车牌识别.md 31.1 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1 2
# 一种基于PaddleOCR的轻量级车牌识别模型

3 4 5 6 7 8 9
- [1. 项目介绍](#1-项目介绍)
- [2. 环境搭建](#2-环境搭建)
- [3. 数据集准备](#3-数据集准备)
  - [3.1 数据集标注规则](#31-数据集标注规则)
  - [3.2 制作符合PP-OCR训练格式的标注文件](#32-制作符合pp-ocr训练格式的标注文件)
- [4. 实验](#4-实验)
  - [4.1 检测](#41-检测)
文幕地方's avatar
文幕地方 已提交
10
    - [4.1.1 预训练模型直接预测](#411-预训练模型直接预测)
文幕地方's avatar
文幕地方 已提交
11 12
    - [4.1.2 CCPD车牌数据集fine-tune](#412-ccpd车牌数据集fine-tune)
    - [4.1.3 CCPD车牌数据集fine-tune+量化训练](#413-ccpd车牌数据集fine-tune量化训练)
13 14
    - [4.1.4 模型导出](#414-模型导出)
  - [4.2 识别](#42-识别)
文幕地方's avatar
文幕地方 已提交
15 16
    - [4.2.1 预训练模型直接预测](#421-预训练模型直接预测)
    - [4.2.2 预训练模型直接预测+改动后处理](#422-预训练模型直接预测改动后处理)
文幕地方's avatar
文幕地方 已提交
17 18
    - [4.2.3 CCPD车牌数据集fine-tune](#423-ccpd车牌数据集fine-tune)
    - [4.2.4 CCPD车牌数据集fine-tune+量化训练](#424-ccpd车牌数据集fine-tune量化训练)
19 20 21 22 23 24 25 26
    - [4.2.5 模型导出](#425-模型导出)
  - [4.3 串联推理](#43-串联推理)
  - [4.4 实验总结](#44-实验总结)

## 1. 项目介绍

车牌识别(Vehicle License Plate Recognition,VLPR) 是计算机视频图像识别技术在车辆牌照识别中的一种应用。车牌识别技术要求能够将运动中的汽车牌照从复杂背景中提取并识别出来,在高速公路车辆管理,停车场管理和中得到广泛应用。

文幕地方's avatar
文幕地方 已提交
27
结合我国国情,目前车牌识别技术的难点有:
28

文幕地方's avatar
文幕地方 已提交
29 30 31 32 33 34 35
1. 车牌样式多。我国车牌颜色大致有四种:黄底黑字、蓝底白字、白底黑字、黑底白字;车牌格式包括民用车牌、武警车牌、军车车牌、外交车牌、特种车牌、消防车牌等等。
2. 车牌位置不固定。由于不同汽车品牌公司出产的汽车型号和外形各有不同,每辆车的车牌悬挂位置也不一样;
3. 图像质量差: 运动模糊,由于强光,反射或阴影造成的光照和对比度较差, 车牌(部分)遮挡;
4. 在车辆管理等场景场景对于模型速度有着一定限制。

针对以上问题, 本例选用 [PP-OCRv3](../doc/doc_ch/PP-OCRv3_introduction.md) 这一开源超轻量OCR系统进行车牌识别系统的开发。基于PP-OCRv3模型,在CCPD数据集达到99%的检测和94%的识别精度,模型大小12.8M(2.5M+10.3M)。基于量化对模型体积进行进一步压缩到5.8M(1M+4.8M), 同时推理速度提升x%。

文幕地方's avatar
文幕地方 已提交
36
aistudio项目链接: [基于PaddleOCR的轻量级车牌识别范例](https://aistudio.baidu.com/aistudio/projectdetail/3919091?contributionType=1)
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

## 2. 环境搭建

本任务基于Aistudio完成, 具体环境如下:

- 操作系统: Linux
- PaddlePaddle: 2.3
- paddleslim: 2.2.2
- PaddleOCR: Release/2.5

下载 PaddleOCR代码

```bash
git clone -b dygraph https://github.com/PaddlePaddle/PaddleOCR
```

安装依赖库

```bash
pip install -r PaddleOCR/requirements.txt
```

## 3. 数据集准备

文幕地方's avatar
文幕地方 已提交
61
所使用的数据集为 CCPD2020 新能源车牌数据集,该数据集为
62

文幕地方's avatar
文幕地方 已提交
63
该数据集分布如下:
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

|数据集类型|数量|
|---|---|
|训练集| 5769|
|验证集| 1001|
|测试集| 5006|

数据集图片示例如下:
![](https://ai-studio-static-online.cdn.bcebos.com/3bce057a8e0c40a0acbd26b2e29e4e2590a31bc412764be7b9e49799c69cb91c)

数据集可以从这里下载 https://aistudio.baidu.com/aistudio/datasetdetail/101595

下载好数据集后对数据集进行解压

```bash
unzip -d /home/aistudio/data /home/aistudio/data/data101595/CCPD2020.zip
```

### 3.1 数据集标注规则
文幕地方's avatar
文幕地方 已提交
83 84

CPPD数据集的图片文件名具有特殊规则,详细可查看:https://github.com/detectRecog/CCPD
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

具体规则如下:

例如: 025-95_113-154&383_386&473-386&473_177&454_154&383_363&402-0_0_22_27_27_33_16-37-15.jpg

由分隔符'-'分为几个部分:

- 025:车牌区域与整个图片区域的面积比。

- 95_113: 车牌水平倾斜度和垂直倾斜度, 水平95°, 竖直113°

- 154&383_386&473: 车牌边界框坐标:左上(154, 383), 右下(386, 473)

- 386&473_177&454_154&383_363&402: 车牌四个角点坐标, 坐标顺序为[右下,左下,左上,右上]

- 0_0_22_27_27_33_16: 车牌号码,CCPD中的每个图像只有一个LP。每个LP编号由一个汉字、一个字母和五个字母或数字组成。有效的中国车牌由七个字符组成:省(1个字符)、字母(1个字符)、字母+数字(5个字符)。“0_0_22_27_27_33_16”是每个字符的索引。这三个数组的定义如下。每个数组的最后一个字符是字母O,而不是数字0。我们使用O作为“无字符”的标志,因为中国车牌字符中没有O。

```python
provinces = ["皖", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑", "苏", "浙", "京", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤", "桂", "琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁", "新", "警", "学", "O"]
alphabets = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',
             'X', 'Y', 'Z', 'O']
ads = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',
       'Y', 'Z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'O']

```

### 3.2 制作符合PP-OCR训练格式的标注文件

在开始训练之前,可使用如下代码制作符合PP-OCR训练格式的标注文件。


```python
import cv2
import os
import json
from tqdm import tqdm
import numpy as np

provinces = ["皖", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑", "苏", "浙", "京", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤", "桂", "琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁", "新", "警", "学", "O"]
alphabets = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'O']
ads = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'O']

def make_label(img_dir, save_gt_folder, phase):
    crop_img_save_dir = os.path.join(save_gt_folder, phase, 'crop_imgs')
    os.makedirs(crop_img_save_dir, exist_ok=True)

    f_det = open(os.path.join(save_gt_folder, phase, 'det.txt'), 'w', encoding='utf-8')
    f_rec = open(os.path.join(save_gt_folder, phase, 'rec.txt'), 'w', encoding='utf-8')

    i = 0
    for filename in tqdm(os.listdir(os.path.join(img_dir, phase))):
        str_list = filename.split('-')
        if len(str_list) < 5:
            continue
        coord_list = str_list[3].split('_')
        txt_list = str_list[4].split('_')
        boxes = []
        for coord in coord_list:
            boxes.append([int(x) for x in coord.split("&")])
        boxes = [boxes[2], boxes[3], boxes[0], boxes[1]]
        lp_number = provinces[int(txt_list[0])] + alphabets[int(txt_list[1])] + ''.join([ads[int(x)] for x in txt_list[2:]])

        # det
        det_info = [{'points':boxes, 'transcription':lp_number}]
        f_det.write('{}\t{}\n'.format(os.path.join(phase, filename), json.dumps(det_info, ensure_ascii=False)))

        # rec
        boxes = np.float32(boxes)
        img = cv2.imread(os.path.join(img_dir, phase, filename))
        # crop_img = img[int(boxes[:,1].min()):int(boxes[:,1].max()),int(boxes[:,0].min()):int(boxes[:,0].max())]
        crop_img = get_rotate_crop_image(img, boxes)
        crop_img_save_filename = '{}_{}.jpg'.format(i,'_'.join(txt_list))
        crop_img_save_path = os.path.join(crop_img_save_dir, crop_img_save_filename)
        cv2.imwrite(crop_img_save_path, crop_img)
        f_rec.write('{}/crop_imgs/{}\t{}\n'.format(phase, crop_img_save_filename, lp_number))
        i+=1
    f_det.close()
    f_rec.close()

def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img

img_dir = '/home/aistudio/data/CCPD2020/ccpd_green'
save_gt_folder = '/home/aistudio/data/CCPD2020/PPOCR'
# phase = 'train' # change to val and test to make val dataset and test dataset
for phase in ['train','val','test']:
    make_label(img_dir, save_gt_folder, phase)
```

通过上述命令可以完成了`训练集``验证集``测试集`的制作,制作完成的数据集信息如下:

| 类型 | 数据集 | 图片地址 | 标签地址 | 图片数量 |
| --- | --- | --- | --- | --- |
| 检测 | 训练集 | /home/aistudio/data/CCPD2020/ccpd_green/train | /home/aistudio/data/CCPD2020/PPOCR/train/det.txt | 5769 |
| 检测 | 验证集 | /home/aistudio/data/CCPD2020/ccpd_green/val | /home/aistudio/data/CCPD2020/PPOCR/val/det.txt | 1001 |
| 检测 | 测试集 | /home/aistudio/data/CCPD2020/ccpd_green/test | /home/aistudio/data/CCPD2020/PPOCR/test/det.txt | 5006 |
| 识别 | 训练集 | /home/aistudio/data/CCPD2020/PPOCR/train/crop_imgs | /home/aistudio/data/CCPD2020/PPOCR/train/rec.txt | 5769 |
| 识别 | 验证集 | /home/aistudio/data/CCPD2020/PPOCR/val/crop_imgs | /home/aistudio/data/CCPD2020/PPOCR/val/rec.txt | 1001 |
| 识别 | 测试集 | /home/aistudio/data/CCPD2020/PPOCR/test/crop_imgs | /home/aistudio/data/CCPD2020/PPOCR/test/rec.txt | 5006 |

文幕地方's avatar
文幕地方 已提交
216
在普遍的深度学习流程中,都是在训练集训练,在验证集选择最优模型后在测试集上进行测试。在本例中,我们省略中间步骤,直接在训练集训练,在测试集选择最优模型,因此我们只使用训练集和测试集。
217 218 219

## 4. 实验

文幕地方's avatar
文幕地方 已提交
220
由于数据集比较少,为了模型更好和更快的收敛,这里选用 PaddleOCR 中的 PP-OCRv3 模型进行文本检测和识别,并且使用 PP-OCRv3 模型参数作为预训练模型。PP-OCRv3在PP-OCRv2的基础上,中文场景端到端Hmean指标相比于PP-OCRv2提升5%, 英文数字模型端到端效果提升11%。详细优化细节请参考[PP-OCRv3](../doc/doc_ch/PP-OCRv3_introduction.md)技术报告。
221

文幕地方's avatar
文幕地方 已提交
222
由于车牌场景均为端侧设备部署,因此对速度和模型大小有比较高的要求,因此还需要采用量化训练的方式进行模型大小的压缩和模型推理速度的加速。模型量化可以在基本不损失模型的精度的情况下,将FP32精度的模型参数转换为Int8精度,减小模型参数大小并加速计算,使用量化后的模型在移动端等部署时更具备速度优势。
223

文幕地方's avatar
文幕地方 已提交
224 225 226
因此,本实验中对于车牌检测和识别有如下3种方案:

1. PP-OCRv3中英文超轻量预训练模型直接预测
227 228 229 230
2. CCPD车牌数据集在PP-OCRv3模型上fine-tune
3. CCPD车牌数据集在PP-OCRv3模型上fine-tune后量化

### 4.1 检测
文幕地方's avatar
文幕地方 已提交
231
#### 4.1.1 预训练模型直接预测
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

从下表中下载PP-OCRv3文本检测预训练模型

|模型名称|模型简介|配置文件|推理模型大小|下载地址|
| --- | --- | --- | --- | --- |
|ch_PP-OCRv3_det| 【最新】原始超轻量模型,支持中英文、多语种文本检测 |[ch_PP-OCRv3_det_cml.yml](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml)| 3.8M |[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar)|

使用如下命令下载预训练模型

```bash
mkdir models
cd models
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar
tar -xf ch_PP-OCRv3_det_distill_train.tar
cd /home/aistudio/PaddleOCR
```

文幕地方's avatar
文幕地方 已提交
249
预训练模型下载完成后,我们使用[ch_PP-OCRv3_det_student.yml](../configs/chepai/ch_PP-OCRv3_det_student.yml) 配置文件进行后续实验,在开始评估之前需要对配置文件中部分字段进行设置,具体如下:
250

文幕地方's avatar
文幕地方 已提交
251 252 253 254 255
1. 模型存储和训练相关:
   1. Global.pretrained_model: 指向PP-OCRv3文本检测预训练模型地址
2. 数据集相关
   1. Eval.dataset.data_dir:指向测试集图片存放目录
   2. Eval.dataset.label_file_list:指向测试集标注文件
256

文幕地方's avatar
文幕地方 已提交
257
上述字段均为必须修改的字段,可以通过修改配置文件的方式改动,也可在不需要修改配置文件的情况下,改变训练的参数。这里使用不改变配置文件的方式 。使用如下命令进行PP-OCRv3文本检测预训练模型的评估
258 259 260 261 262 263 264 265


```bash
python tools/eval.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml -o \
    Global.pretrained_model=models/ch_PP-OCRv3_det_distill_train/student.pdparams \
    Eval.dataset.data_dir=/home/aistudio/data/CCPD2020/ccpd_green \
    Eval.dataset.label_file_list=[/home/aistudio/data/CCPD2020/PPOCR/test/det.txt]
```
文幕地方's avatar
文幕地方 已提交
266
上述指令中,通过-c 选择训练使用配置文件,通过-o参数在不需要修改配置文件的情况下,改变训练的参数。
267 268 269

使用预训练模型进行评估,指标如下所示:

文幕地方's avatar
文幕地方 已提交
270 271 272
| 方案                        |hmeans|
|---------------------------|---|
| PP-OCRv3中英文超轻量检测预训练模型直接预测 |76.12%|
273

文幕地方's avatar
文幕地方 已提交
274
#### 4.1.2 CCPD车牌数据集fine-tune
275 276 277

**训练**

文幕地方's avatar
文幕地方 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291
为了进行fine-tune训练,我们需要在配置文件中设置需要使用的预训练模型地址,学习率和数据集等参数。 具体如下:

1. 模型存储和训练相关:
   1. Global.pretrained_model: 指向PP-OCRv3文本检测预训练模型地址
   2. Global.eval_batch_step: 模型多少step评估一次,这里设为从第0个step开始没隔772个step评估一次,772为一个epoch总的step数。
2. 优化器相关:
   1. Optimizer.lr.name: 学习率衰减器设为常量 Const
   2. Optimizer.lr.learning_rate: 做finetune实验,学习率需要设置的比较小,此处学习率设为配置文件中的0.05倍
   3. Optimizer.lr.warmup_epoch: warmup_epoch设为0
3. 数据集相关:
   1. Train.dataset.data_dir:指向训练集图片存放目录
   2. Train.dataset.label_file_list:指向训练集标注文件
   3. Eval.dataset.data_dir:指向测试集图片存放目录
   4. Eval.dataset.label_file_list:指向测试集标注文件
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307

使用如下代码即可启动在CCPD车牌数据集上的fine-tune。

```bash
python tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml -o \
    Global.pretrained_model=models/ch_PP-OCRv3_det_distill_train/student.pdparams \
    Global.save_model_dir=output/CCPD/det \
    Global.eval_batch_step="[0, 772]" \
    Optimizer.lr.name=Const \
    Optimizer.lr.learning_rate=0.0005 \
    Optimizer.lr.warmup_epoch=0 \
    Train.dataset.data_dir=/home/aistudio/data/CCPD2020/ccpd_green \
    Train.dataset.label_file_list=[/home/aistudio/data/CCPD2020/PPOCR/train/det.txt] \
    Eval.dataset.data_dir=/home/aistudio/data/CCPD2020/ccpd_green \
    Eval.dataset.label_file_list=[/home/aistudio/data/CCPD2020/PPOCR/test/det.txt]
```
文幕地方's avatar
文幕地方 已提交
308 309 310

在上述命令中,通过`-o`的方式修改了配置文件中的参数。

文幕地方's avatar
文幕地方 已提交
311
训练好的模型地址为: [det_ppocr_v3_finetune.tar](https://paddleocr.bj.bcebos.com/fanliku/license_plate_recognition/det_ppocr_v3_finetune.tar)
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328

**评估**

训练完成后使用如下命令进行评估


```bash
python tools/eval.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml -o \
    Global.pretrained_model=output/CCPD/det/best_accuracy.pdparams \
    Eval.dataset.data_dir=/home/aistudio/data/CCPD2020/ccpd_green \
    Eval.dataset.label_file_list=[/home/aistudio/data/CCPD2020/PPOCR/test/det.txt]
```

使用预训练模型和CCPD车牌数据集fine-tune,指标分别如下:

|方案|hmeans|
|---|---|
文幕地方's avatar
文幕地方 已提交
329
|PP-OCRv3中英文超轻量检测预训练模型直接预测|76.12%|
330 331 332 333
|PP-OCRv3中英文超轻量检测预训练模型 fine-tune|99%|

可以看到进行fine-tune能显著提升车牌检测的效果。

文幕地方's avatar
文幕地方 已提交
334
#### 4.1.3 CCPD车牌数据集fine-tune+量化训练
335

文幕地方's avatar
文幕地方 已提交
336
此处采用 PaddleOCR 中提供好的[量化教程](../deploy/slim/quantization/README.md)对模型进行量化训练。
337

文幕地方's avatar
文幕地方 已提交
338
量化训练可通过如下命令启动:
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

```bash
python3.7 deploy/slim/quantization/quant.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml -o \
    Global.pretrained_model=output/CCPD/det/best_accuracy.pdparams \
    Global.save_model_dir=output/CCPD/det_quant \
    Global.eval_batch_step="[0, 772]" \
    Optimizer.lr.name=Const \
    Optimizer.lr.learning_rate=0.0005 \
    Optimizer.lr.warmup_epoch=0 \
    Train.dataset.data_dir=/home/aistudio/data/CCPD2020/ccpd_green \
    Train.dataset.label_file_list=[/home/aistudio/data/CCPD2020/PPOCR/train/det.txt] \
    Eval.dataset.data_dir=/home/aistudio/data/CCPD2020/ccpd_green \
    Eval.dataset.label_file_list=[/home/aistudio/data/CCPD2020/PPOCR/test/det.txt]
```

文幕地方's avatar
文幕地方 已提交
354 355
训练好的模型地址为: [det_ppocr_v3_quant.tar](https://paddleocr.bj.bcebos.com/fanliku/license_plate_recognition/det_ppocr_v3_quant.tar)

356 357
量化后指标对比如下

文幕地方's avatar
文幕地方 已提交
358 359
|方案|hmeans| 模型大小 |预测速度(lite)|
|---|---|------|---|
L
LDOUBLEV 已提交
360 361
|PP-OCRv3中英文超轻量检测预训练模型 fine-tune|99%| 2.5M | 223ms/image |
|PP-OCRv3中英文超轻量检测预训练模型 fine-tune+量化|98.91%| 1M   | 189ms/image |
362

文幕地方's avatar
文幕地方 已提交
363
可以看到量化后能显著降低模型体积并且精度几乎无损。
364

L
LDOUBLEV 已提交
365
预测速度是在android骁龙855上预测275张图像的平均耗时。模型在移动端的部署步骤参考[文档](../deploy/lite/readme_ch.md)
L
LDOUBLEV 已提交
366

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
#### 4.1.4 模型导出

使用如下命令可以将训练好的模型进行导出

* 非量化模型
```bash
python tools/export_model.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml -o \
    Global.pretrained_model=output/CCPD/det/best_accuracy.pdparams \
    Global.save_inference_dir=output/det/infer
```
* 量化模型
```bash
python deploy/slim/quantization/export_model.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml -o \
    Global.pretrained_model=output/CCPD/det_quant/best_accuracy.pdparams \
    Global.save_inference_dir=output/det/infer
```

### 4.2 识别
文幕地方's avatar
文幕地方 已提交
385
#### 4.2.1 预训练模型直接预测
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

从下表中下载PP-OCRv3文本识别预训练模型

|模型名称|模型简介|配置文件|推理模型大小|下载地址|
| --- | --- | --- | --- | --- |
|ch_PP-OCRv3_rec|【最新】原始超轻量模型,支持中英文、数字识别|[ch_PP-OCRv3_rec_distillation.yml](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml)| 12.4M |[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_train.tar) |

使用如下命令下载预训练模型

```bash
mkdir models
cd models
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_train.tar
tar -xf ch_PP-OCRv3_rec_train.tar
cd /home/aistudio/PaddleOCR
```

文幕地方's avatar
文幕地方 已提交
403
PaddleOCR提供的PP-OCRv3识别模型采用蒸馏训练策略,因此提供的预训练模型中会包含`Teacher``Student`模型的参数,详细信息可参考[knowledge_distillation.md](../doc/doc_ch/knowledge_distillation.md)。 因此,模型下载完成后需要使用如下代码提取`Student`模型的参数:
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420

```python
import paddle
# 加载预训练模型
all_params = paddle.load("models/ch_PP-OCRv3_rec_train/best_accuracy.pdparams")
# 查看权重参数的keys
print(all_params.keys())
# 学生模型的权重提取
s_params = {key[len("Student."):]: all_params[key] for key in all_params if "Student." in key}
# 查看学生模型权重参数的keys
print(s_params.keys())
# 保存
paddle.save(s_params, "models/ch_PP-OCRv3_rec_train/student.pdparams")
```

预训练模型下载完成后,我们使用[ch_PP-OCRv3_rec.yml](../configs/rec/PP-OCRv3/ch_PP-OCRv3_rec.yml) 配置文件进行后续实验,在开始评估之前需要对配置文件中部分字段进行设置,具体如下:

文幕地方's avatar
文幕地方 已提交
421 422 423 424 425
1. 模型存储和训练相关:
   1. Global.pretrained_model: 指向PP-OCRv3文本识别预训练模型地址
2. 数据集相关
   1. Eval.dataset.data_dir:指向测试集图片存放目录
   2. Eval.dataset.label_file_list:指向测试集标注文件
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

使用如下命令进行PP-OCRv3文本识别预训练模型的评估

```bash
python tools/eval.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec.yml -o \
    Global.pretrained_model=models/ch_PP-OCRv3_rec_train/student.pdparams \
    Eval.dataset.data_dir=/home/aistudio/data/CCPD2020/PPOCR \
    Eval.dataset.label_file_list=[/home/aistudio/data/CCPD2020/PPOCR/test/rec.txt]
```

评估部分日志如下:
```bash
[2022/05/12 19:52:02] ppocr INFO: load pretrain successful from models/ch_PP-OCRv3_rec_train/best_accuracy
eval model:: 100%|██████████████████████████████| 40/40 [00:15<00:00,  2.57it/s]
[2022/05/12 19:52:17] ppocr INFO: metric eval ***************
[2022/05/12 19:52:17] ppocr INFO: acc:0.0
[2022/05/12 19:52:17] ppocr INFO: norm_edit_dis:0.8656084923002452
[2022/05/12 19:52:17] ppocr INFO: Teacher_acc:0.000399520574511545
[2022/05/12 19:52:17] ppocr INFO: Teacher_norm_edit_dis:0.8657902943394548
[2022/05/12 19:52:17] ppocr INFO: fps:1443.1801978719905

```
使用预训练模型进行评估,指标如下所示:

|方案|acc|
|---|---|
文幕地方's avatar
文幕地方 已提交
452
|PP-OCRv3中英文超轻量识别预训练模型直接预测|0%|
453 454 455 456

从评估日志中可以看到,直接使用PP-OCRv3预训练模型进行评估,acc非常低,但是norm_edit_dis很高。因此,我们猜测是模型大部分文字识别是对的,只有少部分文字识别错误。使用如下命令进行infer查看模型的推理结果进行验证:


文幕地方's avatar
文幕地方 已提交
457 458
```bash
python tools/infer_rec.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec.yml -o \
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
    Global.pretrained_model=models/ch_PP-OCRv3_rec_train/student.pdparams \
    Global.infer_img=/home/aistudio/data/CCPD2020/PPOCR/test/crop_imgs/0_0_0_3_32_30_31_30_30.jpg
```

输出部分日志如下:
```bash
[2022/05/01 08:51:57] ppocr INFO: train with paddle 2.2.2 and device CUDAPlace(0)
W0501 08:51:57.127391 11326 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.0, Runtime API Version: 10.1
W0501 08:51:57.132315 11326 device_context.cc:465] device: 0, cuDNN Version: 7.6.
[2022/05/01 08:52:00] ppocr INFO: load pretrain successful from models/ch_PP-OCRv3_rec_train/student
[2022/05/01 08:52:00] ppocr INFO: infer_img: /home/aistudio/data/CCPD2020/PPOCR/test/crop_imgs/0_0_3_32_30_31_30_30.jpg
[2022/05/01 08:52:00] ppocr INFO:      result: {"Student": {"label": "皖A·D86766", "score": 0.9552637934684753}, "Teacher": {"label": "皖A·D86766", "score": 0.9917094707489014}}
[2022/05/01 08:52:00] ppocr INFO: success!
```

从infer结果可以看到,车牌中的文字大部分都识别正确,只是多识别出了一个`·`。针对这种情况,有如下两种方案:
1. 直接通过后处理去掉多识别的`·`
2. 进行finetune。

文幕地方's avatar
文幕地方 已提交
478
#### 4.2.2 预训练模型直接预测+改动后处理
479

文幕地方's avatar
文幕地方 已提交
480
直接通过后处理去掉多识别的`·`,在后处理的改动比较简单,只需在 [ppocr/postprocess/rec_postprocess.py](../ppocr/postprocess/rec_postprocess.py) 文件的76行添加如下代码:
481 482 483 484 485 486 487 488
```python
text = text.replace('·','')
```

改动前后指标对比:

|方案|acc|
|---|---|
文幕地方's avatar
文幕地方 已提交
489 490
|PP-OCRv3中英文超轻量识别预训练模型直接预测|0.2%|
|PP-OCRv3中英文超轻量识别预训练模型直接预测+后处理去掉多识别的`·`|90.97%|
491 492 493

可以看到,去掉多余的`·`能大幅提高精度。

文幕地方's avatar
文幕地方 已提交
494
#### 4.2.3 CCPD车牌数据集fine-tune
495 496 497

**训练**

文幕地方's avatar
文幕地方 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511
为了进行fine-tune训练,我们需要在配置文件中设置需要使用的预训练模型地址,学习率和数据集等参数。 具体如下:

1. 模型存储和训练相关:
   1. Global.pretrained_model: 指向PP-OCRv3文本识别预训练模型地址
   2. Global.eval_batch_step: 模型多少step评估一次,这里设为从第0个step开始没隔45个step评估一次,45为一个epoch总的step数。
2. 优化器相关
   1. Optimizer.lr.name: 学习率衰减器设为常量 Const
   2. Optimizer.lr.learning_rate: 做finetune实验,学习率需要设置的比较小,此处学习率设为配置文件中的0.05倍
   3. Optimizer.lr.warmup_epoch: warmup_epoch设为0
3. 数据集相关
   1. Train.dataset.data_dir:指向训练集图片存放目录
   2. Train.dataset.label_file_list:指向训练集标注文件
   3. Eval.dataset.data_dir:指向测试集图片存放目录
   4. Eval.dataset.label_file_list:指向测试集标注文件
512 513 514 515 516 517 518 519 520 521 522 523 524 525

使用如下命令启动finetune

```bash
python tools/train.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec.yml -o \
    Global.pretrained_model=models/ch_PP-OCRv3_rec_train/student.pdparams \
    Global.save_model_dir=output/CCPD/rec/ \
    Global.eval_batch_step="[0, 90]" \
    Optimizer.lr.name=Const \
    Optimizer.lr.learning_rate=0.0005 \
    Optimizer.lr.warmup_epoch=0 \
    Train.dataset.data_dir=/home/aistudio/data/CCPD2020/PPOCR \
    Train.dataset.label_file_list=[/home/aistudio/data/CCPD2020/PPOCR/train/rec.txt] \
    Eval.dataset.data_dir=/home/aistudio/data/CCPD2020/PPOCR \
文幕地方's avatar
文幕地方 已提交
526
    Eval.dataset.label_file_list=[/home/aistudio/data/CCPD2020/PPOCR/test/rec.txt]
527
```
文幕地方's avatar
文幕地方 已提交
528
训练好的模型地址为: [rec_ppocr_v3_finetune.tar](https://paddleocr.bj.bcebos.com/fanliku/license_plate_recognition/rec_ppocr_v3_finetune.tar)
529 530 531 532 533 534 535 536 537 538 539 540 541 542

**评估**

训练完成后使用如下命令进行评估

```bash
python tools/eval.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec.yml -o \
    Global.pretrained_model=output/CCPD/rec/best_accuracy.pdparams \
    Eval.dataset.data_dir=/home/aistudio/data/CCPD2020/PPOCR \
    Eval.dataset.label_file_list=[/home/aistudio/data/CCPD2020/PPOCR/test/rec.txt]
```

使用预训练模型和CCPD车牌数据集fine-tune,指标分别如下:

文幕地方's avatar
文幕地方 已提交
543 544
|方案| acc    |
|---|--------|
文幕地方's avatar
文幕地方 已提交
545 546
|PP-OCRv3中英文超轻量识别预训练模型直接预测| 0%     |
|PP-OCRv3中英文超轻量识别预训练模型直接预测+后处理去掉多识别的`·`| 90.97% |
文幕地方's avatar
文幕地方 已提交
547
|PP-OCRv3中英文超轻量识别预训练模型 fine-tune| 94.54% |
548 549 550

可以看到进行fine-tune能显著提升车牌识别的效果。

文幕地方's avatar
文幕地方 已提交
551
#### 4.2.4 CCPD车牌数据集fine-tune+量化训练
552

文幕地方's avatar
文幕地方 已提交
553
此处采用 PaddleOCR 中提供好的[量化教程](../deploy/slim/quantization/README.md)对模型进行量化训练。
554

文幕地方's avatar
文幕地方 已提交
555
量化训练可通过如下命令启动:
556

文幕地方's avatar
文幕地方 已提交
557 558
```bash
python3.7 deploy/slim/quantization/quant.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec.yml -o \
559 560 561 562 563 564 565 566 567
    Global.pretrained_model=output/CCPD/rec/best_accuracy.pdparams \
    Global.save_model_dir=output/CCPD/rec_quant/ \
    Global.eval_batch_step="[0, 90]" \
    Optimizer.lr.name=Const \
    Optimizer.lr.learning_rate=0.0005 \
    Optimizer.lr.warmup_epoch=0 \
    Train.dataset.data_dir=/home/aistudio/data/CCPD2020/PPOCR \
    Train.dataset.label_file_list=[/home/aistudio/data/CCPD2020/PPOCR/train/rec.txt] \
    Eval.dataset.data_dir=/home/aistudio/data/CCPD2020/PPOCR \
文幕地方's avatar
文幕地方 已提交
568
    Eval.dataset.label_file_list=[/home/aistudio/data/CCPD2020/PPOCR/test/rec.txt]
569
```
文幕地方's avatar
文幕地方 已提交
570
训练好的模型地址为: [rec_ppocr_v3_quant.tar](https://paddleocr.bj.bcebos.com/fanliku/license_plate_recognition/rec_ppocr_v3_quant.tar)
571 572 573

量化后指标对比如下

文幕地方's avatar
文幕地方 已提交
574 575
|方案| acc    | 模型大小  |预测速度(lite)|
|---|--------|-------|---|
L
LDOUBLEV 已提交
576 577
|PP-OCRv3中英文超轻量识别预训练模型 fine-tune| 94.54% | 10.3M | 4.2ms/image |
|PP-OCRv3中英文超轻量识别预训练模型 fine-tune + 量化| 93.4%  | 4.8M  | 1.8ms/image; |
578

文幕地方's avatar
文幕地方 已提交
579
可以看到量化后能显著降低模型体积,但是由于识别数据过少,量化带来了1%的精度下降。
580

L
LDOUBLEV 已提交
581
预测速度是在android骁龙855上预测5006张识别文字图像的平均耗时。模型在移动端的部署步骤参考[文档](../deploy/lite/readme_ch.md)
L
LDOUBLEV 已提交
582

583 584 585 586 587
#### 4.2.5 模型导出

使用如下命令可以将训练好的模型进行导出。

* 非量化模型
文幕地方's avatar
文幕地方 已提交
588 589
```bash
python tools/export_model.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec.yml -o \
590 591 592 593
    Global.pretrained_model=output/CCPD/rec/best_accuracy.pdparams \
    Global.save_inference_dir=output/CCPD/rec/infer
```
* 量化模型
文幕地方's avatar
文幕地方 已提交
594 595
```bash
python deploy/slim/quantization/export_model.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec.yml -o \
596 597 598 599 600 601 602 603 604
    Global.pretrained_model=output/CCPD/rec_quant/best_accuracy.pdparams \
    Global.save_inference_dir=output/CCPD/rec_quant/infer
```

### 4.3 串联推理

检测模型和识别模型分别fine-tune并导出为inference模型之后,可以使用如下命令进行端到端推理并对结果进行可视化。


文幕地方's avatar
文幕地方 已提交
605 606
```bash
python tools/infer/predict_system.py \
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
    --det_model_dir=output/CCPD/det/infer/ \
    --rec_model_dir=output/CCPD/rec/infer/ \
    --image_dir="/home/aistudio/data/CCPD2020/ccpd_green/test/04131106321839081-92_258-159&509_530&611-527&611_172&599_159&509_530&525-0_0_3_32_30_31_30_30-109-106.jpg" \
    --rec_image_shape=3,48,320
```
推理结果如下

![](https://ai-studio-static-online.cdn.bcebos.com/76b6a0939c2c4cf49039b6563c4b28e241e11285d7464e799e81c58c0f7707a7)


### 4.4 实验总结

我们分别使用PP-OCRv3中英文超轻量预训练模型在车牌数据集上进行了直接评估和finetune 和finetune+量化3种方案的实验,指标对比如下:

- 检测

文幕地方's avatar
文幕地方 已提交
623 624
|方案|hmeans| 模型大小 |预测速度(lite)|
|---|---|------|---|
L
LDOUBLEV 已提交
625 626 627 628 629
|PP-OCRv3中英文超轻量检测预训练模型直接预测|76.12%|2.5M| 223ms/image |
|PP-OCRv3中英文超轻量检测预训练模型 fine-tune|99%| 2.5M | 223ms/image |
|PP-OCRv3中英文超轻量检测预训练模型 fine-tune+量化|98.91%| 1M   | 189ms/image |

预测速度是在android骁龙855上预测275张图像的平均耗时。
630 631 632

- 识别

文幕地方's avatar
文幕地方 已提交
633 634
|方案| acc    | 模型大小  |预测速度(lite)|
|---|--------|-------|---|
L
LDOUBLEV 已提交
635 636 637 638
|PP-OCRv3中英文超轻量识别预训练模型直接预测| 0%     |10.3M| 4.2ms/image |
|PP-OCRv3中英文超轻量识别预训练模型直接预测+后处理去掉多识别的`·`| 90.97% |10.3M| 4.2ms/image |
|PP-OCRv3中英文超轻量识别预训练模型 fine-tune| 94.54% | 10.3M | 4.2ms/image |
|PP-OCRv3中英文超轻量识别预训练模型 fine-tune + 量化| 94.4%  | 4.8M  | 1.8ms/image |
文幕地方's avatar
文幕地方 已提交
639

L
LDOUBLEV 已提交
640
预测速度是在android骁龙855上预测5006张识别文字图像的平均耗时。
文幕地方's avatar
文幕地方 已提交
641 642 643 644 645 646

- 结论

PP-OCRv3的检测模型在未经过fine-tune的情况下,在车牌数据集上也有一定的精度,经过finetune后能够极大的提升检测效果,精度达到99%。在使用量化训练后检测模型的精度几乎无损,并且模型大小压缩60%。

PP-OCRv3的识别模型在未经过fine-tune的情况下,在车牌数据集上精度为0,但是经过分析可以知道,模型大部分字符都预测正确,但是会多预测一个特殊字符,去掉这个特殊字符后,精度达到90%。PP-OCRv3识别模型在经过finetune后识别精度进一步提升,达到94.4%。在使用量化训练后识别模型大小压缩53%,但是由于数据量多少,带来了1%的精度损失。