README.md 12.5 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4
# OCR Pipeline WebService

(English|[简体中文](./README_CN.md))

L
LDOUBLEV 已提交
5
PaddleOCR provides two service deployment methods:
L
LDOUBLEV 已提交
6 7
- Based on **PaddleHub Serving**: Code path is "`./deploy/hubserving`". Please refer to the [tutorial](../../deploy/hubserving/readme_en.md)
- Based on **PaddleServing**: Code path is "`./deploy/pdserving`". Please follow this tutorial.
L
LDOUBLEV 已提交
8

L
LDOUBLEV 已提交
9 10 11 12 13 14 15 16 17
# Service deployment based on PaddleServing  

This document will introduce how to use the [PaddleServing](https://github.com/PaddlePaddle/Serving/blob/develop/README.md) to deploy the PPOCR dynamic graph model as a pipeline online service.

Some Key Features of Paddle Serving:
- Integrate with Paddle training pipeline seamlessly, most paddle models can be deployed with one line command.
- Industrial serving features supported, such as models management, online loading, online A/B testing etc.
- Highly concurrent and efficient communication between clients and servers supported.

18 19 20 21 22 23 24 25
PaddleServing supports deployment in multiple languages. In this example, two deployment methods, python pipeline and C++, are provided. The comparison between the two is as follows:

| Language | Speed | Secondary development | Do you need to compile |
|-----|-----|---------|------------|
| C++ | fast | Slightly difficult | Single model prediction does not need to be compiled, multi-model concatenation needs to be compiled |
| python | general | easy | single-model/multi-model no compilation required |


L
LDOUBLEV 已提交
26
The introduction and tutorial of Paddle Serving service deployment framework reference [document](https://github.com/PaddlePaddle/Serving/blob/develop/README.md).
L
LDOUBLEV 已提交
27 28 29


## Contents
文幕地方's avatar
文幕地方 已提交
30 31 32 33 34 35
- [OCR Pipeline WebService](#ocr-pipeline-webservice)
- [Service deployment based on PaddleServing](#service-deployment-based-on-paddleserving)
  - [Contents](#contents)
  - [Environmental preparation](#environmental-preparation)
  - [Model conversion](#model-conversion)
  - [Paddle Serving pipeline deployment](#paddle-serving-pipeline-deployment)
36
  - [Paddle Serving C++ deployment](#C++)
文幕地方's avatar
文幕地方 已提交
37 38
  - [WINDOWS Users](#windows-users)
  - [FAQ](#faq)
L
LDOUBLEV 已提交
39

L
LDOUBLEV 已提交
40
<a name="environmental-preparation"></a>
L
LDOUBLEV 已提交
41 42
## Environmental preparation

L
LDOUBLEV 已提交
43
PaddleOCR operating environment and Paddle Serving operating environment are needed.
L
LDOUBLEV 已提交
44

L
LDOUBLEV 已提交
45
1. Please prepare PaddleOCR operating environment reference [link](../../doc/doc_ch/installation.md).
L
LDOUBLEV 已提交
46
   Download the corresponding paddlepaddle whl package according to the environment, it is recommended to install version 2.2.2.
T
tink2123 已提交
47

L
LDOUBLEV 已提交
48
2. The steps of PaddleServing operating environment prepare are as follows:
L
LDOUBLEV 已提交
49

L
LDOUBLEV 已提交
50

littletomatodonkey's avatar
littletomatodonkey 已提交
51
```bash
L
LDOUBLEV 已提交
52
# Install serving which used to start the service
53 54
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl
pip3 install paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl
L
LDOUBLEV 已提交
55 56

# Install paddle-serving-server for cuda10.1
57 58
# wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post101-py3-none-any.whl
# pip3 install paddle_serving_server_gpu-0.8.3.post101-py3-none-any.whl
littletomatodonkey's avatar
littletomatodonkey 已提交
59

L
LDOUBLEV 已提交
60
# Install serving which used to start the service
61 62
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.3-cp37-none-any.whl
pip3 install paddle_serving_client-0.8.3-cp37-none-any.whl
littletomatodonkey's avatar
littletomatodonkey 已提交
63

L
LDOUBLEV 已提交
64
# Install serving-app
65 66
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.8.3-py3-none-any.whl
pip3 install paddle_serving_app-0.8.3-py3-none-any.whl
littletomatodonkey's avatar
littletomatodonkey 已提交
67
```
L
LDOUBLEV 已提交
68

69
   **note:** If you want to install the latest version of PaddleServing, refer to [link](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/Latest_Packages_CN.md).
L
LDOUBLEV 已提交
70 71 72


<a name="model-conversion"></a>
L
LDOUBLEV 已提交
73 74 75
## Model conversion
When using PaddleServing for service deployment, you need to convert the saved inference model into a serving model that is easy to deploy.

littletomatodonkey's avatar
littletomatodonkey 已提交
76
Firstly, download the [inference model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/README_ch.md#pp-ocr%E7%B3%BB%E5%88%97%E6%A8%A1%E5%9E%8B%E5%88%97%E8%A1%A8%E6%9B%B4%E6%96%B0%E4%B8%AD) of PPOCR
L
LDOUBLEV 已提交
77 78
```
# Download and unzip the OCR text detection model
79
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar -O ch_PP-OCRv3_det_infer.tar && tar -xf ch_PP-OCRv3_det_infer.tar
L
LDOUBLEV 已提交
80
# Download and unzip the OCR text recognition model
81
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar -O ch_PP-OCRv3_rec_infer.tar &&  tar -xf ch_PP-OCRv3_rec_infer.tar
L
LDOUBLEV 已提交
82
```
T
add qps  
tink2123 已提交
83
Then, you can use installed paddle_serving_client tool to convert inference model to mobile model.
L
LDOUBLEV 已提交
84
```
L
LDOUBLEV 已提交
85
#  Detection model conversion
86
python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv3_det_infer/ \
L
LDOUBLEV 已提交
87 88
                                         --model_filename inference.pdmodel          \
                                         --params_filename inference.pdiparams       \
89 90
                                         --serving_server ./ppocr_det_v3_serving/ \
                                         --serving_client ./ppocr_det_v3_client/
L
LDOUBLEV 已提交
91

L
LDOUBLEV 已提交
92
#  Recognition model conversion
93
python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv3_rec_infer/ \
L
LDOUBLEV 已提交
94 95
                                         --model_filename inference.pdmodel          \
                                         --params_filename inference.pdiparams       \
96 97
                                         --serving_server ./ppocr_rec_v3_serving/  \
                                         --serving_client ./ppocr_rec_v3_client/
L
LDOUBLEV 已提交
98 99 100

```

101
After the detection model is converted, there will be additional folders of `ppocr_det_v3_serving` and `ppocr_det_v3_client` in the current folder, with the following format:
L
LDOUBLEV 已提交
102
```
103
|- ppocr_det_v3_serving/
littletomatodonkey's avatar
littletomatodonkey 已提交
104 105 106 107 108
  |- __model__  
  |- __params__
  |- serving_server_conf.prototxt  
  |- serving_server_conf.stream.prototxt

109
|- ppocr_det_v3_client
littletomatodonkey's avatar
littletomatodonkey 已提交
110 111
  |- serving_client_conf.prototxt  
  |- serving_client_conf.stream.prototxt
L
LDOUBLEV 已提交
112 113 114 115

```
The recognition model is the same.

L
LDOUBLEV 已提交
116
<a name="paddle-serving-pipeline-deployment"></a>
L
LDOUBLEV 已提交
117 118 119
## Paddle Serving pipeline deployment

1. Download the PaddleOCR code, if you have already downloaded it, you can skip this step.
L
LDOUBLEV 已提交
120 121 122 123
    ```
    git clone https://github.com/PaddlePaddle/PaddleOCR

    # Enter the working directory  
T
tink2123 已提交
124
    cd PaddleOCR/deploy/pdserving/
L
LDOUBLEV 已提交
125 126 127 128 129 130 131 132 133 134
    ```

    The pdserver directory contains the code to start the pipeline service and send prediction requests, including:
    ```
    __init__.py
    config.yml # Start the service configuration file
    ocr_reader.py # OCR model pre-processing and post-processing code implementation
    pipeline_http_client.py # Script to send pipeline prediction request
    web_service.py # Start the script of the pipeline server
    ```
L
LDOUBLEV 已提交
135 136

2. Run the following command to start the service.
L
LDOUBLEV 已提交
137 138 139 140 141 142
    ```
    # Start the service and save the running log in log.txt
    python3 web_service.py &>log.txt &
    ```
    After the service is successfully started, a log similar to the following will be printed in log.txt
    ![](./imgs/start_server.png)
L
LDOUBLEV 已提交
143 144

3. Send service request
L
LDOUBLEV 已提交
145 146 147 148 149
    ```
    python3 pipeline_http_client.py
    ```
    After successfully running, the predicted result of the model will be printed in the cmd window. An example of the result is:
    ![](./imgs/results.png)  
L
LDOUBLEV 已提交
150

T
add qps  
tink2123 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163
    Adjust the number of concurrency in config.yml to get the largest QPS. Generally, the number of concurrent detection and recognition is 2:1

    ```
    det:
        concurrency: 8
        ...
    rec:
        concurrency: 4
        ...
    ```

    Multiple service requests can be sent at the same time if necessary.

T
add qps  
tink2123 已提交
164 165
    The predicted performance data will be automatically written into the `PipelineServingLogs/pipeline.tracer` file.

T
add qps  
tink2123 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    Tested on 200 real pictures, and limited the detection long side to 960. The average QPS on T4 GPU can reach around 23:

    ```

    2021-05-13 03:42:36,895 ==================== TRACER ======================
    2021-05-13 03:42:36,975 Op(rec):
    2021-05-13 03:42:36,976         in[14.472382882882883 ms]
    2021-05-13 03:42:36,976         prep[9.556855855855856 ms]
    2021-05-13 03:42:36,976         midp[59.921905405405404 ms]
    2021-05-13 03:42:36,976         postp[15.345945945945946 ms]
    2021-05-13 03:42:36,976         out[1.9921216216216215 ms]
    2021-05-13 03:42:36,976         idle[0.16254943864471572]
    2021-05-13 03:42:36,976 Op(det):
    2021-05-13 03:42:36,976         in[315.4468035714286 ms]
    2021-05-13 03:42:36,976         prep[69.5980625 ms]
    2021-05-13 03:42:36,976         midp[18.989535714285715 ms]
    2021-05-13 03:42:36,976         postp[18.857803571428573 ms]
    2021-05-13 03:42:36,977         out[3.1337544642857145 ms]
    2021-05-13 03:42:36,977         idle[0.7477961159203756]
    2021-05-13 03:42:36,977 DAGExecutor:
    2021-05-13 03:42:36,977         Query count[224]
    2021-05-13 03:42:36,977         QPS[22.4 q/s]
    2021-05-13 03:42:36,977         Succ[0.9910714285714286]
    2021-05-13 03:42:36,977         Error req[169, 170]
    2021-05-13 03:42:36,977         Latency:
    2021-05-13 03:42:36,977                 ave[535.1678348214285 ms]
    2021-05-13 03:42:36,977                 .50[172.651 ms]
    2021-05-13 03:42:36,977                 .60[187.904 ms]
    2021-05-13 03:42:36,977                 .70[245.675 ms]
    2021-05-13 03:42:36,977                 .80[526.684 ms]
    2021-05-13 03:42:36,977                 .90[854.596 ms]
    2021-05-13 03:42:36,977                 .95[1722.728 ms]
    2021-05-13 03:42:36,977                 .99[3990.292 ms]
    2021-05-13 03:42:36,978 Channel (server worker num[10]):
    2021-05-13 03:42:36,978         chl0(In: ['@DAGExecutor'], Out: ['det']) size[0/0]
    2021-05-13 03:42:36,979         chl1(In: ['det'], Out: ['rec']) size[6/0]
    2021-05-13 03:42:36,979         chl2(In: ['rec'], Out: ['@DAGExecutor']) size[0/0]
T
add qps  
tink2123 已提交
203 204
    ```

205
<a name="C++"></a>
T
tink2123 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219
## C++ Serving

Service deployment based on python obviously has the advantage of convenient secondary development. However, the real application often needs to pursue better performance. PaddleServing also provides a more performant C++ deployment version.

The C++ service deployment is the same as python in the environment setup and data preparation stages, the difference is when the service is started and the client sends requests.


1. Compile Serving

   To improve predictive performance, C++ services also provide multiple model concatenation services. Unlike Python Pipeline services, multiple model concatenation requires the pre - and post-model processing code to be written on the server side, so local recompilation is required to generate serving. Specific may refer to the official document: [how to compile Serving](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/Compile_EN.md)

2. Run the following command to start the service.
    ```
    # Start the service and save the running log in log.txt
A
andyjpaddle 已提交
220
    python3 -m paddle_serving_server.serve --model ppocr_det_v3_serving ppocr_rec_v3_serving --op GeneralDetectionOp GeneralInferOp --port 8181 &>log.txt &
T
tink2123 已提交
221 222 223 224 225 226 227
    ```
    After the service is successfully started, a log similar to the following will be printed in log.txt
    ![](./imgs/start_server.png)

3. Send service request

   Due to the need for pre and post-processing in the C++Server part, in order to speed up the input to the C++Server is only the base64 encoded string of the picture, it needs to be manually modified
228
   Change the feed_type field and shape field in ppocr_det_v3_client/serving_client_conf.prototxt to the following:
T
tink2123 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242

   ```
    feed_var {
    name: "x"
    alias_name: "x"
    is_lod_tensor: false
    feed_type: 20
    shape: 1
    }
   ```

   start the client:

    ```
243
    python3 ocr_cpp_client.py ppocr_det_v3_client ppocr_rec_v3_client
T
tink2123 已提交
244 245 246 247
    ```
    After successfully running, the predicted result of the model will be printed in the cmd window. An example of the result is:
    ![](./imgs/results.png)  

B
win doc  
bjjwwang 已提交
248 249
## WINDOWS Users

文幕地方's avatar
文幕地方 已提交
250
Windows does not support Pipeline Serving, if we want to lauch paddle serving on Windows, we should use Web Service, for more infomation please refer to [Paddle Serving for Windows Users](https://github.com/PaddlePaddle/Serving/blob/develop/doc/Windows_Tutorial_EN.md)
B
win doc  
bjjwwang 已提交
251 252


B
bjjwwang 已提交
253 254 255 256 257
**WINDOWS user can only use version 0.5.0 CPU Mode**

**Prepare Stage:**

```
B
bjjwwang 已提交
258
pip3 install paddle-serving-server==0.5.0
B
bjjwwang 已提交
259 260 261
pip3 install paddle-serving-app==0.3.1
```

B
win doc  
bjjwwang 已提交
262 263 264 265
1. Start Server

```
cd win
T
Thomas Young 已提交
266 267 268
python3 ocr_web_server.py gpu(for gpu user)
or
python3 ocr_web_server.py cpu(for cpu user)
B
win doc  
bjjwwang 已提交
269 270 271 272 273 274 275
```

2. Client Send Requests

```
python3 ocr_web_client.py
```
T
add qps  
tink2123 已提交
276

L
LDOUBLEV 已提交
277
<a name="faq"></a>
L
LDOUBLEV 已提交
278
## FAQ
M
MissPenguin 已提交
279
**Q1**: No result return after sending the request.
L
LDOUBLEV 已提交
280

M
MissPenguin 已提交
281
**A1**: Do not set the proxy when starting the service and sending the request. You can close the proxy before starting the service and before sending the request. The command to close the proxy is:
L
LDOUBLEV 已提交
282 283 284 285
```
unset https_proxy
unset http_proxy
```