predict_cls.py 5.6 KB
Newer Older
T
tink2123 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

import cv2
import copy
import numpy as np
import math
import time
import traceback

import utility
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, check_and_read_gif

logger = get_logger()


class TextClassifier(object):
    def __init__(self, args):
        self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")]
        self.cls_batch_num = args.cls_batch_num
        self.cls_thresh = args.cls_thresh
        postprocess_params = {
            'name': 'ClsPostProcess',
            "label_list": args.label_list,
        }
        self.postprocess_op = build_post_process(postprocess_params)
        self.predictor, self.input_tensor, self.output_tensors = \
            utility.create_predictor(args, 'cls', logger)

    def resize_norm_img(self, img):
        imgC, imgH, imgW = self.cls_image_shape
        h = img.shape[0]
        w = img.shape[1]
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = cv2.resize(img, (resized_w, imgH))
        resized_image = resized_image.astype('float32')
        if self.cls_image_shape[0] == 1:
            resized_image = resized_image / 255
            resized_image = resized_image[np.newaxis, :]
        else:
            resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def __call__(self, img_list):
        img_list = copy.deepcopy(img_list)
        img_num = len(img_list)
        # Calculate the aspect ratio of all text bars
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
        # Sorting can speed up the cls process
        indices = np.argsort(np.array(width_list))

        cls_res = [['', 0.0]] * img_num
        batch_num = self.cls_batch_num
        elapse = 0
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
            max_wh_ratio = 0
            for ino in range(beg_img_no, end_img_no):
                h, w = img_list[indices[ino]].shape[0:2]
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
                norm_img = self.resize_norm_img(img_list[indices[ino]])
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
            starttime = time.time()
            input_dict = {}
            input_dict[self.input_tensor.name] = norm_img_batch
            outputs = self.predictor.run(self.output_tensors, input_dict)
            prob_out = outputs[0]
            cls_result = self.postprocess_op(prob_out)
            elapse += time.time() - starttime
            for rno in range(len(cls_result)):
                label, score = cls_result[rno]
                cls_res[indices[beg_img_no + rno]] = [label, score]
                if '180' in label and score > self.cls_thresh:
                    img_list[indices[beg_img_no + rno]] = cv2.rotate(
                        img_list[indices[beg_img_no + rno]], 1)
        return img_list, cls_res, elapse


def main(args):
    image_file_list = get_image_file_list(args.image_dir)
    text_classifier = TextClassifier(args)
    valid_image_file_list = []
    img_list = []
    for image_file in image_file_list:
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
    try:
        img_list, cls_res, predict_time = text_classifier(img_list)
    except:
        logger.info(traceback.format_exc())
        logger.info(
            "ERROR!!!! \n"
            "Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
            "If your model has tps module:  "
            "TPS does not support variable shape.\n"
            "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
        exit()
    for ino in range(len(img_list)):
        logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
                                               cls_res[ino]))
    logger.info("Total predict time for {} images, cost: {:.3f}".format(
        len(img_list), predict_time))


if __name__ == "__main__":
    main(utility.parse_args())