config_en.md 12.7 KB
Newer Older
W
WenmuZhou 已提交
1
## Optional parameter list
K
Khanh Tran 已提交
2

W
WenmuZhou 已提交
3
The following list can be viewed through `--help`
K
Khanh Tran 已提交
4 5 6

|         FLAG             |     Supported script    |        Use        |      Defaults       |         Note         |
| :----------------------: | :------------: | :---------------: | :--------------: | :-----------------: |
W
WenmuZhou 已提交
7 8
|          -c              |      ALL       |  Specify configuration file to use  |  None  |  **Please refer to the parameter introduction for configuration file usage** |
|          -o              |      ALL       |  set configuration options  |  None  |  Configuration using -o has higher priority than the configuration file selected with -c. E.g: -o Global.use_gpu=false |
K
Khanh Tran 已提交
9

X
xxxpsyduck 已提交
10
## INTRODUCTION TO GLOBAL PARAMETERS OF CONFIGURATION FILE
K
Khanh Tran 已提交
11

W
WenmuZhou 已提交
12
Take rec_chinese_lite_train_v2.0.yml as an example
W
WenmuZhou 已提交
13
### Global
K
Khanh Tran 已提交
14

W
WenmuZhou 已提交
15
|         Parameter             |            Use                |      Defaults       |            Note            |
K
Khanh Tran 已提交
16
| :----------------------: |  :---------------------:   | :--------------:  |   :--------------------:   |
W
WenmuZhou 已提交
17 18
|      use_gpu             |    Set using GPU or not           |       true        |                \                 |
|      epoch_num           |    Maximum training epoch number             |       500        |                \                 |
W
WenmuZhou 已提交
19
|      log_smooth_window   |    Log queue length, the median value in the queue each time will be printed           |       20          |                \                 |
K
Khanh Tran 已提交
20
|      print_batch_step    |    Set print log interval         |       10          |                \                 |
W
WenmuZhou 已提交
21
|      save_model_dir      |    Set model save path        |  output/{算法名称}  |                \                 |
K
Khanh Tran 已提交
22
|      save_epoch_step     |    Set model save interval        |       3           |                \                 |
W
WenmuZhou 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
|      eval_batch_step     |    Set the model evaluation interval        | 2000 or [1000, 2000]        | runing evaluation every 2000 iters or evaluation is run every 2000 iterations after the 1000th iteration   |
|      cal_metric_during_train     |    Set whether to evaluate the metric during the training process. At this time, the metric of the model under the current batch is evaluated        |       true         |                \                 |
|      load_static_weights     |   Set whether the pre-training model is saved in static graph mode (currently only required by the detection algorithm)        |       true         |                \                 |
|      pretrained_model    |    Set the path of the pre-trained model      |  ./pretrain_models/CRNN/best_accuracy  |  \          |
|      checkpoints         |    set model parameter path            |       None        |   Used to load parameters after interruption to continue training|
|      use_visualdl  |    Set whether to enable visualdl for visual log display |          False        |    [Tutorial](https://www.paddlepaddle.org.cn/paddle/visualdl) |
|      infer_img            |    Set inference image path or folder path     |       ./infer_img | \|
|      character_dict_path |    Set dictionary path            |  ./ppocr/utils/ppocr_keys_v1.txt  |    \                 |
|      max_text_length     |    Set the maximum length of text        |       25          |                \                 |
|      character_type      |    Set character type            |       ch          |    en/ch, the default dict will be used for en, and the custom dict will be used for ch |
|      use_space_char     |    Set whether to recognize spaces             |        True      |          Only support in character_type=ch mode                 |
|      label_list          |    Set the angle supported by the direction classifier       |    ['0','180']    |     Only valid in angle classifier model |
|      save_res_path          |    Set the save address of the test model results       |    ./output/det_db/predicts_db.txt    |     Only valid in the text detection model |

### Optimizer ([ppocr/optimizer](../../ppocr/optimizer))

|         Parameter             |            Use            |      Defaults        |            Note             |
| :---------------------: |  :---------------------:   | :--------------:  |   :--------------------:   |
|      name        |         Optimizer class name          |  Adam  |  Currently supports`Momentum`,`Adam`,`RMSProp`, see [ppocr/optimizer/optimizer.py](../../ppocr/optimizer/optimizer.py)  |
|      beta1           |    Set the exponential decay rate for the 1st moment estimates  |       0.9         |               \             |
|      beta2           |    Set the exponential decay rate for the 2nd moment estimates  |     0.999         |               \             |
W
WenmuZhou 已提交
44
|      clip_norm           |    The maximum norm value  |    -         |               \             |
W
WenmuZhou 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
|      **lr**                |         Set the learning rate decay method       |   -    |       \  |
|        name    |      Learning rate decay class name   |         Cosine       | Currently supports`Linear`,`Cosine`,`Step`,`Piecewise`, see[ppocr/optimizer/learning_rate.py](../../ppocr/optimizer/learning_rate.py) |
|        learning_rate      |    Set the base learning rate        |       0.001      |  \        |
|      **regularizer**      |  Set network regularization method        |       -      | \        |
|        name      |    Regularizer class name      |       L2     |  Currently support`L1`,`L2`, see[ppocr/optimizer/regularizer.py](../../ppocr/optimizer/regularizer.py)        |
|        factor      |    Learning rate decay coefficient       |       0.00004     |  \        |


### Architecture ([ppocr/modeling](../../ppocr/modeling))
In ppocr, the network is divided into four stages: Transform, Backbone, Neck and Head

|         Parameter             |            Use            |      Defaults        |            Note             |
| :---------------------: |  :---------------------:   | :--------------:  |   :--------------------:   |
|      model_type        |         Network Type          |  rec  |  Currently support`rec`,`det`,`cls`  |
|      algorithm           |    Model name  |       CRNN         |               See [algorithm_overview](./algorithm_overview.md) for the support list             |
|      **Transform**           |    Set the transformation method  |       -       |               Currently only recognition algorithms are supported, see [ppocr/modeling/transform](../../ppocr/modeling/transform) for details            |
|        name    |      Transformation class name   |         TPS       | Currently supports `TPS` |
|        num_fiducial      |   Number of TPS control points        |       20      |  Ten on the top and bottom       |
|        loc_lr      |    Localization network learning rate        |       0.1      |  \      |
|        model_name      |    Localization network size        |       small      |  Currently support`small`,`large`       |
|      **Backbone**      |  Set the network backbone class name        |       -      | see [ppocr/modeling/backbones](../../ppocr/modeling/backbones)        |
|        name      |    backbone class name       |       ResNet     | Currently support`MobileNetV3`,`ResNet`        |
|        layers      |    resnet layers       |       34     |  Currently support18,34,50,101,152,200       |
|        model_name      |    MobileNetV3 network size       |       small     |  Currently support`small`,`large`       |
|      **Neck**      |  Set network neck        |       -      | see[ppocr/modeling/necks](../../ppocr/modeling/necks)        |
|        name      |    neck class name       |       SequenceEncoder     | Currently support`SequenceEncoder`,`DBFPN`        |
|        encoder_type      |    SequenceEncoder encoder type       |       rnn     |  Currently support`reshape`,`fc`,`rnn`       |
|        hidden_size      |   rnn number of internal units       |       48     |  \      |
|        out_channels      |   Number of DBFPN output channels       |       256     |  \      |
|      **Head**      |  Set the network head        |       -      | see[ppocr/modeling/heads](../../ppocr/modeling/heads)        |
|        name      |    head class name       |       CTCHead     | Currently support`CTCHead`,`DBHead`,`ClsHead`        |
|        fc_decay      |    CTCHead regularization coefficient       |       0.0004     |  \      |
|        k      |   DBHead binarization coefficient       |       50     |  \      |
|        class_dim      |   ClsHead output category number       |       2     |  \      |


### Loss ([ppocr/losses](../../ppocr/losses))

|         Parameter             |            Use            |      Defaults        |            Note             |
| :---------------------: |  :---------------------:   | :--------------:  |   :--------------------:   |
|      name        |         loss class name          |  CTCLoss  |  Currently support`CTCLoss`,`DBLoss`,`ClsLoss`  |
|      balance_loss        |        Whether to balance the number of positive and negative samples in DBLossloss (using OHEM)         |  True  |  \  |
|      ohem_ratio        |        The negative and positive sample ratio of OHEM in DBLossloss         |  3  |  \  |
|      main_loss_type        |        The loss used by shrink_map in DBLossloss        |  DiceLoss  |  Currently support`DiceLoss`,`BCELoss`  |
|      alpha        |        The coefficient of shrink_map_loss in DBLossloss       |  5  |  \  |
|      beta        |        The coefficient of threshold_map_loss in DBLossloss       |  10  |  \  |
T
tink2123 已提交
91

W
WenmuZhou 已提交
92
### PostProcess ([ppocr/postprocess](../../ppocr/postprocess))
T
tink2123 已提交
93

W
WenmuZhou 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107
|         Parameter             |            Use            |      Defaults        |            Note             |
| :---------------------: |  :---------------------:   | :--------------:  |   :--------------------:   |
|      name        |         Post-processing class name          |  CTCLabelDecode  |  Currently support`CTCLoss`,`AttnLabelDecode`,`DBPostProcess`,`ClsPostProcess`  |
|      thresh        |        The threshold for binarization of the segmentation map in DBPostProcess         |  0.3  |  \  |
|      box_thresh        |        The threshold for filtering output boxes in DBPostProcess. Boxes below this threshold will not be output         |  0.7  |  \  |
|      max_candidates        |        The maximum number of text boxes output in DBPostProcess        |  1000  |   |
|      unclip_ratio        |        The unclip ratio of the text box in DBPostProcess       |  2.0  |  \  |

### Metric ([ppocr/metrics](../../ppocr/metrics))

|         Parameter             |            Use            |      Defaults        |            Note             |
| :---------------------: |  :---------------------:   | :--------------:  |   :--------------------:   |
|      name        |         Metric method name          |  CTCLabelDecode  |  Currently support`DetMetric`,`RecMetric`,`ClsMetric`  |
|      main_indicator        |        Main indicators, used to select the best model        |  acc |  For the detection method is hmean, the recognition and classification method is acc  |
T
tink2123 已提交
108

W
WenmuZhou 已提交
109 110
### Dataset  ([ppocr/data](../../ppocr/data))
|         Parameter             |            Use            |      Defaults        |            Note             |
T
tink2123 已提交
111
| :---------------------: |  :---------------------:   | :--------------:  |   :--------------------:   |
W
WenmuZhou 已提交
112 113 114 115 116 117 118 119 120 121
|      **dataset**        |         Return one sample per iteration          |  -  |  -  |
|      name        |        dataset class name         |  SimpleDataSet |   Currently support`SimpleDataSet`,`LMDBDateSet`  |
|      data_dir        |        Image folder path        |  ./train_data |  \  |
|      label_file_list        |        Groundtruth file path         |  ["./train_data/train_list.txt"] | This parameter is not required when dataset is LMDBDateSet   |
|      ratio_list        |        Ratio of data set         |  [1.0] | If there are two train_lists in label_file_list and ratio_list is [0.4,0.6], 40% will be sampled from train_list1, and 60% will be sampled from train_list2 to combine the entire dataset   |
|      transforms        |        List of methods to transform images and labels         |  [DecodeImage,CTCLabelEncode,RecResizeImg,KeepKeys] |   see[ppocr/data/imaug](../../ppocr/data/imaug)  |
|      **loader**        |        dataloader related         |  - |   |
|      shuffle        |        Does each epoch disrupt the order of the data set         |  True | \  |
|      batch_size_per_card        |        Single card batch size during training         |  256 | \  |
|      drop_last        |        Whether to discard the last incomplete mini-batch because the number of samples in the data set cannot be divisible by batch_size        |  True | \  |
W
WenmuZhou 已提交
122
|      num_workers        |        The number of sub-processes used to load data, if it is 0, the sub-process is not started, and the data is loaded in the main process       |  8 | \  |