README_ch.md 8.6 KB
Newer Older
G
grasswolfs 已提交
1 2
[English](README.md) | 简体中文

G
grasswolfs 已提交
3 4
# PPOCRLabel

qq_25193841's avatar
qq_25193841 已提交
5
PPOCRLabel是一款适用于OCR领域的半自动化图形标注工具,内置PPOCR模型对数据自动标注和重新识别。使用python3和pyqt5编写,支持矩形框标注和四点标注模式,导出格式可直接用于PPOCR检测和识别模型的训练。
G
grasswolfs 已提交
6 7 8

<img src="./data/gif/steps.gif" width="100%"/>

9 10
#### 近期更新

qq_25193841's avatar
qq_25193841 已提交
11 12 13 14 15 16 17 18 19
- 2020.12.18: 支持对单个标记框进行重新识别(by [ninetailskim](https://github.com/ninetailskim)),完善快捷键。

#### 尽请期待

- 锁定框模式:针对同一场景数据,被锁定的检测框的大小与位置能在不同图片之间传递。
- 体验优化:增加撤销操作,批量移动、复制、删除等功能。优化标注流程。

如果您对以上内容感兴趣或对完善工具有不一样的想法,欢迎加入我们的队伍与我们共同开发

20

G
grasswolfs 已提交
21 22 23
## 安装

### 1. 安装PaddleOCR
qq_25193841's avatar
qq_25193841 已提交
24
PPOCRLabel内置PaddleOCR模型,故请参考[PaddleOCR安装文档](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/installation.md)准备好PaddleOCR,并确保PaddleOCR安装成功。
G
grasswolfs 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

### 2. 安装PPOCRLabel
#### Windows + Anaconda

```
pip install pyqt5
cd ./PPOCRLabel # 将目录切换到PPOCRLabel文件夹下
python PPOCRLabel.py --lang ch
```

#### Ubuntu Linux

```
pip3 install pyqt5
pip3 install trash-cli
cd ./PPOCRLabel # 将目录切换到PPOCRLabel文件夹下
python3 PPOCRLabel.py --lang ch
```

#### macOS
```
pip3 install pyqt5
pip3 uninstall opencv-python # 由于mac版本的opencv与pyqt有冲突,需先手动卸载opencv
pip3 install opencv-contrib-python-headless # 安装headless版本的open-cv
cd ./PPOCRLabel # 将目录切换到PPOCRLabel文件夹下
python3 PPOCRLabel.py --lang ch
```

## 使用

### 操作步骤

1. 安装与运行:使用上述命令安装与运行程序。
2. 打开文件夹:在菜单栏点击 “文件” - "打开目录" 选择待标记图片的文件夹<sup>[1]</sup>.
3. 自动标注:点击 ”自动标注“,使用PPOCR超轻量模型对图片文件名前图片状态<sup>[2]</sup>为 “X” 的图片进行自动标注。
qq_25193841's avatar
qq_25193841 已提交
60
4. 手动标注:点击 “矩形标注”(推荐直接在英文模式下点击键盘中的 “W”),用户可对当前图片中模型未检出的部分进行手动绘制标记框。点击键盘Q,则使用四点标注模式(或点击“编辑” - “四点标注”),用户依次点击4个点后,双击左键表示标注完成。
G
grasswolfs 已提交
61 62 63 64 65
5. 标记框绘制完成后,用户点击 “确认”,检测框会先被预分配一个 “待识别” 标签。
6. 重新识别:将图片中的所有检测画绘制/调整完成后,点击 “重新识别”,PPOCR模型会对当前图片中的**所有检测框**重新识别<sup>[3]</sup>
7. 内容更改:双击识别结果,对不准确的识别结果进行手动更改。
8. 确认标记:点击 “确认”,图片状态切换为 “√”,跳转至下一张(此时不会直接将结果写入文件)。
9. 删除:点击 “删除图像”,图片将会被删除至回收站。
66
10. 保存结果:用户可以通过菜单中“文件-保存标记结果”手动保存,同时程序也会在用户每确认5张图片后自动保存一次。手动确认过的标记将会被存放在所打开图片文件夹下的*Label.txt*中。在菜单栏点击 “文件” - "保存识别结果"后,会将此类图片的识别训练数据保存在*crop_img*文件夹下,识别标签保存在*rec_gt.txt*<sup>[4]</sup>
G
grasswolfs 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79

### 注意

[1] PPOCRLabel以文件夹为基本标记单位,打开待标记的图片文件夹后,不会在窗口栏中显示图片,而是在点击 "选择文件夹" 之后直接将文件夹下的图片导入到程序中。

[2] 图片状态表示本张图片用户是否手动保存过,未手动保存过即为 “X”,手动保存过为 “√”。点击 “自动标注”按钮后,PPOCRLabel不会对状态为 “√” 的图片重新标注。

[3] 点击“重新识别”后,模型会对图片中的识别结果进行覆盖。因此如果在此之前手动更改过识别结果,有可能在重新识别后产生变动。

[4] PPOCRLabel产生的文件放置于标记图片文件夹下,包括一下几种,请勿手动更改其中内容,否则会引起程序出现异常。

|    文件名     |                             说明                             |
| :-----------: | :----------------------------------------------------------: |
80
|   Label.txt   | 检测标签,可直接用于PPOCR检测模型训练。用户每保存5张检测结果后,程序会进行自动写入。当用户关闭应用程序或切换文件路径后同样会进行写入。 |
G
grasswolfs 已提交
81 82 83 84 85 86
| fileState.txt | 图片状态标记文件,保存当前文件夹下已经被用户手动确认过的图片名称。 |
|  Cache.cach   |              缓存文件,保存模型自动识别的结果。              |
|  rec_gt.txt   | 识别标签。可直接用于PPOCR识别模型训练。需用户手动点击菜单栏“文件” - "保存识别结果"后产生。 |
|   crop_img    |   识别数据。按照检测框切割后的图片。与rec_gt.txt同时产生。   |

## 说明
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

### 快捷键

| 快捷键           | 说明                         |
| ---------------- | ---------------------------- |
| Ctrl + shift + A | 自动标注所有未确认过的图片   |
| Ctrl + shift + R | 对当前图片的所有标记重新识别 |
| W                | 新建矩形框                   |
| Q                | 新建四点框                   |
| Ctrl + E         | 编辑所选框标签               |
| Ctrl + R         | 重新识别所选标记             |
| Backspace        | 删除所选框                   |
| Ctrl + V         | 确认本张图片标记             |
| Ctrl + Shift + d | 删除本张图片                 |
| D                | 下一张图片                   |
| A                | 上一张图片                   |
| Ctrl++           | 缩小                         |
| Ctrl--           | 放大                         |
| ↑→↓←             | 移动标记框                   |

G
grasswolfs 已提交
107 108 109 110 111 112 113 114
### 内置模型

 - 默认模型:PPOCRLabel默认使用PaddleOCR中的中英文超轻量OCR模型,支持中英文与数字识别,多种语言检测。

 - 模型语言切换:用户可通过菜单栏中 "PaddleOCR" - "选择模型" 切换内置模型语言,目前支持的语言包括法文、德文、韩文、日文。具体模型下载链接可参考[PaddleOCR模型列表](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/models_list.md).

 - 自定义模型:用户可根据[自定义模型代码使用](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/whl.md#%E8%87%AA%E5%AE%9A%E4%B9%89%E6%A8%A1%E5%9E%8B),通过修改PPOCRLabel.py中针对[PaddleOCR类的实例化](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/PPOCRLabel/PPOCRLabel.py#L110)替换成自己训练的模型。

115 116 117 118 119 120 121 122
### 保存方式

PPOCRLabel支持三种保存方式:

- 程序自动保存:当检测到用户手动确认过5张图片后,程序自动将标记结果写入Label.txt中。其中用户可通过更改```PPOCRLabel.py```中的```self.autoSaveNum```的数值设置确认几张图片后进行自动保存。
- 手动保存:点击“文件 - 保存标记结果”手动保存标记。
- 关闭应用程序保存

G
grasswolfs 已提交
123 124 125 126 127 128 129 130
### 导出部分识别结果

针对部分难以识别的数据,通过在识别结果的复选框中**取消勾选**相应的标记,其识别结果不会被导出。

*注意:识别结果中的复选框状态仍需用户手动点击保存后才能保留*

### 错误提示
- 如果同时使用whl包安装了paddleocr,其优先级大于通过paddleocr.py调用PaddleOCR类,whl包未更新时会导致程序异常。
qq_25193841's avatar
qq_25193841 已提交
131
  
G
grasswolfs 已提交
132
- PPOCRLabel**不支持对中文文件名**的图片进行自动标注。
qq_25193841's avatar
qq_25193841 已提交
133

qq_25193841's avatar
qq_25193841 已提交
134
- 针对Linux用户:如果您在打开软件过程中出现**objc[XXXXX]**开头的错误,证明您的opencv版本太高,建议安装4.2版本:
G
grasswolfs 已提交
135 136 137
    ```
    pip install opencv-python==4.2.0.32
    ```
qq_25193841's avatar
qq_25193841 已提交
138 139
    
- 如果出现 ```Missing string id``` 开头的错误,需要重新编译资源:
G
grasswolfs 已提交
140 141 142
    ```
    pyrcc5 -o libs/resources.py resources.qrc
    ```
qq_25193841's avatar
qq_25193841 已提交
143 144 145 146 147
    
- 如果出现``` module 'cv2' has no attribute 'INTER_NEAREST'```错误,需要首先删除所有opencv相关包,然后重新安装headless版本的opencv
    ```
    pip install opencv-contrib-python-headless
    ```
qq_25193841's avatar
qq_25193841 已提交
148 149 150 151
### 成为特殊兴趣小组的一员

PPOCRSIG(Paddle Paddle OCR Special Interest Group,飞桨OCR特殊兴趣小组)致力于,我们希望拥有各种背景的,以开源的精神将OCR应用于各行各业。小组

G
grasswolfs 已提交
152 153 154
### 参考资料

1.[Tzutalin. LabelImg. Git code (2015)](https://github.com/tzutalin/labelImg)