train_ser.py 10.7 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
文幕地方's avatar
add re  
文幕地方 已提交
16 17 18 19 20 21
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

littletomatodonkey's avatar
littletomatodonkey 已提交
22 23 24 25 26 27 28 29 30 31 32 33
import random
import copy
import logging

import argparse
import paddle
import numpy as np
from seqeval.metrics import classification_report, f1_score, precision_score, recall_score
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification
from xfun import XFUNDataset
from utils import parse_args
from utils import get_bio_label_maps
文幕地方's avatar
add re  
文幕地方 已提交
34
from utils import print_arguments
littletomatodonkey's avatar
littletomatodonkey 已提交
35

文幕地方's avatar
add re  
文幕地方 已提交
36
from ppocr.utils.logging import get_logger
littletomatodonkey's avatar
littletomatodonkey 已提交
37 38 39 40 41 42 43 44 45 46


def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    paddle.seed(args.seed)


def train(args):
    os.makedirs(args.output_dir, exist_ok=True)
文幕地方's avatar
add re  
文幕地方 已提交
47 48
    logger = get_logger(log_file=os.path.join(args.output_dir, "train.log"))
    print_arguments(args, logger)
littletomatodonkey's avatar
littletomatodonkey 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

    label2id_map, id2label_map = get_bio_label_maps(args.label_map_path)
    pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index

    # dist mode
    if paddle.distributed.get_world_size() > 1:
        paddle.distributed.init_parallel_env()

    tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path)
    base_model = LayoutXLMModel.from_pretrained(args.model_name_or_path)
    model = LayoutXLMForTokenClassification(
        base_model, num_classes=len(label2id_map), dropout=None)

    # dist mode
    if paddle.distributed.get_world_size() > 1:
        model = paddle.DataParallel(model)

    train_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.train_data_dir,
        label_path=args.train_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        pad_token_label_id=pad_token_label_id,
        contains_re=False,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')

    train_sampler = paddle.io.DistributedBatchSampler(
        train_dataset, batch_size=args.per_gpu_train_batch_size, shuffle=True)

    args.train_batch_size = args.per_gpu_train_batch_size * max(
        1, paddle.distributed.get_world_size())

    train_dataloader = paddle.io.DataLoader(
        train_dataset,
        batch_sampler=train_sampler,
        num_workers=0,
        use_shared_memory=True,
        collate_fn=None, )

    t_total = len(train_dataloader) * args.num_train_epochs

    # build linear decay with warmup lr sch
    lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
        learning_rate=args.learning_rate,
        decay_steps=t_total,
        end_lr=0.0,
        power=1.0)
    if args.warmup_steps > 0:
        lr_scheduler = paddle.optimizer.lr.LinearWarmup(
            lr_scheduler,
            args.warmup_steps,
            start_lr=0,
            end_lr=args.learning_rate, )

    optimizer = paddle.optimizer.AdamW(
        learning_rate=lr_scheduler,
        parameters=model.parameters(),
        epsilon=args.adam_epsilon,
        weight_decay=args.weight_decay)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed) = %d",
        args.train_batch_size * paddle.distributed.get_world_size(), )
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss = 0.0
    set_seed(args)
    best_metrics = None

    for epoch_id in range(args.num_train_epochs):
        for step, batch in enumerate(train_dataloader):
            model.train()
            outputs = model(**batch)
            # model outputs are always tuple in ppnlp (see doc)
            loss = outputs[0]
            loss = loss.mean()
            logger.info(
文幕地方's avatar
add re  
文幕地方 已提交
136
                "epoch: [{}/{}], iter: [{}/{}], global_step:{}, train loss: {}, lr: {}".
littletomatodonkey's avatar
littletomatodonkey 已提交
137
                format(epoch_id, args.num_train_epochs, step,
文幕地方's avatar
add re  
文幕地方 已提交
138 139
                       len(train_dataloader), global_step,
                       loss.numpy()[0], lr_scheduler.get_lr()))
littletomatodonkey's avatar
littletomatodonkey 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153

            loss.backward()
            tr_loss += loss.item()
            optimizer.step()
            lr_scheduler.step()  # Update learning rate schedule
            optimizer.clear_grad()
            global_step += 1

            if (paddle.distributed.get_rank() == 0 and args.eval_steps > 0 and
                    global_step % args.eval_steps == 0):
                # Log metrics
                # Only evaluate when single GPU otherwise metrics may not average well
                if paddle.distributed.get_rank(
                ) == 0 and args.evaluate_during_training:
文幕地方's avatar
add re  
文幕地方 已提交
154 155 156
                    results, _ = evaluate(args, model, tokenizer, label2id_map,
                                          id2label_map, pad_token_label_id,
                                          logger)
littletomatodonkey's avatar
littletomatodonkey 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

                    if best_metrics is None or results["f1"] >= best_metrics[
                            "f1"]:
                        best_metrics = copy.deepcopy(results)
                        output_dir = os.path.join(args.output_dir, "best_model")
                        os.makedirs(output_dir, exist_ok=True)
                        if paddle.distributed.get_rank() == 0:
                            model.save_pretrained(output_dir)
                            tokenizer.save_pretrained(output_dir)
                            paddle.save(
                                args,
                                os.path.join(output_dir, "training_args.bin"))
                            logger.info("Saving model checkpoint to %s",
                                        output_dir)

                    logger.info("[epoch {}/{}][iter: {}/{}] results: {}".format(
                        epoch_id, args.num_train_epochs, step,
                        len(train_dataloader), results))
                    if best_metrics is not None:
                        logger.info("best metrics: {}".format(best_metrics))

            if paddle.distributed.get_rank(
            ) == 0 and args.save_steps > 0 and global_step % args.save_steps == 0:
                # Save model checkpoint
                output_dir = os.path.join(args.output_dir,
                                          "checkpoint-{}".format(global_step))
                os.makedirs(output_dir, exist_ok=True)
                if paddle.distributed.get_rank() == 0:
                    model.save_pretrained(output_dir)
                    tokenizer.save_pretrained(output_dir)
                    paddle.save(args,
                                os.path.join(output_dir, "training_args.bin"))
                    logger.info("Saving model checkpoint to %s", output_dir)

    return global_step, tr_loss / global_step


def evaluate(args,
             model,
             tokenizer,
             label2id_map,
             id2label_map,
             pad_token_label_id,
文幕地方's avatar
add re  
文幕地方 已提交
200
             logger,
littletomatodonkey's avatar
littletomatodonkey 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
             prefix=""):
    eval_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.eval_data_dir,
        label_path=args.eval_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        pad_token_label_id=pad_token_label_id,
        contains_re=False,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(
        1, paddle.distributed.get_world_size())

    eval_dataloader = paddle.io.DataLoader(
        eval_dataset,
        batch_size=args.eval_batch_size,
        num_workers=0,
        use_shared_memory=True,
        collate_fn=None, )

    # Eval!
    logger.info("***** Running evaluation %s *****", prefix)
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
    preds = None
    out_label_ids = None
    model.eval()
    for idx, batch in enumerate(eval_dataloader):
        with paddle.no_grad():
            outputs = model(**batch)
            tmp_eval_loss, logits = outputs[:2]

            tmp_eval_loss = tmp_eval_loss.mean()

            if paddle.distributed.get_rank() == 0:
                logger.info("[Eval]process: {}/{}, loss: {:.5f}".format(
                    idx, len(eval_dataloader), tmp_eval_loss.numpy()[0]))

            eval_loss += tmp_eval_loss.item()
        nb_eval_steps += 1
        if preds is None:
            preds = logits.numpy()
            out_label_ids = batch["labels"].numpy()
        else:
            preds = np.append(preds, logits.numpy(), axis=0)
            out_label_ids = np.append(
                out_label_ids, batch["labels"].numpy(), axis=0)

    eval_loss = eval_loss / nb_eval_steps
    preds = np.argmax(preds, axis=2)

    # label_map = {i: label.upper() for i, label in enumerate(labels)}

    out_label_list = [[] for _ in range(out_label_ids.shape[0])]
    preds_list = [[] for _ in range(out_label_ids.shape[0])]

    for i in range(out_label_ids.shape[0]):
        for j in range(out_label_ids.shape[1]):
            if out_label_ids[i, j] != pad_token_label_id:
                out_label_list[i].append(id2label_map[out_label_ids[i][j]])
                preds_list[i].append(id2label_map[preds[i][j]])

    results = {
        "loss": eval_loss,
        "precision": precision_score(out_label_list, preds_list),
        "recall": recall_score(out_label_list, preds_list),
        "f1": f1_score(out_label_list, preds_list),
    }

    with open(os.path.join(args.output_dir, "test_gt.txt"), "w") as fout:
        for lbl in out_label_list:
            for l in lbl:
                fout.write(l + "\t")
            fout.write("\n")
    with open(os.path.join(args.output_dir, "test_pred.txt"), "w") as fout:
        for lbl in preds_list:
            for l in lbl:
                fout.write(l + "\t")
            fout.write("\n")

    report = classification_report(out_label_list, preds_list)
    logger.info("\n" + report)

    logger.info("***** Eval results %s *****", prefix)
    for key in sorted(results.keys()):
        logger.info("  %s = %s", key, str(results[key]))

    return results, preds_list


if __name__ == "__main__":
    args = parse_args()
    train(args)