rec_resnet_vd.py 9.2 KB
Newer Older
W
WenmuZhou 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
L
LDOUBLEV 已提交
2
#
W
WenmuZhou 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LDOUBLEV 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WenmuZhou 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19 20 21
import paddle
from paddle import ParamAttr
import paddle.nn as nn
L
LDOUBLEV 已提交
22

W
WenmuZhou 已提交
23
__all__ = ["ResNet"]
L
LDOUBLEV 已提交
24 25


W
WenmuZhou 已提交
26
class ConvBNLayer(nn.Layer):
27 28 29 30 31 32 33 34 35 36
    def __init__(
            self,
            in_channels,
            out_channels,
            kernel_size,
            stride=1,
            groups=1,
            is_vd_mode=False,
            act=None,
            name=None, ):
W
WenmuZhou 已提交
37
        super(ConvBNLayer, self).__init__()
38 39 40 41 42

        self.is_vd_mode = is_vd_mode
        self._pool2d_avg = nn.AvgPool2d(
            kernel_size=stride, stride=stride, padding=0, ceil_mode=True)
        self._conv = nn.Conv2d(
W
WenmuZhou 已提交
43 44 45
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
46
            stride=1 if is_vd_mode else stride,
W
WenmuZhou 已提交
47
            padding=(kernel_size - 1) // 2,
L
LDOUBLEV 已提交
48
            groups=groups,
W
WenmuZhou 已提交
49
            weight_attr=ParamAttr(name=name + "_weights"),
L
LDOUBLEV 已提交
50 51 52 53 54
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
55 56
        self._batch_norm = nn.BatchNorm(
            out_channels,
L
LDOUBLEV 已提交
57
            act=act,
58 59 60 61
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')
W
WenmuZhou 已提交
62

63 64 65 66 67 68
    def forward(self, inputs):
        if self.is_vd_mode:
            inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y
L
LDOUBLEV 已提交
69 70


71
class BottleneckBlock(nn.Layer):
W
WenmuZhou 已提交
72 73 74
    def __init__(self,
                 in_channels,
                 out_channels,
75 76 77
                 stride,
                 shortcut=True,
                 if_first=False,
W
WenmuZhou 已提交
78 79
                 name=None):
        super(BottleneckBlock, self).__init__()
80

W
WenmuZhou 已提交
81 82 83 84
        self.conv0 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=1,
L
LDOUBLEV 已提交
85 86
            act='relu',
            name=name + "_branch2a")
W
WenmuZhou 已提交
87 88 89 90
        self.conv1 = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=3,
L
LDOUBLEV 已提交
91 92 93
            stride=stride,
            act='relu',
            name=name + "_branch2b")
W
WenmuZhou 已提交
94 95 96 97
        self.conv2 = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels * 4,
            kernel_size=1,
L
LDOUBLEV 已提交
98 99 100
            act=None,
            name=name + "_branch2c")

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        if not shortcut:
            self.short = ConvBNLayer(
                in_channels=in_channels,
                out_channels=out_channels * 4,
                kernel_size=1,
                stride=stride,
                is_vd_mode=not if_first and stride[0] != 1,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)

        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
L
LDOUBLEV 已提交
117

118 119 120 121 122
        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
        y = paddle.elementwise_add(x=short, y=conv2, act='relu')
W
WenmuZhou 已提交
123
        return y
L
LDOUBLEV 已提交
124

W
WenmuZhou 已提交
125 126

class BasicBlock(nn.Layer):
127 128 129 130 131 132 133
    def __init__(self,
                 in_channels,
                 out_channels,
                 stride,
                 shortcut=True,
                 if_first=False,
                 name=None):
W
WenmuZhou 已提交
134
        super(BasicBlock, self).__init__()
135
        self.stride = stride
W
WenmuZhou 已提交
136 137 138 139
        self.conv0 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=3,
L
LDOUBLEV 已提交
140
            stride=stride,
141
            act='relu',
L
LDOUBLEV 已提交
142
            name=name + "_branch2a")
W
WenmuZhou 已提交
143 144 145 146
        self.conv1 = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=3,
L
LDOUBLEV 已提交
147 148
            act=None,
            name=name + "_branch2b")
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

        if not shortcut:
            self.short = ConvBNLayer(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=1,
                stride=stride,
                is_vd_mode=not if_first and stride[0] != 1,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
        y = paddle.elementwise_add(x=short, y=conv1, act='relu')
        return y


class ResNet(nn.Layer):
    def __init__(self, in_channels=3, layers=50, **kwargs):
        super(ResNet, self).__init__()

        self.layers = layers
        supported_layers = [18, 34, 50, 101, 152, 200]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
        num_filters = [64, 128, 256, 512]

        self.conv1_1 = ConvBNLayer(
W
WenmuZhou 已提交
198
            in_channels=in_channels,
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
            out_channels=32,
            kernel_size=3,
            stride=1,
            act='relu',
            name="conv1_1")
        self.conv1_2 = ConvBNLayer(
            in_channels=32,
            out_channels=32,
            kernel_size=3,
            stride=1,
            act='relu',
            name="conv1_2")
        self.conv1_3 = ConvBNLayer(
            in_channels=32,
            out_channels=64,
            kernel_size=3,
            stride=1,
            act='relu',
            name="conv1_3")
        self.pool2d_max = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.block_list = []
        if layers >= 50:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    if layers in [101, 152, 200] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
W
WenmuZhou 已提交
232

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
                    if i == 0 and block != 0:
                        stride = (2, 1)
                    else:
                        stride = (1, 1)
                    bottleneck_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BottleneckBlock(
                            in_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            out_channels=num_filters[block],
                            stride=stride,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
                    shortcut = True
                    self.block_list.append(bottleneck_block)
                self.out_channels = num_filters[block]
        else:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
                    if i == 0 and block != 0:
                        stride = (2, 1)
                    else:
                        stride = (1, 1)

                    basic_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BasicBlock(
                            in_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            out_channels=num_filters[block],
                            stride=stride,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
                    shortcut = True
                    self.block_list.append(basic_block)
                self.out_channels = num_filters[block]
        self.out_pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)

    def forward(self, inputs):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.out_pool(y)
        return y