analysis.py 13.6 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import argparse
import json
import os
import re
import traceback


def parse_args():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--filename", type=str, help="The name of log which need to analysis.")
    parser.add_argument(
        "--log_with_profiler",
        type=str,
        help="The path of train log with profiler")
    parser.add_argument(
        "--profiler_path", type=str, help="The path of profiler timeline log.")
    parser.add_argument(
        "--keyword", type=str, help="Keyword to specify analysis data")
    parser.add_argument(
        "--separator",
        type=str,
        default=None,
        help="Separator of different field in log")
    parser.add_argument(
        '--position', type=int, default=None, help='The position of data field')
    parser.add_argument(
        '--range',
        type=str,
        default="",
        help='The range of data field to intercept')
    parser.add_argument(
        '--base_batch_size', type=int, help='base_batch size on gpu')
    parser.add_argument(
        '--skip_steps',
        type=int,
        default=0,
        help='The number of steps to be skipped')
    parser.add_argument(
        '--model_mode',
        type=int,
        default=-1,
        help='Analysis mode, default value is -1')
    parser.add_argument('--ips_unit', type=str, default=None, help='IPS unit')
    parser.add_argument(
        '--model_name',
        type=str,
        default=0,
        help='training model_name, transformer_base')
    parser.add_argument(
        '--mission_name', type=str, default=0, help='training mission name')
    parser.add_argument(
        '--direction_id', type=int, default=0, help='training direction_id')
    parser.add_argument(
        '--run_mode',
        type=str,
        default="sp",
        help='multi process or single process')
    parser.add_argument(
        '--index',
        type=int,
        default=1,
        help='{1: speed, 2:mem, 3:profiler, 6:max_batch_size}')
    parser.add_argument(
        '--gpu_num', type=int, default=1, help='nums of training gpus')
    args = parser.parse_args()
    args.separator = None if args.separator == "None" else args.separator
    return args


def _is_number(num):
    pattern = re.compile(r'^[-+]?[-0-9]\d*\.\d*|[-+]?\.?[0-9]\d*$')
    result = pattern.match(num)
    if result:
        return True
    else:
        return False


class TimeAnalyzer(object):
    def __init__(self,
                 filename,
                 keyword=None,
                 separator=None,
                 position=None,
                 range="-1"):
        if filename is None:
            raise Exception("Please specify the filename!")

        if keyword is None:
            raise Exception("Please specify the keyword!")

        self.filename = filename
        self.keyword = keyword
        self.separator = separator
        self.position = position
        self.range = range
        self.records = None
        self._distil()

    def _distil(self):
        self.records = []
        with open(self.filename, "r") as f_object:
            lines = f_object.readlines()
            for line in lines:
                if self.keyword not in line:
                    continue
                try:
                    result = None

                    # Distil the string from a line.
                    line = line.strip()
                    line_words = line.split(
                        self.separator) if self.separator else line.split()
                    if args.position:
                        result = line_words[self.position]
                    else:
                        # Distil the string following the keyword.
                        for i in range(len(line_words) - 1):
                            if line_words[i] == self.keyword:
                                result = line_words[i + 1]
                                break

                    # Distil the result from the picked string.
                    if not self.range:
                        result = result[0:]
                    elif _is_number(self.range):
                        result = result[0:int(self.range)]
                    else:
                        result = result[int(self.range.split(":")[0]):int(
                            self.range.split(":")[1])]
                    self.records.append(float(result))
                except Exception as exc:
                    print("line is: {}; separator={}; position={}".format(
                        line, self.separator, self.position))

        print("Extract {} records: separator={}; position={}".format(
            len(self.records), self.separator, self.position))

    def _get_fps(self,
                 mode,
                 batch_size,
                 gpu_num,
                 avg_of_records,
                 run_mode,
                 unit=None):
        if mode == -1 and run_mode == 'sp':
            assert unit, "Please set the unit when mode is -1."
            fps = gpu_num * avg_of_records
        elif mode == -1 and run_mode == 'mp':
            assert unit, "Please set the unit when mode is -1."
            fps = gpu_num * avg_of_records  #temporarily, not used now
            print("------------this is mp")
        elif mode == 0:
            # s/step -> samples/s
            fps = (batch_size * gpu_num) / avg_of_records
            unit = "samples/s"
        elif mode == 1:
            # steps/s -> steps/s
            fps = avg_of_records
            unit = "steps/s"
        elif mode == 2:
            # s/step -> steps/s
            fps = 1 / avg_of_records
            unit = "steps/s"
        elif mode == 3:
            # steps/s -> samples/s
            fps = batch_size * gpu_num * avg_of_records
            unit = "samples/s"
        elif mode == 4:
            # s/epoch -> s/epoch
            fps = avg_of_records
            unit = "s/epoch"
        else:
            ValueError("Unsupported analysis mode.")

        return fps, unit

    def analysis(self,
                 batch_size,
                 gpu_num=1,
                 skip_steps=0,
                 mode=-1,
                 run_mode='sp',
                 unit=None):
        if batch_size <= 0:
            print("base_batch_size should larger than 0.")
            return 0, ''

        if len(
                self.records
        ) <= skip_steps:  # to address the condition which item of log equals to skip_steps
            print("no records")
            return 0, ''

        sum_of_records = 0
        sum_of_records_skipped = 0
        skip_min = self.records[skip_steps]
        skip_max = self.records[skip_steps]

        count = len(self.records)
        for i in range(count):
            sum_of_records += self.records[i]
            if i >= skip_steps:
                sum_of_records_skipped += self.records[i]
                if self.records[i] < skip_min:
                    skip_min = self.records[i]
                if self.records[i] > skip_max:
                    skip_max = self.records[i]

        avg_of_records = sum_of_records / float(count)
        avg_of_records_skipped = sum_of_records_skipped / float(count -
                                                                skip_steps)

        fps, fps_unit = self._get_fps(mode, batch_size, gpu_num, avg_of_records,
                                      run_mode, unit)
        fps_skipped, _ = self._get_fps(mode, batch_size, gpu_num,
                                       avg_of_records_skipped, run_mode, unit)
        if mode == -1:
            print("average ips of %d steps, skip 0 step:" % count)
            print("\tAvg: %.3f %s" % (avg_of_records, fps_unit))
            print("\tFPS: %.3f %s" % (fps, fps_unit))
            if skip_steps > 0:
                print("average ips of %d steps, skip %d steps:" %
                      (count, skip_steps))
                print("\tAvg: %.3f %s" % (avg_of_records_skipped, fps_unit))
                print("\tMin: %.3f %s" % (skip_min, fps_unit))
                print("\tMax: %.3f %s" % (skip_max, fps_unit))
                print("\tFPS: %.3f %s" % (fps_skipped, fps_unit))
        elif mode == 1 or mode == 3:
            print("average latency of %d steps, skip 0 step:" % count)
            print("\tAvg: %.3f steps/s" % avg_of_records)
            print("\tFPS: %.3f %s" % (fps, fps_unit))
            if skip_steps > 0:
                print("average latency of %d steps, skip %d steps:" %
                      (count, skip_steps))
                print("\tAvg: %.3f steps/s" % avg_of_records_skipped)
                print("\tMin: %.3f steps/s" % skip_min)
                print("\tMax: %.3f steps/s" % skip_max)
                print("\tFPS: %.3f %s" % (fps_skipped, fps_unit))
        elif mode == 0 or mode == 2:
            print("average latency of %d steps, skip 0 step:" % count)
            print("\tAvg: %.3f s/step" % avg_of_records)
            print("\tFPS: %.3f %s" % (fps, fps_unit))
            if skip_steps > 0:
                print("average latency of %d steps, skip %d steps:" %
                      (count, skip_steps))
                print("\tAvg: %.3f s/step" % avg_of_records_skipped)
                print("\tMin: %.3f s/step" % skip_min)
                print("\tMax: %.3f s/step" % skip_max)
                print("\tFPS: %.3f %s" % (fps_skipped, fps_unit))

        return round(fps_skipped, 3), fps_unit


if __name__ == "__main__":
    args = parse_args()
    run_info = dict()
    run_info["log_file"] = args.filename
    run_info["model_name"] = args.model_name
    run_info["mission_name"] = args.mission_name
    run_info["direction_id"] = args.direction_id
    run_info["run_mode"] = args.run_mode
    run_info["index"] = args.index
    run_info["gpu_num"] = args.gpu_num
    run_info["FINAL_RESULT"] = 0
    run_info["JOB_FAIL_FLAG"] = 0

    try:
        if args.index == 1:
            if args.gpu_num == 1:
                run_info["log_with_profiler"] = args.log_with_profiler
                run_info["profiler_path"] = args.profiler_path
            analyzer = TimeAnalyzer(args.filename, args.keyword, args.separator,
                                    args.position, args.range)
            run_info["FINAL_RESULT"], run_info["UNIT"] = analyzer.analysis(
                batch_size=args.base_batch_size,
                gpu_num=args.gpu_num,
                skip_steps=args.skip_steps,
                mode=args.model_mode,
                run_mode=args.run_mode,
                unit=args.ips_unit)
            try:
                if int(os.getenv('job_fail_flag')) == 1 or int(run_info[
                        "FINAL_RESULT"]) == 0:
                    run_info["JOB_FAIL_FLAG"] = 1
            except:
                pass
        elif args.index == 3:
            run_info["FINAL_RESULT"] = {}
            records_fo_total = TimeAnalyzer(args.filename, 'Framework overhead',
                                            None, 3, '').records
            records_fo_ratio = TimeAnalyzer(args.filename, 'Framework overhead',
                                            None, 5).records
            records_ct_total = TimeAnalyzer(args.filename, 'Computation time',
                                            None, 3, '').records
            records_gm_total = TimeAnalyzer(args.filename,
                                            'GpuMemcpy                Calls',
                                            None, 4, '').records
            records_gm_ratio = TimeAnalyzer(args.filename,
                                            'GpuMemcpy                Calls',
                                            None, 6).records
            records_gmas_total = TimeAnalyzer(args.filename,
                                              'GpuMemcpyAsync         Calls',
                                              None, 4, '').records
            records_gms_total = TimeAnalyzer(args.filename,
                                             'GpuMemcpySync          Calls',
                                             None, 4, '').records
            run_info["FINAL_RESULT"]["Framework_Total"] = records_fo_total[
                0] if records_fo_total else 0
            run_info["FINAL_RESULT"]["Framework_Ratio"] = records_fo_ratio[
                0] if records_fo_ratio else 0
            run_info["FINAL_RESULT"][
                "ComputationTime_Total"] = records_ct_total[
                    0] if records_ct_total else 0
            run_info["FINAL_RESULT"]["GpuMemcpy_Total"] = records_gm_total[
                0] if records_gm_total else 0
            run_info["FINAL_RESULT"]["GpuMemcpy_Ratio"] = records_gm_ratio[
                0] if records_gm_ratio else 0
            run_info["FINAL_RESULT"][
                "GpuMemcpyAsync_Total"] = records_gmas_total[
                    0] if records_gmas_total else 0
            run_info["FINAL_RESULT"]["GpuMemcpySync_Total"] = records_gms_total[
                0] if records_gms_total else 0
        else:
            print("Not support!")
    except Exception:
        traceback.print_exc()
    print("{}".format(json.dumps(run_info))
          )  # it's required, for the log file path  insert to the database