run_benchmark_det.sh 1.8 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#!/usr/bin/env bash
set -xe
# 运行示例:CUDA_VISIBLE_DEVICES=0 bash run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 500 ${model_mode}
# 参数说明
function _set_params(){
    run_mode=${1:-"sp"}          # 单卡sp|多卡mp
    batch_size=${2:-"64"}
    fp_item=${3:-"fp32"}        # fp32|fp16
    max_iter=${4:-"500"}       # 可选,如果需要修改代码提前中断
    model_name=${5:-"model_name"}
    run_log_path=${TRAIN_LOG_DIR:-$(pwd)}  # TRAIN_LOG_DIR 后续QA设置该参数

#   以下不用修改   
    device=${CUDA_VISIBLE_DEVICES//,/ }
    arr=(${device})
    num_gpu_devices=${#arr[*]}
    log_file=${run_log_path}/${model_name}_${run_mode}_bs${batch_size}_${fp_item}_${num_gpu_devices}
}
function _train(){
    echo "Train on ${num_gpu_devices} GPUs"
    echo "current CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES, gpus=$num_gpu_devices, batch_size=$batch_size"

L
LDOUBLEV 已提交
23
    train_cmd="-c configs/det/${model_name}.yml -o Train.loader.batch_size_per_card=${batch_size} Global.epoch_num=${max_iter} "   
L
LDOUBLEV 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
    case ${run_mode} in
      sp) 
        train_cmd="python3.7 tools/train.py "${train_cmd}""
        ;;
      mp)
        train_cmd="python3.7 -m paddle.distributed.launch --log_dir=./mylog --gpus=$CUDA_VISIBLE_DEVICES tools/train.py ${train_cmd}"
        ;;
      *) echo "choose run_mode(sp or mp)"; exit 1;
    esac
# 以下不用修改
    timeout 15m ${train_cmd} > ${log_file} 2>&1
    if [ $? -ne 0 ];then
            echo -e "${model_name}, FAIL"
        export job_fail_flag=1
    else
        echo -e "${model_name}, SUCCESS"
        export job_fail_flag=0
    fi
    kill -9 `ps -ef|grep 'python3.7'|awk '{print $2}'`

    if [ $run_mode = "mp" -a -d mylog ]; then
        rm ${log_file}
        cp mylog/workerlog.0 ${log_file}
    fi
}

_set_params $@
_train