dataset_traversal.py 7.8 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
import math
import random
import numpy as np
import cv2

import string
import lmdb

from ppocr.utils.utility import initial_logger
T
tink2123 已提交
25
from tools.infer.utility import get_image_file_list
L
LDOUBLEV 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
logger = initial_logger()

from .img_tools import process_image, get_img_data


class LMDBReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
        self.lmdb_sets_dir = params['lmdb_sets_dir']
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
        else:
            self.batch_size = params['test_batch_size_per_card']

    def load_hierarchical_lmdb_dataset(self):
        lmdb_sets = {}
        dataset_idx = 0
        for dirpath, dirnames, filenames in os.walk(self.lmdb_sets_dir + '/'):
            if not dirnames:
                env = lmdb.open(
                    dirpath,
                    max_readers=32,
                    readonly=True,
                    lock=False,
                    readahead=False,
                    meminit=False)
                txn = env.begin(write=False)
                num_samples = int(txn.get('num-samples'.encode()))
                lmdb_sets[dataset_idx] = {"dirpath":dirpath, "env":env, \
                    "txn":txn, "num_samples":num_samples}
                dataset_idx += 1
        return lmdb_sets

    def print_lmdb_sets_info(self, lmdb_sets):
        lmdb_info_strs = []
        for dataset_idx in range(len(lmdb_sets)):
            tmp_str = " %s:%d," % (lmdb_sets[dataset_idx]['dirpath'],
                                   lmdb_sets[dataset_idx]['num_samples'])
            lmdb_info_strs.append(tmp_str)
        lmdb_info_strs = ''.join(lmdb_info_strs)
        logger.info("DataSummary:" + lmdb_info_strs)
        return

    def close_lmdb_dataset(self, lmdb_sets):
        for dataset_idx in lmdb_sets:
            lmdb_sets[dataset_idx]['env'].close()
        return

    def get_lmdb_sample_info(self, txn, index):
        label_key = 'label-%09d'.encode() % index
        label = txn.get(label_key)
        if label is None:
            return None
        label = label.decode('utf-8')
        img_key = 'image-%09d'.encode() % index
        imgbuf = txn.get(img_key)
        img = get_img_data(imgbuf)
        if img is None:
            return None
        return img, label

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def sample_iter_reader():
            lmdb_sets = self.load_hierarchical_lmdb_dataset()
            if process_id == 0:
                self.print_lmdb_sets_info(lmdb_sets)
            cur_index_sets = [1 + process_id] * len(lmdb_sets)
            while True:
                finish_read_num = 0
                for dataset_idx in range(len(lmdb_sets)):
                    cur_index = cur_index_sets[dataset_idx]
                    if cur_index > lmdb_sets[dataset_idx]['num_samples']:
                        finish_read_num += 1
                    else:
                        sample_info = self.get_lmdb_sample_info(
                            lmdb_sets[dataset_idx]['txn'], cur_index)
                        cur_index_sets[dataset_idx] += self.num_workers
                        if sample_info is None:
                            continue
                        img, label = sample_info
                        outs = process_image(img, self.image_shape, label,
                                             self.char_ops, self.loss_type,
                                             self.max_text_length)
                        if outs is None:
                            continue
                        yield outs

                if finish_read_num == len(lmdb_sets):
                    break
            self.close_lmdb_dataset(lmdb_sets)

        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
            if len(batch_outs) != 0:
                yield batch_outs

        return batch_iter_reader


class SimpleReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
T
tink2123 已提交
147 148 149
        if params['mode'] != 'test':
            self.img_set_dir = params['img_set_dir']
            self.label_file_path = params['label_file_path']
L
LDOUBLEV 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
        elif params['mode'] == 'eval':
            self.batch_size = params['test_batch_size_per_card']
        else:
            self.batch_size = 1
            self.infer_img = params['infer_img']

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def sample_iter_reader():
            if self.mode == 'test':
T
tink2123 已提交
169
                image_file_list = get_image_file_list(self.infer_img)
T
tink2123 已提交
170 171
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
T
tink2123 已提交
172 173
                    if img.shape[-1]==1 or len(list(img.shape))==2:
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
T
tink2123 已提交
174 175
                    norm_img = process_image(img, self.image_shape)
                    yield norm_img
L
LDOUBLEV 已提交
176 177 178 179 180 181 182 183 184 185 186
            with open(self.label_file_path, "rb") as fin:
                label_infor_list = fin.readlines()
            img_num = len(label_infor_list)
            img_id_list = list(range(img_num))
            random.shuffle(img_id_list)
            for img_id in range(process_id, img_num, self.num_workers):
                label_infor = label_infor_list[img_id_list[img_id]]
                substr = label_infor.decode('utf-8').strip("\n").split("\t")
                img_path = self.img_set_dir + "/" + substr[0]
                img = cv2.imread(img_path)
                if img is None:
T
tink2123 已提交
187
                    logger.info("{} does not exist!".format(img_path))
L
LDOUBLEV 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
                    continue
                label = substr[1]
                outs = process_image(img, self.image_shape, label,
                                     self.char_ops, self.loss_type,
                                     self.max_text_length)
                if outs is None:
                    continue
                yield outs

        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
            if len(batch_outs) != 0:
                yield batch_outs

T
tink2123 已提交
207 208 209
        if self.mode != 'test':
            return batch_iter_reader
        return sample_iter_reader