lr_scheduler.py 6.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from paddle.optimizer.lr import LRScheduler


class CyclicalCosineDecay(LRScheduler):
    def __init__(self,
                 learning_rate,
                 T_max,
                 cycle=1,
                 last_epoch=-1,
                 eta_min=0.0,
                 verbose=False):
        """
        Cyclical cosine learning rate decay
        A learning rate which can be referred in https://arxiv.org/pdf/2012.12645.pdf
        Args:
            learning rate(float): learning rate
            T_max(int): maximum epoch num
            cycle(int): period of the cosine decay
            last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
            eta_min(float): minimum learning rate during training
            verbose(bool): whether to print learning rate for each epoch
        """
        super(CyclicalCosineDecay, self).__init__(learning_rate, last_epoch,
                                                  verbose)
        self.cycle = cycle
        self.eta_min = eta_min

    def get_lr(self):
        if self.last_epoch == 0:
            return self.base_lr
        reletive_epoch = self.last_epoch % self.cycle
        lr = self.eta_min + 0.5 * (self.base_lr - self.eta_min) * \
                (1 + math.cos(math.pi * reletive_epoch / self.cycle))
        return lr
B
bupt906 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162


class OneCycleDecay(LRScheduler):
    """
    One Cycle learning rate decay
    A learning rate which can be referred in https://arxiv.org/abs/1708.07120
    Code refered in https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    """

    def __init__(self,
                 max_lr,
                 epochs=None,
                 steps_per_epoch=None,
                 pct_start=0.3,
                 anneal_strategy='cos',
                 div_factor=25.,
                 final_div_factor=1e4,
                 three_phase=False,
                 last_epoch=-1,
                 verbose=False):

        # Validate total_steps
        if epochs <= 0 or not isinstance(epochs, int):
            raise ValueError(
                "Expected positive integer epochs, but got {}".format(epochs))
        if steps_per_epoch <= 0 or not isinstance(steps_per_epoch, int):
            raise ValueError(
                "Expected positive integer steps_per_epoch, but got {}".format(
                    steps_per_epoch))
        self.total_steps = epochs * steps_per_epoch

        self.max_lr = max_lr
        self.initial_lr = self.max_lr / div_factor
        self.min_lr = self.initial_lr / final_div_factor

        if three_phase:
            self._schedule_phases = [
                {
                    'end_step': float(pct_start * self.total_steps) - 1,
                    'start_lr': self.initial_lr,
                    'end_lr': self.max_lr,
                },
                {
                    'end_step': float(2 * pct_start * self.total_steps) - 2,
                    'start_lr': self.max_lr,
                    'end_lr': self.initial_lr,
                },
                {
                    'end_step': self.total_steps - 1,
                    'start_lr': self.initial_lr,
                    'end_lr': self.min_lr,
                },
            ]
        else:
            self._schedule_phases = [
                {
                    'end_step': float(pct_start * self.total_steps) - 1,
                    'start_lr': self.initial_lr,
                    'end_lr': self.max_lr,
                },
                {
                    'end_step': self.total_steps - 1,
                    'start_lr': self.max_lr,
                    'end_lr': self.min_lr,
                },
            ]

        # Validate pct_start
        if pct_start < 0 or pct_start > 1 or not isinstance(pct_start, float):
            raise ValueError(
                "Expected float between 0 and 1 pct_start, but got {}".format(
                    pct_start))

        # Validate anneal_strategy
        if anneal_strategy not in ['cos', 'linear']:
            raise ValueError(
                "anneal_strategy must by one of 'cos' or 'linear', instead got {}".
                format(anneal_strategy))
        elif anneal_strategy == 'cos':
            self.anneal_func = self._annealing_cos
        elif anneal_strategy == 'linear':
            self.anneal_func = self._annealing_linear

        super(OneCycleDecay, self).__init__(max_lr, last_epoch, verbose)

    def _annealing_cos(self, start, end, pct):
        "Cosine anneal from `start` to `end` as pct goes from 0.0 to 1.0."
        cos_out = math.cos(math.pi * pct) + 1
        return end + (start - end) / 2.0 * cos_out

    def _annealing_linear(self, start, end, pct):
        "Linearly anneal from `start` to `end` as pct goes from 0.0 to 1.0."
        return (end - start) * pct + start

    def get_lr(self):
        computed_lr = 0.0
        step_num = self.last_epoch

        if step_num > self.total_steps:
            raise ValueError(
                "Tried to step {} times. The specified number of total steps is {}"
                .format(step_num + 1, self.total_steps))
        start_step = 0
        for i, phase in enumerate(self._schedule_phases):
            end_step = phase['end_step']
            if step_num <= end_step or i == len(self._schedule_phases) - 1:
                pct = (step_num - start_step) / (end_step - start_step)
                computed_lr = self.anneal_func(phase['start_lr'],
                                               phase['end_lr'], pct)
                break
            start_step = phase['end_step']

        return computed_lr