812.0], [805.0, 830.0], [756.0, 830.0]]
[[820.0, 803.0], [1085.0, 801.0], [1085.0, 836.0], [820.0, 838.0]]
[[393.0, 801.0], [715.0, 805.0], [715.0, 839.0], [393.0, 836.0]]
W
WenmuZhou 已提交
127
......
W
WenmuZhou 已提交
128 129 130 131 132 133 134 135 136 137 138
```

Visualization of results

<div align="center">
    <img src="../imgs_results/whl/12_det.jpg" width="800">
</div>

* only recognition
```python
from paddleocr import PaddleOCR
W
WenmuZhou 已提交
139
ocr = PaddleOCR(lang='en') # need to run only once to load model into memory
W
WenmuZhou 已提交
140
img_path = 'PaddleOCR/doc/imgs_words_en/word_10.png'
W
WenmuZhou 已提交
141
result = ocr.ocr(img_path, det=False, cls=False)
W
WenmuZhou 已提交
142 143 144 145
for line in result:
    print(line)
```

W
WenmuZhou 已提交
146
Output will be a list, each item contains recognition text and confidence
W
WenmuZhou 已提交
147 148 149 150
```bash
['PAIN', 0.990372]
```

W
WenmuZhou 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
* only classification
```python
from paddleocr import PaddleOCR
ocr = PaddleOCR(use_angle_cls=True) # need to run only once to load model into memory
img_path = 'PaddleOCR/doc/imgs_words_en/word_10.png'
result = ocr.ocr(img_path, det=False, rec=False, cls=True)
for line in result:
    print(line)
```

Output will be a list, each item contains classification result and confidence
```bash
['0', 0.99999964]
```

W
WenmuZhou 已提交
166 167 168 169 170 171 172
### Use by command line

show help information
```bash
paddleocr -h
```

W
WenmuZhou 已提交
173 174
* detection classification and recognition
```bash
W
WenmuZhou 已提交
175
paddleocr --image_dir PaddleOCR/doc/imgs_en/img_12.jpg --use_angle_cls true -cls true --lang en
W
WenmuZhou 已提交
176 177 178 179 180 181 182 183 184 185
```

Output will be a list, each item contains bounding box, text and recognition confidence
```bash
[[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
[[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
[[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
......
```

W
WenmuZhou 已提交
186 187
* detection and recognition
```bash
W
WenmuZhou 已提交
188
paddleocr --image_dir PaddleOCR/doc/imgs_en/img_12.jpg --lang en
W
WenmuZhou 已提交
189 190 191 192 193 194 195
```

Output will be a list, each item contains bounding box, text and recognition confidence
```bash
[[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
[[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
[[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
W
WenmuZhou 已提交
196
......
W
WenmuZhou 已提交
197 198
```

W
WenmuZhou 已提交
199 200
* classification and recognition
```bash
W
WenmuZhou 已提交
201
paddleocr --image_dir PaddleOCR/doc/imgs_words_en/word_10.png --use_angle_cls true -cls true --det false --lang en
W
WenmuZhou 已提交
202 203 204 205 206 207 208
```

Output will be a list, each item contains text and recognition confidence
```bash
['PAIN', 0.990372]
```

W
WenmuZhou 已提交
209 210 211 212 213 214 215 216 217 218
* only detection
```bash
paddleocr --image_dir PaddleOCR/doc/imgs_en/img_12.jpg --rec false
```

Output will be a list, each item only contains bounding box
```bash
[[756.0, 812.0], [805.0, 812.0], [805.0, 830.0], [756.0, 830.0]]
[[820.0, 803.0], [1085.0, 801.0], [1085.0, 836.0], [820.0, 838.0]]
[[393.0, 801.0], [715.0, 805.0], [715.0, 839.0], [393.0, 836.0]]
W
WenmuZhou 已提交
219
......
W
WenmuZhou 已提交
220 221 222 223
```

* only recognition
```bash
W
WenmuZhou 已提交
224
paddleocr --image_dir PaddleOCR/doc/imgs_words_en/word_10.png --det false --cls false --lang en
W
WenmuZhou 已提交
225 226 227 228 229 230 231
```

Output will be a list, each item contains text and recognition confidence
```bash
['PAIN', 0.990372]
```

W
WenmuZhou 已提交
232 233 234 235 236 237 238 239 240 241
* only classification
```bash
paddleocr --image_dir PaddleOCR/doc/imgs_words_en/word_10.png --use_angle_cls true -cls true --det false --rec false
```

Output will be a list, each item contains classification result and confidence
```bash
['0', 0.99999964]
```

W
WenmuZhou 已提交
242 243 244 245 246 247 248 249 250
## Use custom model
When the built-in model cannot meet the needs, you need to use your own trained model.
First, refer to the first section of [inference_en.md](./inference_en.md) to convert your det and rec model to inference model, and then use it as follows

### 1. Use by code

```python
from paddleocr import PaddleOCR,draw_ocr
# The path of detection and recognition model must contain model and params files
W
WenmuZhou 已提交
251
ocr = PaddleOCR(det_model_dir='{your_det_model_dir}', rec_model_dir='{your_rec_model_dir}', rec_char_dict_path='{your_rec_char_dict_path}', cls_model_dir='{your_cls_model_dir}', use_angle_cls=True)
W
WenmuZhou 已提交
252
img_path = 'PaddleOCR/doc/imgs_en/img_12.jpg'
W
WenmuZhou 已提交
253
result = ocr.ocr(img_path, cls=True)
W
WenmuZhou 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
for line in result:
    print(line)

# draw result
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

### Use by command line

```bash
W
WenmuZhou 已提交
271
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --det_model_dir {your_det_model_dir} --rec_model_dir {your_rec_model_dir} --rec_char_dict_path {your_rec_char_dict_path} --cls_model_dir {your_cls_model_dir} --use_angle_cls true --cls true
W
WenmuZhou 已提交
272 273
```

W
WenmuZhou 已提交
274 275 276 277 278 279 280 281
## Parameter Description

| Parameter                    | Description                                                                                                                                                                                                                 | Default value                  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| use_gpu                 | use GPU or not                                                                                                                                                                                                          | TRUE                    |
| gpu_mem                 | GPU memory size used for initialization                                                                                                                                                                                              | 8000M                   |
| image_dir               | The images path or folder path for predicting when used by the command line                                                                                                                                                                           |                         |
| det_algorithm           | Type of detection algorithm selected                                                                                                                                                                                                   | DB                      |
W
WenmuZhou 已提交
282
| det_model_dir           | the text detection inference model folder. There are two ways to transfer parameters, 1. None: Automatically download the built-in model to `~/.paddleocr/det`; 2. The path of the inference model converted by yourself, the model and params files must be included in the model path | None           |
W
WenmuZhou 已提交
283 284 285 286 287 288 289 290
| det_max_side_len        | The maximum size of the long side of the image. When the long side exceeds this value, the long side will be resized to this size, and the short side will be scaled proportionally                                                                                                                         | 960                     |
| det_db_thresh           | Binarization threshold value of DB output map                                                                                                                                                                                        | 0.3                     |
| det_db_box_thresh       | The threshold value of the DB output box. Boxes score lower than this value will be discarded                                                                                                                                                                         | 0.5                     |
| det_db_unclip_ratio     | The expanded ratio of DB output box                                                                                                                                                                                             | 2                       |
| det_east_score_thresh   | Binarization threshold value of EAST output map                                                                                                                                                                                       | 0.8                     |
| det_east_cover_thresh   | The threshold value of the EAST output box. Boxes score lower than this value will be discarded                                                                                                                                                                         | 0.1                     |
| det_east_nms_thresh     | The NMS threshold value of EAST model output box                                                                                                                                                                                              | 0.2                     |
| rec_algorithm           | Type of recognition algorithm selected                                                                                                                                                                                                | CRNN                    |
W
WenmuZhou 已提交
291
| rec_model_dir           | the text recognition inference model folder. There are two ways to transfer parameters, 1. None: Automatically download the built-in model to `~/.paddleocr/rec`; 2. The path of the inference model converted by yourself, the model and params files must be included in the model path | None |
W
WenmuZhou 已提交
292 293 294
| rec_image_shape         | image shape of recognition algorithm                                                                                                                                                                                            | "3,32,320"              |
| rec_char_type           | Character type of recognition algorithm, Chinese (ch) or English (en)                                                                                                                                                                               | ch                      |
| rec_batch_num           | When performing recognition, the batchsize of forward images                                                                                                                                                                                         | 30                      |
W
WenmuZhou 已提交
295 296
| max_text_length         | The maximum text length that the recognition algorithm can recognize                                                                                                                                                                                         | 25                      |
| rec_char_dict_path      | the alphabet path which needs to be modified to your own path when `rec_model_Name` use mode 2                                                                                                                                              | ./ppocr/utils/ppocr_keys_v1.txt                        |
W
WenmuZhou 已提交
297
| use_space_char          | Whether to recognize spaces                                                                                                                                                                                                         | TRUE                    |
W
WenmuZhou 已提交
298 299 300 301 302
| use_angle_cls          | Whether to load classification model                                                                                                                                                                                                       | FALSE                    |
| cls_model_dir           | the classification inference model folder. There are two ways to transfer parameters, 1. None: Automatically download the built-in model to `~/.paddleocr/cls`; 2. The path of the inference model converted by yourself, the model and params files must be included in the model path | None |
| cls_image_shape         | image shape of classification algorithm                                                                                                                                                                                            | "3,48,192"              |
| label_list         | label list of classification algorithm                                                                                                                                                                                            | ['0','180']           |
| cls_batch_num           | When performing classification, the batchsize of forward images                                                                                                                                                                                         | 30                      |
W
WenmuZhou 已提交
303
| enable_mkldnn           | Whether to enable mkldnn                                                                                                                                                                                                       | FALSE                   |
W
WenmuZhou 已提交
304
| use_zero_copy_run           | Whether to forward by zero_copy_run                                                                                                                                                                               | FALSE                   |
W
WenmuZhou 已提交
305
| lang                     | The support language, now only Chinese(zh)、English(en)、French(french)、German(german)、Korean(korean)、Japanese(japan) are supported                                                                                                                                                                                                  | ch                    |
W
WenmuZhou 已提交
306
| det                     | Enable detction when `ppocr.ocr` func exec                                                                                                                                                                                                   | TRUE                    |
W
WenmuZhou 已提交
307 308
| rec                     | Enable recognition when `ppocr.ocr` func exec                                                                                                                                                                                                   | TRUE                    |
| cls                     | Enable classification when `ppocr.ocr` func exec                                                                                                                                                                                                   | FALSE                    |