fce_postprocess.py 8.5 KB
Newer Older
z37757's avatar
z37757 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/v0.3.0/mmocr/models/textdet/postprocess/wrapper.py
"""
z37757's avatar
z37757 已提交
18 19 20

import cv2
import paddle
z37757's avatar
z37757 已提交
21
import numpy as np
z37757's avatar
z37757 已提交
22
from numpy.fft import ifft
z37757's avatar
z37757 已提交
23
from ppocr.utils.poly_nms import poly_nms, valid_boundary
z37757's avatar
z37757 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144


def fill_hole(input_mask):
    h, w = input_mask.shape
    canvas = np.zeros((h + 2, w + 2), np.uint8)
    canvas[1:h + 1, 1:w + 1] = input_mask.copy()

    mask = np.zeros((h + 4, w + 4), np.uint8)

    cv2.floodFill(canvas, mask, (0, 0), 1)
    canvas = canvas[1:h + 1, 1:w + 1].astype(np.bool)

    return ~canvas | input_mask


def fourier2poly(fourier_coeff, num_reconstr_points=50):
    """ Inverse Fourier transform
        Args:
            fourier_coeff (ndarray): Fourier coefficients shaped (n, 2k+1),
                with n and k being candidates number and Fourier degree
                respectively.
            num_reconstr_points (int): Number of reconstructed polygon points.
        Returns:
            Polygons (ndarray): The reconstructed polygons shaped (n, n')
        """

    a = np.zeros((len(fourier_coeff), num_reconstr_points), dtype='complex')
    k = (len(fourier_coeff[0]) - 1) // 2

    a[:, 0:k + 1] = fourier_coeff[:, k:]
    a[:, -k:] = fourier_coeff[:, :k]

    poly_complex = ifft(a) * num_reconstr_points
    polygon = np.zeros((len(fourier_coeff), num_reconstr_points, 2))
    polygon[:, :, 0] = poly_complex.real
    polygon[:, :, 1] = poly_complex.imag
    return polygon.astype('int32').reshape((len(fourier_coeff), -1))


class FCEPostProcess(object):
    """
    The post process for FCENet.
    """

    def __init__(self,
                 scales,
                 fourier_degree=5,
                 num_reconstr_points=50,
                 decoding_type='fcenet',
                 score_thr=0.3,
                 nms_thr=0.1,
                 alpha=1.0,
                 beta=1.0,
                 text_repr_type='poly',
                 **kwargs):

        self.scales = scales
        self.fourier_degree = fourier_degree
        self.num_reconstr_points = num_reconstr_points
        self.decoding_type = decoding_type
        self.score_thr = score_thr
        self.nms_thr = nms_thr
        self.alpha = alpha
        self.beta = beta
        self.text_repr_type = text_repr_type

    def __call__(self, preds, shape_list):
        score_maps = []
        for key, value in preds.items():
            if isinstance(value, paddle.Tensor):
                value = value.numpy()
            cls_res = value[:, :4, :, :]
            reg_res = value[:, 4:, :, :]
            score_maps.append([cls_res, reg_res])

        return self.get_boundary(score_maps, shape_list)

    def resize_boundary(self, boundaries, scale_factor):
        """Rescale boundaries via scale_factor.

        Args:
            boundaries (list[list[float]]): The boundary list. Each boundary
            with size 2k+1 with k>=4.
            scale_factor(ndarray): The scale factor of size (4,).

        Returns:
            boundaries (list[list[float]]): The scaled boundaries.
        """
        boxes = []
        scores = []
        for b in boundaries:
            sz = len(b)
            valid_boundary(b, True)
            scores.append(b[-1])
            b = (np.array(b[:sz - 1]) *
                 (np.tile(scale_factor[:2], int(
                     (sz - 1) / 2)).reshape(1, sz - 1))).flatten().tolist()
            boxes.append(np.array(b).reshape([-1, 2]))

        return np.array(boxes, dtype=np.float32), scores

    def get_boundary(self, score_maps, shape_list):
        assert len(score_maps) == len(self.scales)
        boundaries = []
        for idx, score_map in enumerate(score_maps):
            scale = self.scales[idx]
            boundaries = boundaries + self._get_boundary_single(score_map,
                                                                scale)

        # nms
        boundaries = poly_nms(boundaries, self.nms_thr)
        boundaries, scores = self.resize_boundary(
            boundaries, (1 / shape_list[0, 2:]).tolist()[::-1])

        boxes_batch = [dict(points=boundaries, scores=scores)]
        return boxes_batch

    def _get_boundary_single(self, score_map, scale):
        assert len(score_map) == 2
        assert score_map[1].shape[1] == 4 * self.fourier_degree + 2

z37757's avatar
z37757 已提交
145
        return self.fcenet_decode(
z37757's avatar
z37757 已提交
146 147 148 149 150 151 152 153 154
            preds=score_map,
            fourier_degree=self.fourier_degree,
            num_reconstr_points=self.num_reconstr_points,
            scale=scale,
            alpha=self.alpha,
            beta=self.beta,
            text_repr_type=self.text_repr_type,
            score_thr=self.score_thr,
            nms_thr=self.nms_thr)
z37757's avatar
z37757 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

    def fcenet_decode(self,
                      preds,
                      fourier_degree,
                      num_reconstr_points,
                      scale,
                      alpha=1.0,
                      beta=2.0,
                      text_repr_type='poly',
                      score_thr=0.3,
                      nms_thr=0.1):
        """Decoding predictions of FCENet to instances.

        Args:
            preds (list(Tensor)): The head output tensors.
            fourier_degree (int): The maximum Fourier transform degree k.
            num_reconstr_points (int): The points number of the polygon
                reconstructed from predicted Fourier coefficients.
            scale (int): The down-sample scale of the prediction.
            alpha (float) : The parameter to calculate final scores. Score_{final}
                    = (Score_{text region} ^ alpha)
                    * (Score_{text center region}^ beta)
            beta (float) : The parameter to calculate final score.
            text_repr_type (str):  Boundary encoding type 'poly' or 'quad'.
            score_thr (float) : The threshold used to filter out the final
                candidates.
            nms_thr (float) :  The threshold of nms.

        Returns:
            boundaries (list[list[float]]): The instance boundary and confidence
                list.
        """
        assert isinstance(preds, list)
        assert len(preds) == 2
        assert text_repr_type in ['poly', 'quad']

        cls_pred = preds[0][0]
        tr_pred = cls_pred[0:2]
        tcl_pred = cls_pred[2:]

        reg_pred = preds[1][0].transpose([1, 2, 0])
        x_pred = reg_pred[:, :, :2 * fourier_degree + 1]
        y_pred = reg_pred[:, :, 2 * fourier_degree + 1:]

        score_pred = (tr_pred[1]**alpha) * (tcl_pred[1]**beta)
        tr_pred_mask = (score_pred) > score_thr
        tr_mask = fill_hole(tr_pred_mask)

        tr_contours, _ = cv2.findContours(
            tr_mask.astype(np.uint8), cv2.RETR_TREE,
            cv2.CHAIN_APPROX_SIMPLE)  # opencv4

        mask = np.zeros_like(tr_mask)
        boundaries = []
        for cont in tr_contours:
            deal_map = mask.copy().astype(np.int8)
            cv2.drawContours(deal_map, [cont], -1, 1, -1)

            score_map = score_pred * deal_map
            score_mask = score_map > 0
            xy_text = np.argwhere(score_mask)
            dxy = xy_text[:, 1] + xy_text[:, 0] * 1j

            x, y = x_pred[score_mask], y_pred[score_mask]
            c = x + y * 1j
            c[:, fourier_degree] = c[:, fourier_degree] + dxy
            c *= scale

            polygons = fourier2poly(c, num_reconstr_points)
            score = score_map[score_mask].reshape(-1, 1)
            polygons = poly_nms(np.hstack((polygons, score)).tolist(), nms_thr)

            boundaries = boundaries + polygons

        boundaries = poly_nms(boundaries, nms_thr)

        if text_repr_type == 'quad':
            new_boundaries = []
            for boundary in boundaries:
                poly = np.array(boundary[:-1]).reshape(-1, 2).astype(np.float32)
                score = boundary[-1]
                points = cv2.boxPoints(cv2.minAreaRect(poly))
                points = np.int0(points)
                new_boundaries.append(points.reshape(-1).tolist() + [score])

        return boundaries