readme.md 8.8 KB
Newer Older
L
LDOUBLEV 已提交
1
# PaddleOCR 模型部署
L
LDOUBLEV 已提交
2

L
LDOUBLEV 已提交
3
PaddleOCR是集训练、预测、部署于一体的实用OCR工具库。本教程将介绍在安卓移动端部署PaddleOCR超轻量中文检测、识别模型的主要流程。
L
LDOUBLEV 已提交
4 5 6 7


## 1. 准备环境

L
LDOUBLEV 已提交
8 9 10 11
### 运行准备
- 电脑(编译Paddle-Lite)
- 安卓手机(armv7或armv8)

L
LDOUBLEV 已提交
12
### 1.1 准备交叉编译环境
L
LDOUBLEV 已提交
13
交叉编译环境用于编译[Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite)和PaddleOCR的C++ demo。
L
LDOUBLEV 已提交
14
支持多种开发环境,不同开发环境的编译流程请参考对应文档。
L
LDOUBLEV 已提交
15 16 17 18 19
1. [Docker](https://paddle-lite.readthedocs.io/zh/latest/user_guides/source_compile.html#docker)
2. [Linux](https://paddle-lite.readthedocs.io/zh/latest/user_guides/source_compile.html#android)
3. [MAC OS](https://paddle-lite.readthedocs.io/zh/latest/user_guides/source_compile.html#id13)
4. [Windows](https://paddle-lite.readthedocs.io/zh/latest/demo_guides/x86.html#windows)

L
LDOUBLEV 已提交
20
### 1.2 准备预测库
L
LDOUBLEV 已提交
21

L
LDOUBLEV 已提交
22
预测库有两种获取方式:
L
LDOUBLEV 已提交
23
- 1. 直接下载,下载[链接](https://paddle-lite.readthedocs.io/zh/latest/user_guides/release_lib.html#android-toolchain-gcc).
L
LDOUBLEV 已提交
24
    注意选择`with_extra=ON,with_cv=ON`的下载链接。
L
LDOUBLEV 已提交
25 26 27 28
- 2. 编译Paddle-Lite得到,Paddle-Lite的编译方式如下:
```
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
L
LDOUBLEV 已提交
29
git checkout 2.6.1
L
LDOUBLEV 已提交
30 31 32
./lite/tools/build_android.sh  --arch=armv8  --with_cv=ON --with_extra=ON
```

L
LDOUBLEV 已提交
33
注意:编译Paddle-Lite获得预测库时,需要打开`--with_cv=ON --with_extra=ON`两个选项,`--arch`表示`arm`版本,这里指定为armv8,
L
LDOUBLEV 已提交
34 35 36
更多编译命令
介绍请参考[链接](https://paddle-lite.readthedocs.io/zh/latest/user_guides/Compile/Android.html#id2)

L
LDOUBLEV 已提交
37
直接下载预测库并解压后,可以得到`inference_lite_lib.android.armv8/`文件夹,通过编译Paddle-Lite得到的预测库位于
L
LDOUBLEV 已提交
38
`Paddle-Lite/build.lite.android.armv8.gcc/inference_lite_lib.android.armv8/`文件夹下。
L
LDOUBLEV 已提交
39
预测库的文件目录如下:
L
LDOUBLEV 已提交
40 41
```
inference_lite_lib.android.armv8/
L
LDOUBLEV 已提交
42
|-- cxx                                        C++ 预测库和头文件
L
LDOUBLEV 已提交
43 44 45 46 47 48 49 50
|   |-- include                                C++ 头文件
|   |   |-- paddle_api.h
|   |   |-- paddle_image_preprocess.h
|   |   |-- paddle_lite_factory_helper.h
|   |   |-- paddle_place.h
|   |   |-- paddle_use_kernels.h
|   |   |-- paddle_use_ops.h
|   |   `-- paddle_use_passes.h
L
LDOUBLEV 已提交
51
|   `-- lib                                           C++预测库
L
LDOUBLEV 已提交
52 53
|       |-- libpaddle_api_light_bundled.a             C++静态库
|       `-- libpaddle_light_api_shared.so             C++动态库
L
LDOUBLEV 已提交
54
|-- java                                     Java预测库
L
LDOUBLEV 已提交
55 56 57 58 59
|   |-- jar
|   |   `-- PaddlePredictor.jar
|   |-- so
|   |   `-- libpaddle_lite_jni.so
|   `-- src
L
LDOUBLEV 已提交
60
|-- demo                                     C++和Java示例代码
L
LDOUBLEV 已提交
61 62 63 64 65 66 67 68
|   |-- cxx                                  C++  预测库demo
|   `-- java                                 Java 预测库demo
```

## 2 开始运行

### 2.1 模型优化

L
LDOUBLEV 已提交
69 70 71 72 73
Paddle-Lite 提供了多种策略来自动优化原始的模型,其中包括量化、子图融合、混合调度、Kernel优选等方法,使用Paddle-lite的opt工具可以自动
对inference模型进行优化,优化后的模型更轻量,模型运行速度更快。

下述表格中提供了优化好的超轻量中文模型:

L
LDOUBLEV 已提交
74 75 76
|模型简介|检测模型|识别模型|Paddle-Lite版本|
|-|-|-|-|
|超轻量级中文OCR opt优化模型|[下载地址](https://paddleocr.bj.bcebos.com/deploy/lite/ch_det_mv3_db_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/deploy/lite/ch_rec_mv3_crnn_opt.nb)|2.6.1|
L
LDOUBLEV 已提交
77 78 79 80

如果直接使用上述表格中的模型进行部署,可略过下述步骤,直接阅读 [2.2节](###2.2与手机联调)

如果要部署的模型不在上述表格中,则需要按照如下步骤获得优化后的模型。
L
LDOUBLEV 已提交
81

L
LDOUBLEV 已提交
82
模型优化需要Paddle-Lite的opt可执行文件,可以通过编译Paddle-Lite源码获得,编译步骤如下:
L
LDOUBLEV 已提交
83
```
L
LDOUBLEV 已提交
84
# 如果准备环境时已经clone了Paddle-Lite,则不用重新clone Paddle-Lite
L
LDOUBLEV 已提交
85 86
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
L
LDOUBLEV 已提交
87
git checkout 2.6.1
L
LDOUBLEV 已提交
88 89 90 91
# 启动编译
./lite/tools/build.sh build_optimize_tool
```

L
LDOUBLEV 已提交
92
编译完成后,opt文件位于`build.opt/lite/api/`下,可通过如下方式查看opt的运行选项和使用方式;
L
LDOUBLEV 已提交
93 94 95 96 97 98
```
cd build.opt/lite/api/
./opt
```

|选项|说明|
L
LDOUBLEV 已提交
99
|-|-|
L
LDOUBLEV 已提交
100 101 102 103 104 105 106 107
|--model_dir|待优化的PaddlePaddle模型(非combined形式)的路径|
|--model_file|待优化的PaddlePaddle模型(combined形式)的网络结构文件路径|
|--param_file|待优化的PaddlePaddle模型(combined形式)的权重文件路径|
|--optimize_out_type|输出模型类型,目前支持两种类型:protobuf和naive_buffer,其中naive_buffer是一种更轻量级的序列化/反序列化实现。若您需要在mobile端执行模型预测,请将此选项设置为naive_buffer。默认为protobuf|
|--optimize_out|优化模型的输出路径|
|--valid_targets|指定模型可执行的backend,默认为arm。目前可支持x86、arm、opencl、npu、xpu,可以同时指定多个backend(以空格分隔),Model Optimize Tool将会自动选择最佳方式。如果需要支持华为NPU(Kirin 810/990 Soc搭载的达芬奇架构NPU),应当设置为npu, arm|
|--record_tailoring_info|当使用 根据模型裁剪库文件 功能时,则设置该选项为true,以记录优化后模型含有的kernel和OP信息,默认为false|

L
LDOUBLEV 已提交
108
`--model_dir`适用于待优化的模型是非combined方式,PaddleOCR的inference模型是combined方式,即模型结构和模型参数使用单独一个文件存储。
L
LDOUBLEV 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

下面以PaddleOCR的超轻量中文模型为例,介绍使用编译好的opt文件完成inference模型到Paddle-Lite优化模型的转换。

```
# 下载PaddleOCR的超轻量文inference模型,并解压
wget  https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar
wget  https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar

# 转换检测模型
./opt --model_file=./ch_det_mv3_db/model --param_file=./ch_det_mv3_db/params --optimize_out_type=naive_buffer --optimize_out=./ch_det_mv3_db_opt --valid_targets=arm

# 转换识别模型
./opt --model_file=./ch_rec_mv3_crnn/model --param_file=./ch_rec_mv3_crnn/params --optimize_out_type=naive_buffer --optimize_out=./ch_rec_mv3_crnn_opt --valid_targets=arm
```

L
LDOUBLEV 已提交
124
转换成功后,当前目录下会多出`ch_det_mv3_db_opt.nb`, `ch_rec_mv3_crnn_opt.nb`结尾的文件,即是转换成功的模型文件。
L
LDOUBLEV 已提交
125

L
LDOUBLEV 已提交
126
注意:使用paddle-lite部署时,需要使用opt工具优化后的模型。 opt 转换的输入模型是paddle保存的inference模型
L
LDOUBLEV 已提交
127 128 129 130 131

### 2.2 与手机联调

首先需要进行一些准备工作。
 1. 准备一台arm8的安卓手机,如果编译的预测库和opt文件是armv7,则需要arm7的手机。
L
LDOUBLEV 已提交
132
 2. 打开手机的USB调试选项,选择文件传输模式,连接电脑。
L
LDOUBLEV 已提交
133
 3. 电脑上安装adb工具,用于调试。在电脑终端中输入`adb devices`,如果有类似以下输出,则表示安装成功。
L
LDOUBLEV 已提交
134 135 136 137 138
```
    List of devices attached
    744be294    device
```

L
LDOUBLEV 已提交
139 140
 4. 准备预测库、模型和预测文件,在预测库`inference_lite_lib.android.armv8/demo/cxx/`下新建一个`ocr/`文件夹,并将转换后的nb模型、
 PaddleOCR repo中`PaddleOCR/deploy/lite/` 下的所有文件放在新建的ocr文件夹下。执行完成后,ocr文件夹下将有如下文件格式:
L
LDOUBLEV 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

```
demo/cxx/ocr/
|-- debug/                      新建debug文件夹存放模型文件
|   |--ch_det_mv3_db_opt.nb     优化后的检测模型文件
|   |--ch_rec_mv3_crnn_opt.nb   优化后的识别模型文件
|-- utils/  
|   |-- clipper.cpp             Clipper库的cpp文件
|   |-- clipper.hpp             Clipper库的hpp文件
|   |-- crnn_process.cpp        识别模型CRNN的预处理和后处理cpp文件
|   |-- db_post_process.cpp     检测模型DB的后处理cpp文件
|-- Makefile                    编译文件
|-- ocr_db_crnn.cc              C++预测文件
```

 5. 编译C++预测文件,准备测试图像,准备字典文件
 ```
 cd demo/cxx/ocr/
 # 执行编译
 make
 # 将编译的可执行文件移动到debug文件夹中
 mv ocr_db_crnn ./debug/
L
LDOUBLEV 已提交
163
 # 将C++预测动态库so文件复制到debug文件夹中
L
LDOUBLEV 已提交
164
 cp ../../../cxx/lib/libpaddle_light_api_shared.so ./debug/
L
LDOUBLEV 已提交
165
 ```
L
LDOUBLEV 已提交
166 167
 准备测试图像,以`PaddleOCR/doc/imgs/12.jpg`为例,将测试的图像复制到`demo/cxx/ocr/debug/`文件夹下。
 准备字典文件,将`PaddleOCR/ppocr/utils/ppocr_keys_v1.txt`复制到`demo/cxx/ocr/debug/`文件夹下。
L
LDOUBLEV 已提交
168 169 170 171 172 173 174 175 176
 上述步骤完成后就可以使用adb将文件push到手机上运行,步骤如下:
 ```
 adb push debug /data/local/tmp/
 adb shell
 cd /data/local/tmp/debug
 export LD_LIBRARY_PATH=/data/local/tmp/debug:$LD_LIBRARY_PATH
 ./ocr_db_crnn ch_det_mv3_db_opt.nb  ch_rec_mv3_crnn_opt.nb ./12.jpg
 ```
 如果对代码做了修改,则需要重新编译并push到手机上。