det_resnet_vd.py 9.1 KB
Newer Older
W
WenmuZhou 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
L
LDOUBLEV 已提交
2
#
W
WenmuZhou 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LDOUBLEV 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WenmuZhou 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import paddle
W
WenmuZhou 已提交
20
from paddle import ParamAttr
21
import paddle.nn as nn
W
WenmuZhou 已提交
22
import paddle.nn.functional as F
L
LDOUBLEV 已提交
23 24 25 26

__all__ = ["ResNet"]


W
WenmuZhou 已提交
27
class ConvBNLayer(nn.Layer):
28 29 30 31 32 33 34 35 36 37
    def __init__(
            self,
            in_channels,
            out_channels,
            kernel_size,
            stride=1,
            groups=1,
            is_vd_mode=False,
            act=None,
            name=None, ):
W
WenmuZhou 已提交
38
        super(ConvBNLayer, self).__init__()
39 40

        self.is_vd_mode = is_vd_mode
W
WenmuZhou 已提交
41
        self._pool2d_avg = nn.AvgPool2D(
42
            kernel_size=2, stride=2, padding=0, ceil_mode=True)
W
WenmuZhou 已提交
43
        self._conv = nn.Conv2D(
W
WenmuZhou 已提交
44 45 46
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
L
LDOUBLEV 已提交
47
            stride=stride,
W
WenmuZhou 已提交
48
            padding=(kernel_size - 1) // 2,
L
LDOUBLEV 已提交
49
            groups=groups,
W
WenmuZhou 已提交
50
            weight_attr=ParamAttr(name=name + "_weights"),
L
LDOUBLEV 已提交
51 52 53 54 55
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
56 57
        self._batch_norm = nn.BatchNorm(
            out_channels,
L
LDOUBLEV 已提交
58
            act=act,
59 60 61 62
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')
W
WenmuZhou 已提交
63

64 65 66 67 68 69
    def forward(self, inputs):
        if self.is_vd_mode:
            inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y
W
WenmuZhou 已提交
70 71


72
class BottleneckBlock(nn.Layer):
W
WenmuZhou 已提交
73 74 75
    def __init__(self,
                 in_channels,
                 out_channels,
76 77 78
                 stride,
                 shortcut=True,
                 if_first=False,
W
WenmuZhou 已提交
79 80
                 name=None):
        super(BottleneckBlock, self).__init__()
81

W
WenmuZhou 已提交
82 83 84 85
        self.conv0 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=1,
L
LDOUBLEV 已提交
86 87
            act='relu',
            name=name + "_branch2a")
W
WenmuZhou 已提交
88 89 90 91
        self.conv1 = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=3,
L
LDOUBLEV 已提交
92 93 94
            stride=stride,
            act='relu',
            name=name + "_branch2b")
W
WenmuZhou 已提交
95 96 97 98
        self.conv2 = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels * 4,
            kernel_size=1,
L
LDOUBLEV 已提交
99 100 101
            act=None,
            name=name + "_branch2c")

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        if not shortcut:
            self.short = ConvBNLayer(
                in_channels=in_channels,
                out_channels=out_channels * 4,
                kernel_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
W
WenmuZhou 已提交
117

118 119 120 121
        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
W
WenmuZhou 已提交
122 123
        y = paddle.add(x=short, y=conv2)
        y = F.relu(y)
W
WenmuZhou 已提交
124
        return y
L
LDOUBLEV 已提交
125 126


W
WenmuZhou 已提交
127
class BasicBlock(nn.Layer):
128 129 130 131 132 133 134
    def __init__(self,
                 in_channels,
                 out_channels,
                 stride,
                 shortcut=True,
                 if_first=False,
                 name=None):
W
WenmuZhou 已提交
135
        super(BasicBlock, self).__init__()
136
        self.stride = stride
W
WenmuZhou 已提交
137 138 139 140
        self.conv0 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=3,
L
LDOUBLEV 已提交
141
            stride=stride,
142
            act='relu',
L
LDOUBLEV 已提交
143
            name=name + "_branch2a")
W
WenmuZhou 已提交
144 145 146 147
        self.conv1 = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=3,
L
LDOUBLEV 已提交
148 149
            act=None,
            name=name + "_branch2b")
W
WenmuZhou 已提交
150

151 152 153 154 155 156 157 158 159 160 161 162 163 164
        if not shortcut:
            self.short = ConvBNLayer(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
W
WenmuZhou 已提交
165

166 167 168 169
        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
W
WenmuZhou 已提交
170 171
        y = paddle.add(x=short, y=conv1)
        y = F.relu(y)
172
        return y
W
WenmuZhou 已提交
173 174


175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
class ResNet(nn.Layer):
    def __init__(self, in_channels=3, layers=50, **kwargs):
        super(ResNet, self).__init__()

        self.layers = layers
        supported_layers = [18, 34, 50, 101, 152, 200]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
        num_filters = [64, 128, 256, 512]

        self.conv1_1 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=32,
            kernel_size=3,
            stride=2,
            act='relu',
            name="conv1_1")
        self.conv1_2 = ConvBNLayer(
            in_channels=32,
            out_channels=32,
            kernel_size=3,
            stride=1,
            act='relu',
            name="conv1_2")
        self.conv1_3 = ConvBNLayer(
            in_channels=32,
            out_channels=64,
            kernel_size=3,
            stride=1,
            act='relu',
            name="conv1_3")
W
WenmuZhou 已提交
220
        self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

        self.stages = []
        self.out_channels = []
        if layers >= 50:
            for block in range(len(depth)):
                block_list = []
                shortcut = False
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    bottleneck_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BottleneckBlock(
                            in_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            out_channels=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
                    shortcut = True
                    block_list.append(bottleneck_block)
                self.out_channels.append(num_filters[block] * 4)
                self.stages.append(nn.Sequential(*block_list))
        else:
            for block in range(len(depth)):
                block_list = []
                shortcut = False
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
                    basic_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BasicBlock(
                            in_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            out_channels=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
                    shortcut = True
                    block_list.append(basic_block)
                self.out_channels.append(num_filters[block])
                self.stages.append(nn.Sequential(*block_list))
W
WenmuZhou 已提交
270

271 272 273 274 275 276 277 278 279 280
    def forward(self, inputs):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)
        out = []
        for block in self.stages:
            y = block(y)
            out.append(y)
        return out