optimizer.py 6.0 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
littletomatodonkey's avatar
littletomatodonkey 已提交
17
import math
L
LDOUBLEV 已提交
18
import paddle.fluid as fluid
littletomatodonkey's avatar
littletomatodonkey 已提交
19
from paddle.fluid.regularizer import L2Decay
littletomatodonkey's avatar
littletomatodonkey 已提交
20 21
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
import paddle.fluid.layers.ops as ops
littletomatodonkey's avatar
littletomatodonkey 已提交
22

T
tink2123 已提交
23 24 25
from ppocr.utils.utility import initial_logger

logger = initial_logger()
L
LDOUBLEV 已提交
26 27


littletomatodonkey's avatar
littletomatodonkey 已提交
28 29 30 31
def cosine_decay_with_warmup(learning_rate,
                             step_each_epoch,
                             epochs=500,
                             warmup_minibatch=1000):
littletomatodonkey's avatar
littletomatodonkey 已提交
32 33
    """
    Applies cosine decay to the learning rate.
littletomatodonkey's avatar
littletomatodonkey 已提交
34 35
    lr = 0.05 * (math.cos(epoch * (math.pi / 120)) + 1)
    decrease lr for every mini-batch and start with warmup.
littletomatodonkey's avatar
littletomatodonkey 已提交
36 37 38 39 40 41 42
    args:
        learning_rate(float): initial learning rate
        step_each_epoch (int): number of step for each epoch in training process
        epochs(int): number of training epochs
        warmup_minibatch(int): number of minibatch for warmup
    return:
        lr(tensor): learning rate tensor
littletomatodonkey's avatar
littletomatodonkey 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    """
    global_step = _decay_step_counter()
    lr = fluid.layers.tensor.create_global_var(
        shape=[1],
        value=0.0,
        dtype='float32',
        persistable=True,
        name="learning_rate")

    warmup_minibatch = fluid.layers.fill_constant(
        shape=[1],
        dtype='float32',
        value=float(warmup_minibatch),
        force_cpu=True)

    with fluid.layers.control_flow.Switch() as switch:
        with switch.case(global_step < warmup_minibatch):
            decayed_lr = learning_rate * (1.0 * global_step / warmup_minibatch)
            fluid.layers.tensor.assign(input=decayed_lr, output=lr)
        with switch.default():
            decayed_lr = learning_rate * \
                (ops.cos((global_step - warmup_minibatch) * (math.pi / (epochs * step_each_epoch))) + 1)/2
            fluid.layers.tensor.assign(input=decayed_lr, output=lr)
    return lr


L
LDOUBLEV 已提交
69 70 71 72 73 74 75
def AdamDecay(params, parameter_list=None):
    """
    define optimizer function
    args:
        params(dict): the super parameters
        parameter_list (list): list of Variable names to update to minimize loss
    return:
littletomatodonkey's avatar
littletomatodonkey 已提交
76
        optimizer: a Adam optimizer instance
L
LDOUBLEV 已提交
77 78 79 80
    """
    base_lr = params['base_lr']
    beta1 = params['beta1']
    beta2 = params['beta2']
littletomatodonkey's avatar
littletomatodonkey 已提交
81 82
    l2_decay = params.get("l2_decay", 0.0)

T
tink2123 已提交
83
    if 'decay' in params:
littletomatodonkey's avatar
littletomatodonkey 已提交
84 85 86
        supported_decay_mode = [
            "cosine_decay", "cosine_decay_warmup", "piecewise_decay"
        ]
T
tink2123 已提交
87 88
        params = params['decay']
        decay_mode = params['function']
L
licx 已提交
89 90 91
        assert decay_mode in supported_decay_mode, "Supported decay mode is {}, but got {}".format(
            supported_decay_mode, decay_mode)

T
tink2123 已提交
92
        if decay_mode == "cosine_decay":
L
licx 已提交
93 94
            step_each_epoch = params['step_each_epoch']
            total_epoch = params['total_epoch']
T
tink2123 已提交
95 96 97 98
            base_lr = fluid.layers.cosine_decay(
                learning_rate=base_lr,
                step_each_epoch=step_each_epoch,
                epochs=total_epoch)
littletomatodonkey's avatar
littletomatodonkey 已提交
99 100 101 102 103 104 105 106 107
        elif decay_mode == "cosine_decay_warmup":
            step_each_epoch = params['step_each_epoch']
            total_epoch = params['total_epoch']
            warmup_minibatch = params.get("warmup_minibatch", 1000)
            base_lr = cosine_decay_with_warmup(
                learning_rate=base_lr,
                step_each_epoch=step_each_epoch,
                epochs=total_epoch,
                warmup_minibatch=warmup_minibatch)
L
licx 已提交
108 109 110 111 112 113 114 115 116
        elif decay_mode == "piecewise_decay":
            boundaries = params["boundaries"]
            decay_rate = params["decay_rate"]
            values = [
                base_lr * decay_rate**idx
                for idx in range(len(boundaries) + 1)
            ]
            base_lr = fluid.layers.piecewise_decay(boundaries, values)

L
LDOUBLEV 已提交
117 118 119 120
    optimizer = fluid.optimizer.Adam(
        learning_rate=base_lr,
        beta1=beta1,
        beta2=beta2,
littletomatodonkey's avatar
littletomatodonkey 已提交
121
        regularization=L2Decay(regularization_coeff=l2_decay),
L
LDOUBLEV 已提交
122 123
        parameter_list=parameter_list)
    return optimizer
L
licx 已提交
124 125 126 127 128 129 130 131 132


def RMSProp(params, parameter_list=None):
    """
    define optimizer function
    args:
        params(dict): the super parameters
        parameter_list (list): list of Variable names to update to minimize loss
    return:
littletomatodonkey's avatar
littletomatodonkey 已提交
133
        optimizer: a RMSProp optimizer instance
L
licx 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    """
    base_lr = params.get("base_lr", 0.001)
    l2_decay = params.get("l2_decay", 0.00005)

    if 'decay' in params:
        supported_decay_mode = ["cosine_decay", "piecewise_decay"]
        params = params['decay']
        decay_mode = params['function']
        assert decay_mode in supported_decay_mode, "Supported decay mode is {}, but got {}".format(
            supported_decay_mode, decay_mode)

        if decay_mode == "cosine_decay":
            step_each_epoch = params['step_each_epoch']
            total_epoch = params['total_epoch']
            base_lr = fluid.layers.cosine_decay(
                learning_rate=base_lr,
                step_each_epoch=step_each_epoch,
                epochs=total_epoch)
        elif decay_mode == "piecewise_decay":
            boundaries = params["boundaries"]
            decay_rate = params["decay_rate"]
            values = [
                base_lr * decay_rate**idx
                for idx in range(len(boundaries) + 1)
            ]
            base_lr = fluid.layers.piecewise_decay(boundaries, values)

    optimizer = fluid.optimizer.RMSProp(
        learning_rate=base_lr,
        regularization=fluid.regularizer.L2Decay(regularization_coeff=l2_decay))
littletomatodonkey's avatar
littletomatodonkey 已提交
164 165

    return optimizer