test.sh 8.3 KB
Newer Older
L
LDOUBLEV 已提交
1
#!/bin/bash
L
LDOUBLEV 已提交
2
FILENAME=$1
L
LDOUBLEV 已提交
3
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer']
L
LDOUBLEV 已提交
4 5 6
MODE=$2

dataline=$(cat ${FILENAME})
L
LDOUBLEV 已提交
7

L
LDOUBLEV 已提交
8 9 10
# parser params
IFS=$'\n'
lines=(${dataline})
L
LDOUBLEV 已提交
11 12 13 14 15 16 17 18
function func_parser_key(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[0]}
    echo ${tmp}
}
function func_parser_value(){
L
LDOUBLEV 已提交
19
    strs=$1
L
LDOUBLEV 已提交
20
    IFS=":"
L
LDOUBLEV 已提交
21 22 23 24
    array=(${strs})
    tmp=${array[1]}
    echo ${tmp}
}
L
LDOUBLEV 已提交
25
function status_check(){
L
LDOUBLEV 已提交
26
    last_status=$1   # the exit code
L
LDOUBLEV 已提交
27 28
    run_command=$2
    run_log=$3
L
LDOUBLEV 已提交
29
    if [ $last_status -eq 0 ]; then
L
LDOUBLEV 已提交
30
        echo -e "\033[33m Run successfully with command - ${run_command}!  \033[0m" | tee -a ${run_log}
L
LDOUBLEV 已提交
31
    else
L
LDOUBLEV 已提交
32
        echo -e "\033[33m Run failed with command - ${run_command}!  \033[0m" | tee -a ${run_log}
L
LDOUBLEV 已提交
33 34
    fi
}
L
LDOUBLEV 已提交
35

L
LDOUBLEV 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
IFS=$'\n'
# The training params
model_name=$(func_parser_value "${lines[0]}")
python=$(func_parser_value "${lines[1]}")
gpu_list=$(func_parser_value "${lines[2]}")
autocast_list=$(func_parser_value "${lines[3]}")
autocast_key=$(func_parser_key "${lines[3]}")
epoch_key=$(func_parser_key "${lines[4]}")
save_model_key=$(func_parser_key "${lines[5]}")
save_infer_key=$(func_parser_key "${lines[6]}")
train_batch_key=$(func_parser_key "${lines[7]}")
train_use_gpu_key=$(func_parser_key "${lines[8]}")
pretrain_model_key=$(func_parser_key "${lines[9]}")

trainer_list=$(func_parser_value "${lines[10]}")
norm_trainer=$(func_parser_value "${lines[11]}")
pact_trainer=$(func_parser_value "${lines[12]}")
fpgm_trainer=$(func_parser_value "${lines[13]}")
distill_trainer=$(func_parser_value "${lines[14]}")

eval_py=$(func_parser_value "${lines[15]}")
norm_export=$(func_parser_value "${lines[16]}")
pact_export=$(func_parser_value "${lines[17]}")
fpgm_export=$(func_parser_value "${lines[18]}")
distill_export=$(func_parser_value "${lines[19]}")

inference_py=$(func_parser_value "${lines[20]}")
use_gpu_key=$(func_parser_key "${lines[21]}")
use_gpu_list=$(func_parser_value "${lines[21]}")
use_mkldnn_key=$(func_parser_key "${lines[22]}")
use_mkldnn_list=$(func_parser_value "${lines[22]}")
cpu_threads_key=$(func_parser_key "${lines[23]}")
cpu_threads_list=$(func_parser_value "${lines[23]}")
batch_size_key=$(func_parser_key "${lines[24]}")
batch_size_list=$(func_parser_value "${lines[24]}")
use_trt_key=$(func_parser_key "${lines[25]}")
use_trt_list=$(func_parser_value "${lines[25]}")
precision_key=$(func_parser_key "${lines[26]}")
precision_list=$(func_parser_value "${lines[26]}")
model_dir_key=$(func_parser_key "${lines[27]}")
image_dir_key=$(func_parser_key "${lines[28]}")
save_log_key=$(func_parser_key "${lines[29]}")

LOG_PATH="./test/output"
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results.log"

if [ ${MODE} = "lite_train_infer" ]; then
    export infer_img_dir="./train_data/icdar2015/text_localization/ch4_test_images/"
    export epoch_num=10
elif [ ${MODE} = "whole_infer" ]; then
    export infer_img_dir="./train_data/icdar2015/text_localization/ch4_test_images/"
    export epoch_num=10
elif [ ${MODE} = "whole_train_infer" ]; then
    export infer_img_dir="./train_data/icdar2015/text_localization/ch4_test_images/"
    export epoch_num=300
else
    export infer_img_dir="./inference/ch_det_data_50/all-sum-510"
    export infer_model_dir="./inference/ch_ppocr_mobile_v2.0_det_train/best_accuracy"
fi


function func_inference(){
    IFS='|'
    _python=$1
    _script=$2
    _model_dir=$3
    _log_path=$4
    _img_dir=$5
    
    # inference 
    for use_gpu in ${use_gpu_list[*]}; do 
        if [ ${use_gpu} = "False" ]; then
            for use_mkldnn in ${use_mkldnn_list[*]}; do
                for threads in ${cpu_threads_list[*]}; do
                    for batch_size in ${batch_size_list[*]}; do
                        _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}"
L
LDOUBLEV 已提交
113
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${cpu_threads_key}=${threads} ${model_dir_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir}  ${save_log_key}=${_save_log_path}  --benchmark=True "
L
LDOUBLEV 已提交
114 115 116 117 118
                        eval $command
                        status_check $? "${command}" "${status_log}"
                    done
                done
            done
L
LDOUBLEV 已提交
119
        else
L
LDOUBLEV 已提交
120 121 122 123
            for use_trt in ${use_trt_list[*]}; do
                for precision in ${precision_list[*]}; do
                    if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then
                        continue
L
LDOUBLEV 已提交
124
                    fi
L
LDOUBLEV 已提交
125 126
                    for batch_size in ${batch_size_list[*]}; do
                        _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}"
L
LDOUBLEV 已提交
127
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_trt_key}=${use_trt} ${precision_key}=${precision} ${model_dir_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir}  ${save_log_key}=${_save_log_path}  --benchmark=True "
L
LDOUBLEV 已提交
128 129 130
                        eval $command
                        status_check $? "${command}" "${status_log}"
                    done
L
LDOUBLEV 已提交
131 132
                done
            done
L
LDOUBLEV 已提交
133 134 135 136 137 138 139 140
        fi
    done
}

if [ ${MODE} != "infer" ]; then

IFS="|"
for gpu in ${gpu_list[*]}; do
L
LDOUBLEV 已提交
141
    train_use_gpu=True
L
LDOUBLEV 已提交
142
    if [ ${gpu} = "-1" ];then
L
LDOUBLEV 已提交
143
        train_use_gpu=False
L
LDOUBLEV 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
        env=""
    elif [ ${#gpu} -le 1 ];then
        env="export CUDA_VISIBLE_DEVICES=${gpu}"
    elif [ ${#gpu} -le 15 ];then
        IFS=","
        array=(${gpu})
        env="export CUDA_VISIBLE_DEVICES=${array[0]}"
        IFS="|"
    else
        IFS=";"
        array=(${gpu})
        ips=${array[0]}
        gpu=${array[1]}
        IFS="|"
    fi
    for autocast in ${autocast_list[*]}; do 
        for trainer in ${trainer_list[*]}; do 
            if [ ${trainer} = "pact" ]; then
                run_train=${pact_trainer}
                run_export=${pact_export}
            elif [ ${trainer} = "fpgm" ]; then
                run_train=${fpgm_trainer}
                run_export=${fpgm_export}
            elif [ ${trainer} = "distill" ]; then
                run_train=${distill_trainer}
                run_export=${distill_export}
            else
                run_train=${norm_trainer}
                run_export=${norm_export}
            fi

            if [ ${run_train} = "null" ]; then
                continue
            fi
            if [ ${run_export} = "null" ]; then
                continue
            fi

            save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
            if [ ${#gpu} -le 2 ];then  # epoch_num #TODO
L
LDOUBLEV 已提交
184
                cmd="${python} ${run_train} ${train_use_gpu_key}=${train_use_gpu} ${autocast_key}=${autocast} ${epoch_key}=${epoch_num} ${save_model_key}=${save_log} "
L
LDOUBLEV 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
            elif [ ${#gpu} -le 15 ];then
                cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${autocast_key}=${autocast} ${epoch_key}=${epoch_num}  ${save_model_key}=${save_log}"
            else
                cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${autocast_key}=${autocast} ${epoch_key}=${epoch_num} ${save_model_key}=${save_log}"
            fi
            # run train
            eval $cmd
            status_check $? "${cmd}" "${status_log}"

            # run eval
            eval_cmd="${python} ${eval_py} ${save_model_key}=${save_log} ${pretrain_model_key}=${save_log}/latest" 
            eval $eval_cmd
            status_check $? "${eval_cmd}" "${status_log}"

            # run export model
            save_infer_path="${save_log}"
            export_cmd="${python} ${run_export} ${save_model_key}=${save_log} ${pretrain_model_key}=${save_log}/latest ${save_infer_key}=${save_infer_path}"
            eval $export_cmd
            status_check $? "${export_cmd}" "${status_log}"

            #run inference
            save_infer_path="${save_log}"
            func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${infer_img_dir}"
L
LDOUBLEV 已提交
208 209 210
        done
    done
done
L
LDOUBLEV 已提交
211 212 213 214 215 216 217 218 219 220 221

else
    save_infer_path="${LOG_PATH}/${MODE}"
    run_export=${norm_export}
    export_cmd="${python} ${run_export} ${save_model_key}=${save_infer_path} ${pretrain_model_key}=${infer_model_dir} ${save_infer_key}=${save_infer_path}"
    eval $export_cmd
    status_check $? "${export_cmd}" "${status_log}"

    #run inference
    func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${infer_img_dir}"
fi