rec_r34_vd_none_none_ctc.yml 2.0 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Global:
  use_gpu: true
  epoch_num: 72
  log_smooth_window: 20
  print_batch_step: 10
  save_model_dir: ./output/rec/r34_vd_none_none_ctc/
  save_epoch_step: 3
  # evaluation is run every 2000 iterations
  eval_batch_step: [0, 2000]
  cal_metric_during_train: True
  pretrained_model:
  checkpoints:
  save_inference_dir:
  use_visualdl: False
  infer_img: doc/imgs_words_en/word_10.png
  # for data or label process
  character_dict_path:
  max_text_length: 25
  infer_mode: False
  use_space_char: False
littletomatodonkey's avatar
littletomatodonkey 已提交
21
  save_res_path: ./output/rec/predicts_r34_vd_none_none_ctc.txt
W
WenmuZhou 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  lr:
    learning_rate: 0.0005
  regularizer:
    name: 'L2'
    factor: 0

Architecture:
  model_type: rec
  algorithm: Rosetta
  Backbone:
    name: ResNet
    layers: 34
  Neck:
    name: SequenceEncoder
    encoder_type: reshape
  Head:
    name: CTCHead
    fc_decay: 0.0004

Loss:
  name: CTCLoss

PostProcess:
  name: CTCLabelDecode

Metric:
  name: RecMetric
  main_indicator: acc

Train:
  dataset:
T
tink2123 已提交
58
    name: LMDBDataSet
W
WenmuZhou 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    data_dir: ./train_data/data_lmdb_release/training/
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - CTCLabelEncode: # Class handling label
      - RecResizeImg:
          image_shape: [3, 32, 100]
      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  loader:
    shuffle: True
    batch_size_per_card: 256
    drop_last: True
    num_workers: 8

Eval:
  dataset:
T
tink2123 已提交
77
    name: LMDBDataSet
W
WenmuZhou 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    data_dir: ./train_data/data_lmdb_release/validation/
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - CTCLabelEncode: # Class handling label
      - RecResizeImg:
          image_shape: [3, 32, 100]
      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 256
    num_workers: 4