1. 10 11月, 2016 1 次提交
    • H
      set mixedlayer output size according to input operator (#414) · 8d4c453b
      Haonan 提交于
      * set mixedlayer output size according to input operator
      * change from num_channel to num_channels for conv_operator (the old one is
      really misleading because all the others are num_channels)
      
      * also changed the arg name in projections.py
      8d4c453b
  2. 09 11月, 2016 1 次提交
  3. 08 11月, 2016 1 次提交
  4. 07 11月, 2016 1 次提交
  5. 05 11月, 2016 1 次提交
    • E
      Add elementwise math operations (#343) · 6c3a678c
      emailweixu 提交于
      * Add elementwise math operations
      This allows use to use expressions like: y=log(1+exp(x))
      Also added unittests for ActivationFunction
      * Enforce keyword arguments for non-positional arguments
      * Add LogActivation to doc
      6c3a678c
  6. 02 11月, 2016 1 次提交
    • Q
      Add job=time in trainer, refine cudnn_conv to reduce gpu memory and speed up training. (#218) · 45c81a41
      qingqing01 提交于
      * Add benchmark for PaddlePaddle, tensorflow and caffe
      
      * ConvProjection to reduce memory for goolenet
      
      * Add unit test for ConvProjection.
      1. unit test in test_LayerGrad.
      2. compare the ConvPorjection and CudnnConvLayer, also compare the concat_layer+img_conv_layer and concat_layer_conv_projection.
      
      * Reduce cudnn_conv memory and add benchmark document.
      1. Use TmpMatrix as the workspace in cudnn_conv to reduce gpu memory. It reduce lots of memory.
      2. Add benchmark document.
      3. fix smallnet_mnist_cifar.py in paddle.
      
      * Add job=time and refine cudnn_conv to reduce gpu memroy and speed up
      
      * Refine cudnn_conv and shared biases operation in concat_layer and mixed_layer.
      
      * follow comments
      
      * follow comments
      
      * Use unique_ptr to prevent memory leaks in CudnnConvLayer.
      45c81a41
  7. 28 10月, 2016 1 次提交
  8. 26 10月, 2016 1 次提交
  9. 24 10月, 2016 3 次提交
  10. 19 10月, 2016 1 次提交
  11. 18 10月, 2016 1 次提交
  12. 17 10月, 2016 3 次提交
  13. 13 10月, 2016 1 次提交
  14. 10 10月, 2016 1 次提交
  15. 09 10月, 2016 1 次提交
  16. 08 10月, 2016 1 次提交
  17. 29 9月, 2016 2 次提交
  18. 28 9月, 2016 2 次提交
  19. 27 9月, 2016 2 次提交
  20. 24 9月, 2016 1 次提交
  21. 22 9月, 2016 2 次提交
  22. 21 9月, 2016 1 次提交
  23. 20 9月, 2016 3 次提交
  24. 17 9月, 2016 2 次提交
  25. 16 9月, 2016 1 次提交
  26. 15 9月, 2016 2 次提交
  27. 14 9月, 2016 2 次提交