ocr_db_crnn.cc 13.2 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle_api.h" // NOLINT
#include <chrono>

#include "cls_process.h"
#include "crnn_process.h"
#include "db_post_process.h"

using namespace paddle::lite_api; // NOLINT
using namespace std;

// fill tensor with mean and scale and trans layout: nhwc -> nchw, neon speed up
void NeonMeanScale(const float *din, float *dout, int size,
                   const std::vector<float> mean,
                   const std::vector<float> scale) {
  if (mean.size() != 3 || scale.size() != 3) {
    std::cerr << "[ERROR] mean or scale size must equal to 3\n";
    exit(1);
  }
  float32x4_t vmean0 = vdupq_n_f32(mean[0]);
  float32x4_t vmean1 = vdupq_n_f32(mean[1]);
  float32x4_t vmean2 = vdupq_n_f32(mean[2]);
  float32x4_t vscale0 = vdupq_n_f32(scale[0]);
  float32x4_t vscale1 = vdupq_n_f32(scale[1]);
  float32x4_t vscale2 = vdupq_n_f32(scale[2]);

  float *dout_c0 = dout;
  float *dout_c1 = dout + size;
  float *dout_c2 = dout + size * 2;

  int i = 0;
  for (; i < size - 3; i += 4) {
    float32x4x3_t vin3 = vld3q_f32(din);
    float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0);
    float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1);
    float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2);
    float32x4_t vs0 = vmulq_f32(vsub0, vscale0);
    float32x4_t vs1 = vmulq_f32(vsub1, vscale1);
    float32x4_t vs2 = vmulq_f32(vsub2, vscale2);
    vst1q_f32(dout_c0, vs0);
    vst1q_f32(dout_c1, vs1);
    vst1q_f32(dout_c2, vs2);

    din += 12;
    dout_c0 += 4;
    dout_c1 += 4;
    dout_c2 += 4;
  }
  for (; i < size; i++) {
    *(dout_c0++) = (*(din++) - mean[0]) * scale[0];
    *(dout_c1++) = (*(din++) - mean[1]) * scale[1];
    *(dout_c2++) = (*(din++) - mean[2]) * scale[2];
  }
}

// resize image to a size multiple of 32 which is required by the network
cv::Mat DetResizeImg(const cv::Mat img, int max_size_len,
                     std::vector<float> &ratio_hw) {
  int w = img.cols;
  int h = img.rows;

  float ratio = 1.f;
  int max_wh = w >= h ? w : h;
  if (max_wh > max_size_len) {
    if (h > w) {
      ratio = static_cast<float>(max_size_len) / static_cast<float>(h);
    } else {
      ratio = static_cast<float>(max_size_len) / static_cast<float>(w);
    }
  }

  int resize_h = static_cast<int>(float(h) * ratio);
  int resize_w = static_cast<int>(float(w) * ratio);
  if (resize_h % 32 == 0)
    resize_h = resize_h;
  else if (resize_h / 32 < 1 + 1e-5)
    resize_h = 32;
  else
    resize_h = (resize_h / 32 - 1) * 32;

  if (resize_w % 32 == 0)
    resize_w = resize_w;
  else if (resize_w / 32 < 1 + 1e-5)
    resize_w = 32;
  else
    resize_w = (resize_w / 32 - 1) * 32;

  cv::Mat resize_img;
  cv::resize(img, resize_img, cv::Size(resize_w, resize_h));

  ratio_hw.push_back(static_cast<float>(resize_h) / static_cast<float>(h));
  ratio_hw.push_back(static_cast<float>(resize_w) / static_cast<float>(w));
  return resize_img;
}

cv::Mat RunClsModel(cv::Mat img, std::shared_ptr<PaddlePredictor> predictor_cls,
                    const float thresh = 0.9) {
  std::vector<float> mean = {0.5f, 0.5f, 0.5f};
  std::vector<float> scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};

  cv::Mat srcimg;
  img.copyTo(srcimg);
  cv::Mat crop_img;
  img.copyTo(crop_img);
  cv::Mat resize_img;

  int index = 0;
  float wh_ratio =
      static_cast<float>(crop_img.cols) / static_cast<float>(crop_img.rows);

  resize_img = ClsResizeImg(crop_img);
  resize_img.convertTo(resize_img, CV_32FC3, 1 / 255.f);

  const float *dimg = reinterpret_cast<const float *>(resize_img.data);

  std::unique_ptr<Tensor> input_tensor0(std::move(predictor_cls->GetInput(0)));
  input_tensor0->Resize({1, 3, resize_img.rows, resize_img.cols});
  auto *data0 = input_tensor0->mutable_data<float>();

  NeonMeanScale(dimg, data0, resize_img.rows * resize_img.cols, mean, scale);
  // Run CLS predictor
  predictor_cls->Run();

  // Get output and run postprocess
  std::unique_ptr<const Tensor> softmax_out(
      std::move(predictor_cls->GetOutput(0)));
  auto *softmax_scores = softmax_out->mutable_data<float>();
  auto softmax_out_shape = softmax_out->shape();
  float score = 0;
  int label = 0;
  for (int i = 0; i < softmax_out_shape[1]; i++) {
    if (softmax_scores[i] > score) {
      score = softmax_scores[i];
      label = i;
    }
  }
  if (label % 2 == 1 && score > thresh) {
    cv::rotate(srcimg, srcimg, 1);
  }
  return srcimg;
}

void RunRecModel(std::vector<std::vector<std::vector<int>>> boxes, cv::Mat img,
                 std::shared_ptr<PaddlePredictor> predictor_crnn,
                 std::vector<std::string> &rec_text,
                 std::vector<float> &rec_text_score,
                 std::vector<std::string> charactor_dict,
                 std::shared_ptr<PaddlePredictor> predictor_cls,
                 int use_direction_classify) {
  std::vector<float> mean = {0.5f, 0.5f, 0.5f};
  std::vector<float> scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};

  cv::Mat srcimg;
  img.copyTo(srcimg);
  cv::Mat crop_img;
  cv::Mat resize_img;

  int index = 0;
  for (int i = boxes.size() - 1; i >= 0; i--) {
    crop_img = GetRotateCropImage(srcimg, boxes[i]);
    if (use_direction_classify >= 1) {
      crop_img = RunClsModel(crop_img, predictor_cls);
    }
    float wh_ratio =
        static_cast<float>(crop_img.cols) / static_cast<float>(crop_img.rows);

    resize_img = CrnnResizeImg(crop_img, wh_ratio);
    resize_img.convertTo(resize_img, CV_32FC3, 1 / 255.f);

    const float *dimg = reinterpret_cast<const float *>(resize_img.data);

    std::unique_ptr<Tensor> input_tensor0(
        std::move(predictor_crnn->GetInput(0)));
    input_tensor0->Resize({1, 3, resize_img.rows, resize_img.cols});
    auto *data0 = input_tensor0->mutable_data<float>();

    NeonMeanScale(dimg, data0, resize_img.rows * resize_img.cols, mean, scale);
    //// Run CRNN predictor
    predictor_crnn->Run();

    // Get output and run postprocess
    std::unique_ptr<const Tensor> output_tensor0(
        std::move(predictor_crnn->GetOutput(0)));
    auto *predict_batch = output_tensor0->data<float>();
    auto predict_shape = output_tensor0->shape();

    // ctc decode
    std::string str_res;
    int argmax_idx;
    int last_index = 0;
    float score = 0.f;
    int count = 0;
    float max_value = 0.0f;

    for (int n = 0; n < predict_shape[1]; n++) {
      argmax_idx = int(Argmax(&predict_batch[n * predict_shape[2]],
                              &predict_batch[(n + 1) * predict_shape[2]]));
      max_value =
          float(*std::max_element(&predict_batch[n * predict_shape[2]],
                                  &predict_batch[(n + 1) * predict_shape[2]]));
      if (argmax_idx > 0 && (!(i > 0 && argmax_idx == last_index))) {
        score += max_value;
        count += 1;
        str_res += charactor_dict[argmax_idx];
      }
      last_index = argmax_idx;
    }
    score /= count;
    rec_text.push_back(str_res);
    rec_text_score.push_back(score);
  }
}

std::vector<std::vector<std::vector<int>>>
RunDetModel(std::shared_ptr<PaddlePredictor> predictor, cv::Mat img,
            std::map<std::string, double> Config) {
  // Read img
  int max_side_len = int(Config["max_side_len"]);

  cv::Mat srcimg;
  img.copyTo(srcimg);

  std::vector<float> ratio_hw;
  img = DetResizeImg(img, max_side_len, ratio_hw);
  cv::Mat img_fp;
  img.convertTo(img_fp, CV_32FC3, 1.0 / 255.f);

  // Prepare input data from image
  std::unique_ptr<Tensor> input_tensor0(std::move(predictor->GetInput(0)));
  input_tensor0->Resize({1, 3, img_fp.rows, img_fp.cols});
  auto *data0 = input_tensor0->mutable_data<float>();

  std::vector<float> mean = {0.485f, 0.456f, 0.406f};
  std::vector<float> scale = {1 / 0.229f, 1 / 0.224f, 1 / 0.225f};
  const float *dimg = reinterpret_cast<const float *>(img_fp.data);
  NeonMeanScale(dimg, data0, img_fp.rows * img_fp.cols, mean, scale);

  // Run predictor
  predictor->Run();

  // Get output and post process
  std::unique_ptr<const Tensor> output_tensor(
      std::move(predictor->GetOutput(0)));
  auto *outptr = output_tensor->data<float>();
  auto shape_out = output_tensor->shape();

  // Save output
  float pred[shape_out[2] * shape_out[3]];
  unsigned char cbuf[shape_out[2] * shape_out[3]];

  for (int i = 0; i < int(shape_out[2] * shape_out[3]); i++) {
    pred[i] = static_cast<float>(outptr[i]);
    cbuf[i] = static_cast<unsigned char>((outptr[i]) * 255);
  }

  cv::Mat cbuf_map(shape_out[2], shape_out[3], CV_8UC1,
                   reinterpret_cast<unsigned char *>(cbuf));
  cv::Mat pred_map(shape_out[2], shape_out[3], CV_32F,
                   reinterpret_cast<float *>(pred));

  const double threshold = double(Config["det_db_thresh"]) * 255;
  const double maxvalue = 255;
  cv::Mat bit_map;
  cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);
  cv::Mat dilation_map;
  cv::Mat dila_ele = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2));
  cv::dilate(bit_map, dilation_map, dila_ele);
  auto boxes = BoxesFromBitmap(pred_map, dilation_map, Config);

  std::vector<std::vector<std::vector<int>>> filter_boxes =
      FilterTagDetRes(boxes, ratio_hw[0], ratio_hw[1], srcimg);

  return filter_boxes;
}

std::shared_ptr<PaddlePredictor> loadModel(std::string model_file) {
  MobileConfig config;
  config.set_model_from_file(model_file);

  std::shared_ptr<PaddlePredictor> predictor =
      CreatePaddlePredictor<MobileConfig>(config);
  return predictor;
}

cv::Mat Visualization(cv::Mat srcimg,
                      std::vector<std::vector<std::vector<int>>> boxes) {
  cv::Point rook_points[boxes.size()][4];
  for (int n = 0; n < boxes.size(); n++) {
    for (int m = 0; m < boxes[0].size(); m++) {
      rook_points[n][m] = cv::Point(static_cast<int>(boxes[n][m][0]),
                                    static_cast<int>(boxes[n][m][1]));
    }
  }
  cv::Mat img_vis;
  srcimg.copyTo(img_vis);
  for (int n = 0; n < boxes.size(); n++) {
    const cv::Point *ppt[1] = {rook_points[n]};
    int npt[] = {4};
    cv::polylines(img_vis, ppt, npt, 1, 1, CV_RGB(0, 255, 0), 2, 8, 0);
  }

  cv::imwrite("./vis.jpg", img_vis);
  std::cout << "The detection visualized image saved in ./vis.jpg" << std::endl;
  return img_vis;
}

std::vector<std::string> split(const std::string &str,
                               const std::string &delim) {
  std::vector<std::string> res;
  if ("" == str)
    return res;
  char *strs = new char[str.length() + 1];
  std::strcpy(strs, str.c_str());

  char *d = new char[delim.length() + 1];
  std::strcpy(d, delim.c_str());

  char *p = std::strtok(strs, d);
  while (p) {
    string s = p;
    res.push_back(s);
    p = std::strtok(NULL, d);
  }

  return res;
}

std::map<std::string, double> LoadConfigTxt(std::string config_path) {
  auto config = ReadDict(config_path);

  std::map<std::string, double> dict;
  for (int i = 0; i < config.size(); i++) {
    std::vector<std::string> res = split(config[i], " ");
    dict[res[0]] = stod(res[1]);
  }
  return dict;
}

int main(int argc, char **argv) {
  if (argc < 5) {
    std::cerr << "[ERROR] usage: " << argv[0]
              << " det_model_file cls_model_file rec_model_file image_path "
                 "charactor_dict\n";
    exit(1);
  }
  std::string det_model_file = argv[1];
  std::string rec_model_file = argv[2];
  std::string cls_model_file = argv[3];
  std::string img_path = argv[4];
  std::string dict_path = argv[5];

  //// load config from txt file
  auto Config = LoadConfigTxt("./config.txt");
  int use_direction_classify = int(Config["use_direction_classify"]);

  auto start = std::chrono::system_clock::now();

  auto det_predictor = loadModel(det_model_file);
  auto rec_predictor = loadModel(rec_model_file);
  auto cls_predictor = loadModel(cls_model_file);

  auto charactor_dict = ReadDict(dict_path);
  charactor_dict.insert(charactor_dict.begin(), "#"); // blank char for ctc
  charactor_dict.push_back(" ");
std:
  cout << charactor_dict[0] << "  " << charactor_dict[1] << std::endl;
  cv::Mat srcimg = cv::imread(img_path, cv::IMREAD_COLOR);
  auto boxes = RunDetModel(det_predictor, srcimg, Config);

  std::vector<std::string> rec_text;
  std::vector<float> rec_text_score;

  RunRecModel(boxes, srcimg, rec_predictor, rec_text, rec_text_score,
              charactor_dict, cls_predictor, use_direction_classify);

  auto end = std::chrono::system_clock::now();
  auto duration =
      std::chrono::duration_cast<std::chrono::microseconds>(end - start);

  //// visualization
  auto img_vis = Visualization(srcimg, boxes);

  //// print recognized text
  for (int i = 0; i < rec_text.size(); i++) {
    std::cout << i << "\t" << rec_text[i] << "\t" << rec_text_score[i]
              << std::endl;
  }

  std::cout << "花费了"
            << double(duration.count()) *
                   std::chrono::microseconds::period::num /
                   std::chrono::microseconds::period::den
            << "秒" << std::endl;

  return 0;
}