east_process.py 19.8 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import math
import cv2
import numpy as np
import json


class EASTProcessTrain(object):
    def __init__(self, params):
        self.img_set_dir = params['img_set_dir']
        self.random_scale = np.array([0.5, 1, 2.0, 3.0])
        self.background_ratio = params['background_ratio']
        self.min_crop_side_ratio = params['min_crop_side_ratio']
        image_shape = params['image_shape']
        self.input_size = image_shape[1]
        self.min_text_size = params['min_text_size']

    def preprocess(self, im):
        input_size = self.input_size
        im_shape = im.shape
        im_size_min = np.min(im_shape[0:2])
        im_size_max = np.max(im_shape[0:2])
        im_scale = float(input_size) / float(im_size_max)
        im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale)
        img_mean = [0.485, 0.456, 0.406]
        img_std = [0.229, 0.224, 0.225]
        im = im[:, :, ::-1].astype(np.float32)
        im = im / 255
        im -= img_mean
        im /= img_std
        new_h, new_w, _ = im.shape
        im_padded = np.zeros((input_size, input_size, 3), dtype=np.float32)
        im_padded[:new_h, :new_w, :] = im
        im_padded = im_padded.transpose((2, 0, 1))
        im_padded = im_padded[np.newaxis, :]
        return im_padded, im_scale

    def convert_label_infor(self, label_infor):
        label_infor = label_infor.decode()
        label_infor = label_infor.encode('utf-8').decode('utf-8-sig')
        substr = label_infor.strip("\n").split("\t")
        img_path = self.img_set_dir + substr[0]
        label = json.loads(substr[1])
        nBox = len(label)
        wordBBs, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            wordBB = label[bno]['points']
            txt = label[bno]['transcription']
            wordBBs.append(wordBB)
            txts.append(txt)
            if txt == '###':
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        wordBBs = np.array(wordBBs, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)
        return img_path, wordBBs, txt_tags, txts

    def rotate_im_poly(self, im, text_polys):
        """
        rotate image with 90 / 180 / 270 degre
        """
        im_w, im_h = im.shape[1], im.shape[0]
        dst_im = im.copy()
        dst_polys = []
        rand_degree_ratio = np.random.rand()
        rand_degree_cnt = 1
        if rand_degree_ratio > 0.333 and rand_degree_ratio < 0.666:
            rand_degree_cnt = 2
        elif rand_degree_ratio > 0.666:
            rand_degree_cnt = 3
        for i in range(rand_degree_cnt):
            dst_im = np.rot90(dst_im)
        rot_degree = -90 * rand_degree_cnt
        rot_angle = rot_degree * math.pi / 180.0
        n_poly = text_polys.shape[0]
        cx, cy = 0.5 * im_w, 0.5 * im_h
        ncx, ncy = 0.5 * dst_im.shape[1], 0.5 * dst_im.shape[0]
        for i in range(n_poly):
            wordBB = text_polys[i]
            poly = []
            for j in range(4):
                sx, sy = wordBB[j][0], wordBB[j][1]
                dx = math.cos(rot_angle) * (sx - cx)\
                    - math.sin(rot_angle) * (sy - cy) + ncx
                dy = math.sin(rot_angle) * (sx - cx)\
                    + math.cos(rot_angle) * (sy - cy) + ncy
                poly.append([dx, dy])
            dst_polys.append(poly)
        dst_polys = np.array(dst_polys, dtype=np.float32)
        return dst_im, dst_polys

    def polygon_area(self, poly):
        """
        compute area of a polygon
        :param poly:
        :return:
        """
        edge = [(poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]),
                (poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]),
                (poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]),
                (poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1])]
        return np.sum(edge) / 2.

    def check_and_validate_polys(self, polys, tags, img_height, img_width):
        """
        check so that the text poly is in the same direction,
        and also filter some invalid polygons
        :param polys:
        :param tags:
        :return:
        """
        h, w = img_height, img_width
        if polys.shape[0] == 0:
            return polys
        polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w - 1)
        polys[:, :, 1] = np.clip(polys[:, :, 1], 0, h - 1)

        validated_polys = []
        validated_tags = []
        for poly, tag in zip(polys, tags):
            p_area = self.polygon_area(poly)
            #invalid poly
            if abs(p_area) < 1:
                continue
            if p_area > 0:
                #'poly in wrong direction'
                if tag == False:
                    tag = True  #reversed cases should be ignore
                poly = poly[(0, 3, 2, 1), :]
            validated_polys.append(poly)
            validated_tags.append(tag)
        return np.array(validated_polys), np.array(validated_tags)

    def draw_img_polys(self, img, polys):
        if len(img.shape) == 4:
            img = np.squeeze(img, axis=0)
        if img.shape[0] == 3:
            img = img.transpose((1, 2, 0))
            img[:, :, 2] += 123.68
            img[:, :, 1] += 116.78
            img[:, :, 0] += 103.94
        cv2.imwrite("tmp.jpg", img)
        img = cv2.imread("tmp.jpg")
        for box in polys:
            box = box.astype(np.int32).reshape((-1, 1, 2))
            cv2.polylines(img, [box], True, color=(255, 255, 0), thickness=2)
        import random
        ino = random.randint(0, 100)
        cv2.imwrite("tmp_%d.jpg" % ino, img)
        return

    def shrink_poly(self, poly, r):
        """
        fit a poly inside the origin poly, maybe bugs here...
        used for generate the score map
        :param poly: the text poly
        :param r: r in the paper
        :return: the shrinked poly
        """
        # shrink ratio
        R = 0.3
        # find the longer pair
        dist0 = np.linalg.norm(poly[0] - poly[1])
        dist1 = np.linalg.norm(poly[2] - poly[3])
        dist2 = np.linalg.norm(poly[0] - poly[3])
        dist3 = np.linalg.norm(poly[1] - poly[2])
        if dist0 + dist1 > dist2 + dist3:
            # first move (p0, p1), (p2, p3), then (p0, p3), (p1, p2)
            ## p0, p1
            theta = np.arctan2((poly[1][1] - poly[0][1]),
                               (poly[1][0] - poly[0][0]))
            poly[0][0] += R * r[0] * np.cos(theta)
            poly[0][1] += R * r[0] * np.sin(theta)
            poly[1][0] -= R * r[1] * np.cos(theta)
            poly[1][1] -= R * r[1] * np.sin(theta)
            ## p2, p3
            theta = np.arctan2((poly[2][1] - poly[3][1]),
                               (poly[2][0] - poly[3][0]))
            poly[3][0] += R * r[3] * np.cos(theta)
            poly[3][1] += R * r[3] * np.sin(theta)
            poly[2][0] -= R * r[2] * np.cos(theta)
            poly[2][1] -= R * r[2] * np.sin(theta)
            ## p0, p3
            theta = np.arctan2((poly[3][0] - poly[0][0]),
                               (poly[3][1] - poly[0][1]))
            poly[0][0] += R * r[0] * np.sin(theta)
            poly[0][1] += R * r[0] * np.cos(theta)
            poly[3][0] -= R * r[3] * np.sin(theta)
            poly[3][1] -= R * r[3] * np.cos(theta)
            ## p1, p2
            theta = np.arctan2((poly[2][0] - poly[1][0]),
                               (poly[2][1] - poly[1][1]))
            poly[1][0] += R * r[1] * np.sin(theta)
            poly[1][1] += R * r[1] * np.cos(theta)
            poly[2][0] -= R * r[2] * np.sin(theta)
            poly[2][1] -= R * r[2] * np.cos(theta)
        else:
            ## p0, p3
            # print poly
            theta = np.arctan2((poly[3][0] - poly[0][0]),
                               (poly[3][1] - poly[0][1]))
            poly[0][0] += R * r[0] * np.sin(theta)
            poly[0][1] += R * r[0] * np.cos(theta)
            poly[3][0] -= R * r[3] * np.sin(theta)
            poly[3][1] -= R * r[3] * np.cos(theta)
            ## p1, p2
            theta = np.arctan2((poly[2][0] - poly[1][0]),
                               (poly[2][1] - poly[1][1]))
            poly[1][0] += R * r[1] * np.sin(theta)
            poly[1][1] += R * r[1] * np.cos(theta)
            poly[2][0] -= R * r[2] * np.sin(theta)
            poly[2][1] -= R * r[2] * np.cos(theta)
            ## p0, p1
            theta = np.arctan2((poly[1][1] - poly[0][1]),
                               (poly[1][0] - poly[0][0]))
            poly[0][0] += R * r[0] * np.cos(theta)
            poly[0][1] += R * r[0] * np.sin(theta)
            poly[1][0] -= R * r[1] * np.cos(theta)
            poly[1][1] -= R * r[1] * np.sin(theta)
            ## p2, p3
            theta = np.arctan2((poly[2][1] - poly[3][1]),
                               (poly[2][0] - poly[3][0]))
            poly[3][0] += R * r[3] * np.cos(theta)
            poly[3][1] += R * r[3] * np.sin(theta)
            poly[2][0] -= R * r[2] * np.cos(theta)
            poly[2][1] -= R * r[2] * np.sin(theta)
        return poly

    def generate_quad(self, im_size, polys, tags):
        """
        Generate quadrangle.
        """
        h, w = im_size
        poly_mask = np.zeros((h, w), dtype=np.uint8)
        score_map = np.zeros((h, w), dtype=np.uint8)
        # (x1, y1, ..., x4, y4, short_edge_norm)
        geo_map = np.zeros((h, w, 9), dtype=np.float32)
        # mask used during traning, to ignore some hard areas
        training_mask = np.ones((h, w), dtype=np.uint8)
        for poly_idx, poly_tag in enumerate(zip(polys, tags)):
            poly = poly_tag[0]
            tag = poly_tag[1]

            r = [None, None, None, None]
            for i in range(4):
                dist1 = np.linalg.norm(poly[i] - poly[(i + 1) % 4])
                dist2 = np.linalg.norm(poly[i] - poly[(i - 1) % 4])
                r[i] = min(dist1, dist2)
            # score map
            shrinked_poly = self.shrink_poly(
                poly.copy(), r).astype(np.int32)[np.newaxis, :, :]
            cv2.fillPoly(score_map, shrinked_poly, 1)
            cv2.fillPoly(poly_mask, shrinked_poly, poly_idx + 1)
            # if the poly is too small, then ignore it during training
            poly_h = min(
                np.linalg.norm(poly[0] - poly[3]),
                np.linalg.norm(poly[1] - poly[2]))
            poly_w = min(
                np.linalg.norm(poly[0] - poly[1]),
                np.linalg.norm(poly[2] - poly[3]))
            if min(poly_h, poly_w) < self.min_text_size:
                cv2.fillPoly(training_mask,
                             poly.astype(np.int32)[np.newaxis, :, :], 0)

            if tag:
                cv2.fillPoly(training_mask,
                             poly.astype(np.int32)[np.newaxis, :, :], 0)

            xy_in_poly = np.argwhere(poly_mask == (poly_idx + 1))
            # geo map.
            y_in_poly = xy_in_poly[:, 0]
            x_in_poly = xy_in_poly[:, 1]
            poly[:, 0] = np.minimum(np.maximum(poly[:, 0], 0), w)
            poly[:, 1] = np.minimum(np.maximum(poly[:, 1], 0), h)
            for pno in range(4):
                geo_channel_beg = pno * 2
                geo_map[y_in_poly, x_in_poly, geo_channel_beg] =\
                    x_in_poly - poly[pno, 0]
                geo_map[y_in_poly, x_in_poly, geo_channel_beg+1] =\
                    y_in_poly - poly[pno, 1]
            geo_map[y_in_poly, x_in_poly, 8] = \
                1.0 / max(min(poly_h, poly_w), 1.0)
        return score_map, geo_map, training_mask

    def crop_area(self,
                  im,
                  polys,
                  tags,
                  txts,
                  crop_background=False,
                  max_tries=50):
        """
        make random crop from the input image
        :param im:
        :param polys:
        :param tags:
        :param crop_background:
        :param max_tries:
        :return:
        """
        h, w, _ = im.shape
        pad_h = h // 10
        pad_w = w // 10
        h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
        w_array = np.zeros((w + pad_w * 2), dtype=np.int32)
        for poly in polys:
            poly = np.round(poly, decimals=0).astype(np.int32)
            minx = np.min(poly[:, 0])
            maxx = np.max(poly[:, 0])
            w_array[minx + pad_w:maxx + pad_w] = 1
            miny = np.min(poly[:, 1])
            maxy = np.max(poly[:, 1])
            h_array[miny + pad_h:maxy + pad_h] = 1
        # ensure the cropped area not across a text
        h_axis = np.where(h_array == 0)[0]
        w_axis = np.where(w_array == 0)[0]
        if len(h_axis) == 0 or len(w_axis) == 0:
            return im, polys, tags, txts

        for i in range(max_tries):
            xx = np.random.choice(w_axis, size=2)
            xmin = np.min(xx) - pad_w
            xmax = np.max(xx) - pad_w
            xmin = np.clip(xmin, 0, w - 1)
            xmax = np.clip(xmax, 0, w - 1)
            yy = np.random.choice(h_axis, size=2)
            ymin = np.min(yy) - pad_h
            ymax = np.max(yy) - pad_h
            ymin = np.clip(ymin, 0, h - 1)
            ymax = np.clip(ymax, 0, h - 1)
            if xmax - xmin < self.min_crop_side_ratio * w or \
               ymax - ymin < self.min_crop_side_ratio * h:
                # area too small
                continue
            if polys.shape[0] != 0:
                poly_axis_in_area = (polys[:, :, 0] >= xmin)\
                    & (polys[:, :, 0] <= xmax)\
                    & (polys[:, :, 1] >= ymin)\
                    & (polys[:, :, 1] <= ymax)
                selected_polys = np.where(
                    np.sum(poly_axis_in_area, axis=1) == 4)[0]
            else:
                selected_polys = []

            if len(selected_polys) == 0:
                # no text in this area
                if crop_background:
                    im = im[ymin:ymax + 1, xmin:xmax + 1, :]
                    polys = []
                    tags = []
                    txts = []
                    return im, polys, tags, txts
                else:
                    continue

            im = im[ymin:ymax + 1, xmin:xmax + 1, :]
            polys = polys[selected_polys]
            tags = tags[selected_polys]
            txts_tmp = []
            for selected_poly in selected_polys:
                txts_tmp.append(txts[selected_poly])
            txts = txts_tmp
            polys[:, :, 0] -= xmin
            polys[:, :, 1] -= ymin
            return im, polys, tags, txts
        return im, polys, tags, txts

    def crop_background_infor(self, im, text_polys, text_tags, text_strs):
        im, text_polys, text_tags, text_strs = self.crop_area(
            im, text_polys, text_tags, text_strs, crop_background=True)
        if len(text_polys) > 0:
            return None
        # pad and resize image
        input_size = self.input_size
        im, ratio = self.preprocess(im)
        score_map = np.zeros((input_size, input_size), dtype=np.float32)
        geo_map = np.zeros((input_size, input_size, 9), dtype=np.float32)
        training_mask = np.ones((input_size, input_size), dtype=np.float32)
        return im, score_map, geo_map, training_mask

    def crop_foreground_infor(self, im, text_polys, text_tags, text_strs):
        im, text_polys, text_tags, text_strs = self.crop_area(
            im, text_polys, text_tags, text_strs, crop_background=False)
        if text_polys.shape[0] == 0:
            return None
        #continue for all ignore case
        if np.sum((text_tags * 1.0)) >= text_tags.size:
            return None
        # pad and resize image
        input_size = self.input_size
        im, ratio = self.preprocess(im)
        text_polys[:, :, 0] *= ratio
        text_polys[:, :, 1] *= ratio
        _, _, new_h, new_w = im.shape
        #         print(im.shape)
        #         self.draw_img_polys(im, text_polys)
        score_map, geo_map, training_mask = self.generate_quad(
            (new_h, new_w), text_polys, text_tags)
        return im, score_map, geo_map, training_mask

    def __call__(self, label_infor):
        infor = self.convert_label_infor(label_infor)
        im_path, text_polys, text_tags, text_strs = infor
        im = cv2.imread(im_path)
        if im is None:
            return None
        if text_polys.shape[0] == 0:
            return None
        #add rotate cases
        if np.random.rand() < 0.5:
            im, text_polys = self.rotate_im_poly(im, text_polys)
        h, w, _ = im.shape
        text_polys, text_tags = self.check_and_validate_polys(text_polys,
                                                              text_tags, h, w)
        if text_polys.shape[0] == 0:
            return None

        # random scale this image
        rd_scale = np.random.choice(self.random_scale)
        im = cv2.resize(im, dsize=None, fx=rd_scale, fy=rd_scale)
        text_polys *= rd_scale
        if np.random.rand() < self.background_ratio:
            outs = self.crop_background_infor(im, text_polys, text_tags,
                                              text_strs)
        else:
            outs = self.crop_foreground_infor(im, text_polys, text_tags,
                                              text_strs)

        if outs is None:
            return None
        im, score_map, geo_map, training_mask = outs
        score_map = score_map[np.newaxis, ::4, ::4].astype(np.float32)
        geo_map = np.swapaxes(geo_map, 1, 2)
        geo_map = np.swapaxes(geo_map, 1, 0)
        geo_map = geo_map[:, ::4, ::4].astype(np.float32)
        training_mask = training_mask[np.newaxis, ::4, ::4]
        training_mask = training_mask.astype(np.float32)
        return im, score_map, geo_map, training_mask


class EASTProcessTest(object):
    def __init__(self, params):
        super(EASTProcessTest, self).__init__()
        if 'max_side_len' in params:
            self.max_side_len = params['max_side_len']
        else:
            self.max_side_len = 2400

    def resize_image(self, im):
        """
        resize image to a size multiple of 32 which is required by the network
        :param im: the resized image
        :param max_side_len: limit of max image size to avoid out of memory in gpu
        :return: the resized image and the resize ratio
        """
        max_side_len = self.max_side_len
        h, w, _ = im.shape

        resize_w = w
        resize_h = h

        # limit the max side
        if max(resize_h, resize_w) > max_side_len:
            if resize_h > resize_w:
                ratio = float(max_side_len) / resize_h
            else:
                ratio = float(max_side_len) / resize_w
        else:
            ratio = 1.
        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)
        if resize_h % 32 == 0:
            resize_h = resize_h
L
LDOUBLEV 已提交
488 489
        elif resize_h // 32 <= 1:
            resize_h = 32
L
LDOUBLEV 已提交
490 491 492 493
        else:
            resize_h = (resize_h // 32 - 1) * 32
        if resize_w % 32 == 0:
            resize_w = resize_w
L
LDOUBLEV 已提交
494 495
        elif resize_w // 32 <= 1:
            resize_w = 32
L
LDOUBLEV 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
        else:
            resize_w = (resize_w // 32 - 1) * 32
        im = cv2.resize(im, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)
        return im, (ratio_h, ratio_w)

    def __call__(self, im):
        im, (ratio_h, ratio_w) = self.resize_image(im)
        img_mean = [0.485, 0.456, 0.406]
        img_std = [0.229, 0.224, 0.225]
        im = im[:, :, ::-1].astype(np.float32)
        im = im / 255
        im -= img_mean
        im /= img_std
        im = im.transpose((2, 0, 1))
        im = im[np.newaxis, :]
        return [im, (ratio_h, ratio_w)]