utility.py 19.7 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
W
WenmuZhou 已提交
16
import os
W
WenmuZhou 已提交
17
import sys
L
LDOUBLEV 已提交
18 19
import cv2
import numpy as np
L
LDOUBLEV 已提交
20 21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
W
WenmuZhou 已提交
23
from paddle import inference
24 25
import time
from ppocr.utils.logging import get_logger
W
WenmuZhou 已提交
26

27
logger = get_logger()
L
LDOUBLEV 已提交
28 29


30 31
def str2bool(v):
    return v.lower() in ("true", "t", "1")
L
LDOUBLEV 已提交
32 33


W
WenmuZhou 已提交
34 35
def init_args():
    parser = argparse.ArgumentParser()
36
    # params for prediction engine
W
WenmuZhou 已提交
37 38 39 40 41 42
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
    parser.add_argument("--use_fp16", type=str2bool, default=False)
    parser.add_argument("--gpu_mem", type=int, default=500)

W
WenmuZhou 已提交
43
    # params for text detector
W
WenmuZhou 已提交
44 45 46 47 48 49
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')

W
WenmuZhou 已提交
50
    # DB parmas
W
WenmuZhou 已提交
51 52 53 54 55 56
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6)
    parser.add_argument("--max_batch_size", type=int, default=10)
    parser.add_argument("--use_dilation", type=bool, default=False)
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
W
WenmuZhou 已提交
57
    # EAST parmas
W
WenmuZhou 已提交
58 59 60 61
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

W
WenmuZhou 已提交
62
    # SAST parmas
W
WenmuZhou 已提交
63 64 65 66
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
    parser.add_argument("--det_sast_polygon", type=bool, default=False)

W
WenmuZhou 已提交
67
    # params for text recognizer
W
WenmuZhou 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
    parser.add_argument("--rec_batch_num", type=int, default=6)
    parser.add_argument("--max_text_length", type=int, default=25)
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
    parser.add_argument("--drop_score", type=float, default=0.5)

J
Jethong 已提交
83
    # params for e2e
W
WenmuZhou 已提交
84 85 86 87 88
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

J
Jethong 已提交
89
    # PGNet parmas
W
WenmuZhou 已提交
90 91 92 93 94 95 96
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
    parser.add_argument("--e2e_pgnet_polygon", type=bool, default=True)
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')

W
WenmuZhou 已提交
97
    # params for text classifier
W
WenmuZhou 已提交
98 99 100 101 102 103 104 105 106 107
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
    parser.add_argument("--cls_batch_num", type=int, default=6)
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
    parser.add_argument("--cpu_threads", type=int, default=10)
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
L
LDOUBLEV 已提交
108
    parser.add_argument("--warmup", type=str2bool, default=True)
W
WenmuZhou 已提交
109 110 111 112

    parser.add_argument("--use_mp", type=str2bool, default=False)
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
W
WenmuZhou 已提交
113
    parser.add_argument("--show_log", type=str2bool, default=True)
W
WenmuZhou 已提交
114
    return parser
W
WenmuZhou 已提交
115

116

117
def parse_args():
W
WenmuZhou 已提交
118
    parser = init_args()
L
LDOUBLEV 已提交
119 120 121
    return parser.parse_args()


W
WenmuZhou 已提交
122 123 124 125 126
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
J
Jethong 已提交
127
    elif mode == 'rec':
W
WenmuZhou 已提交
128
        model_dir = args.rec_model_dir
W
WenmuZhou 已提交
129 130
    elif mode == 'structure':
        model_dir = args.structure_model_dir
J
Jethong 已提交
131 132
    else:
        model_dir = args.e2e_model_dir
W
WenmuZhou 已提交
133 134 135 136

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
文幕地方's avatar
文幕地方 已提交
137 138
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
W
WenmuZhou 已提交
139 140 141 142 143 144 145
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

W
WenmuZhou 已提交
146
    config = inference.Config(model_file_path, params_file_path)
W
WenmuZhou 已提交
147 148 149

    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
L
LDOUBLEV 已提交
150 151
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
L
LDOUBLEV 已提交
152 153
                precision_mode=inference.PrecisionType.Float32,
                max_batch_size=args.max_batch_size,
W
WenmuZhou 已提交
154
                min_subgraph_size=3)  # skip the minmum trt subgraph
L
LDOUBLEV 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
        if mode == "det" and "mobile" in model_file_path:
            min_input_shape = {
                "x": [1, 3, 50, 50],
                "conv2d_92.tmp_0": [1, 96, 20, 20],
                "conv2d_91.tmp_0": [1, 96, 10, 10],
                "nearest_interp_v2_1.tmp_0": [1, 96, 10, 10],
                "nearest_interp_v2_2.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 24, 20, 20],
                "elementwise_add_7": [1, 56, 2, 2],
                "nearest_interp_v2_0.tmp_0": [1, 96, 2, 2]
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
                "conv2d_92.tmp_0": [1, 96, 400, 400],
                "conv2d_91.tmp_0": [1, 96, 200, 200],
                "nearest_interp_v2_1.tmp_0": [1, 96, 200, 200],
                "nearest_interp_v2_2.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 24, 400, 400],
                "elementwise_add_7": [1, 56, 400, 400],
                "nearest_interp_v2_0.tmp_0": [1, 96, 400, 400]
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
                "conv2d_92.tmp_0": [1, 96, 160, 160],
                "conv2d_91.tmp_0": [1, 96, 80, 80],
                "nearest_interp_v2_1.tmp_0": [1, 96, 80, 80],
                "nearest_interp_v2_2.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_3.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 24, 160, 160],
                "elementwise_add_7": [1, 56, 40, 40],
                "nearest_interp_v2_0.tmp_0": [1, 96, 40, 40]
            }
        if mode == "det" and "server" in model_file_path:
            min_input_shape = {
                "x": [1, 3, 50, 50],
                "conv2d_59.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_2.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 24, 20, 20]
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
                "conv2d_59.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_2.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 24, 400, 400]
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
                "conv2d_59.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_2.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_3.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 24, 160, 160]
            }
        elif mode == "rec":
            min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
        elif mode == "cls":
            min_input_shape = {"x": [args.rec_batch_num, 3, 48, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
L
LDOUBLEV 已提交
225 226 227 228
        else:
            min_input_shape = {"x": [1, 3, 10, 10]}
            max_input_shape = {"x": [1, 3, 1000, 1000]}
            opt_input_shape = {"x": [1, 3, 500, 500]}
L
LDOUBLEV 已提交
229 230 231
        config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                          opt_input_shape)

W
WenmuZhou 已提交
232 233
    else:
        config.disable_gpu()
234 235 236
        if hasattr(args, "cpu_threads"):
            config.set_cpu_math_library_num_threads(args.cpu_threads)
        else:
W
WenmuZhou 已提交
237 238
            # default cpu threads as 10
            config.set_cpu_math_library_num_threads(10)
W
WenmuZhou 已提交
239 240 241 242 243
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()

L
LDOUBLEV 已提交
244 245
    # enable memory optim
    config.enable_memory_optim()
W
WenmuZhou 已提交
246 247
    config.disable_glog_info()

W
WenmuZhou 已提交
248 249
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
    config.switch_use_feed_fetch_ops(False)
W
WenmuZhou 已提交
250 251
    config.switch_ir_optim(True)
    if mode == 'structure':
W
WenmuZhou 已提交
252
        config.switch_ir_optim(False)
W
WenmuZhou 已提交
253 254
    # create predictor
    predictor = inference.create_predictor(config)
W
WenmuZhou 已提交
255 256
    input_names = predictor.get_input_names()
    for name in input_names:
W
WenmuZhou 已提交
257
        input_tensor = predictor.get_input_handle(name)
W
WenmuZhou 已提交
258 259 260
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
W
WenmuZhou 已提交
261
        output_tensor = predictor.get_output_handle(output_name)
W
WenmuZhou 已提交
262 263 264 265
        output_tensors.append(output_tensor)
    return predictor, input_tensor, output_tensors


J
Jethong 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


L
LDOUBLEV 已提交
282
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
283 284 285 286
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
287
    return src_im
L
LDOUBLEV 已提交
288 289


L
LDOUBLEV 已提交
290 291
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
292
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
293 294 295 296 297
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
W
WenmuZhou 已提交
298 299
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
L
LDOUBLEV 已提交
300 301


W
WenmuZhou 已提交
302 303 304 305 306
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
L
LDOUBLEV 已提交
307
             font_path="./doc/fonts/simfang.ttf"):
308 309 310
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
311
        image(Image|array): RGB image
312 313 314 315
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
W
WenmuZhou 已提交
316
        font_path: the path of font which is used to draw text
317 318 319
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
320 321
    if scores is None:
        scores = [1] * len(boxes)
W
WenmuZhou 已提交
322 323 324 325
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
L
LDOUBLEV 已提交
326
            continue
W
WenmuZhou 已提交
327
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
328
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
W
WenmuZhou 已提交
329
    if txts is not None:
L
LDOUBLEV 已提交
330
        img = np.array(resize_img(image, input_size=600))
331
        txt_img = text_visual(
W
WenmuZhou 已提交
332 333 334 335 336 337
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
338
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
339 340
        return img
    return image
341 342


W
WenmuZhou 已提交
343 344 345 346 347 348
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
349 350 351
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
352 353

    import random
L
LDOUBLEV 已提交
354

355 356 357
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
W
WenmuZhou 已提交
358 359 360
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
T
tink2123 已提交
361 362
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
363
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
364 365 366 367 368 369 370 371 372 373
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
374 375
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
W
WenmuZhou 已提交
376
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
377 378 379
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
380 381
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
382 383 384
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
W
WenmuZhou 已提交
385
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
T
tink2123 已提交
386 387
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
388 389 390 391
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
392 393 394
    return np.array(img_show)


395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


W
WenmuZhou 已提交
419 420 421 422 423 424
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
425 426 427 428 429 430 431
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
W
WenmuZhou 已提交
432
        font_path: the path of font which is used to draw text
433 434 435 436 437 438 439 440 441
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
442 443
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
444
        return blank_img, draw_txt
L
LDOUBLEV 已提交
445

446 447 448 449
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
W
WenmuZhou 已提交
450
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
451 452 453

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
454
    count, index = 1, 0
455 456
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
457
        if scores[idx] < threshold or math.isnan(scores[idx]):
458 459 460 461 462 463 464 465 466 467 468
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
469
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
470 471 472 473 474
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
475
            count += 1
476 477 478
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
479
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
480
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
481
        # whether add new blank img or not
L
LDOUBLEV 已提交
482
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
483 484 485
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
486
        count += 1
487 488 489 490 491 492
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
493 494


D
dyning 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


L
LDOUBLEV 已提交
514
if __name__ == '__main__':
L
LDOUBLEV 已提交
515
    pass