Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
fe888728
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fe888728
编写于
3月 07, 2019
作者:
C
ceci3
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=develop, change testfile
上级
5e92eb3f
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
18 addition
and
44 deletion
+18
-44
python/paddle/fluid/tests/unittests/test_npair_loss_op.py
python/paddle/fluid/tests/unittests/test_npair_loss_op.py
+18
-44
未找到文件。
python/paddle/fluid/tests/unittests/test_npair_loss_op.py
浏览文件 @
fe888728
...
...
@@ -45,15 +45,6 @@ def npairloss(anchor, positive, labels, l2_reg=0.002):
return
l2loss
+
celoss
def
create_or_get_tensor
(
scope
,
var_name
,
var
,
place
):
tensor
=
scope
.
var
(
var_name
).
get_tensor
()
if
var
is
not
None
:
assert
isinstance
(
var
,
np
.
ndarray
)
tensor
.
set_recursive_sequence_lengths
([])
tensor
.
set
(
var
,
place
)
return
tensor
class
TestNpairLossOp
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
dtype
=
np
.
float32
...
...
@@ -61,10 +52,11 @@ class TestNpairLossOp(unittest.TestCase):
def
__assert_close
(
self
,
tensor
,
np_array
,
msg
,
atol
=
1e-4
):
self
.
assertTrue
(
np
.
allclose
(
np
.
array
(
tensor
),
np_array
,
atol
=
atol
),
msg
)
def
check_with_place
(
self
,
place
,
dtype
,
shape
):
def
test_npair_loss
(
self
):
reg_lambda
=
0.002
num_data
,
feat_dim
,
num_classes
=
shape
[
0
],
shape
[
1
],
shape
[
2
]
num_data
,
feat_dim
,
num_classes
=
18
,
6
,
3
place
=
core
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
embeddings_anchor
=
np
.
random
.
rand
(
num_data
,
...
...
@@ -79,49 +71,31 @@ class TestNpairLossOp(unittest.TestCase):
row_labels
,
l2_reg
=
reg_lambda
)
anchor_tensor
=
fluid
.
layers
.
data
(
name
=
'anchor'
,
shape
=
[
num_data
,
feat_dim
],
dtype
=
self
.
dtype
,
append_batch_size
=
False
)
positive_tensor
=
fluid
.
layers
.
data
(
name
=
'positive'
,
shape
=
[
num_data
,
feat_dim
],
dtype
=
self
.
dtype
,
append_batch_size
=
False
)
labels_tensor
=
fluid
.
layers
.
data
(
name
=
'labels_t'
,
shape
=
[
num_data
],
dtype
=
self
.
dtype
,
append_batch_size
=
False
)
anc
=
fluid
.
layers
.
create_tensor
(
dtype
=
'float32'
,
persistable
=
True
,
name
=
'anc'
)
pos
=
fluid
.
layers
.
create_tensor
(
dtype
=
'float32'
,
persistable
=
True
,
name
=
'pos'
)
lab
=
fluid
.
layers
.
create_tensor
(
dtype
=
'float32'
,
persistable
=
True
,
name
=
'lab'
)
fluid
.
layers
.
assign
(
input
=
embeddings_anchor
,
output
=
anc
)
fluid
.
layers
.
assign
(
input
=
embeddings_positive
,
output
=
pos
)
fluid
.
layers
.
assign
(
input
=
row_labels
,
output
=
lab
)
npair_loss_op
=
fluid
.
layers
.
npair_loss
(
anchor
=
anchor_tensor
,
positive
=
positive_tensor
,
labels
=
labels_tensor
,
l2_reg
=
reg_lambda
)
out_tensor
=
exe
.
run
(
feed
=
{
'anchor'
:
embeddings_anchor
,
'positive'
:
embeddings_positive
,
'labels_t'
:
row_labels
},
anchor
=
anc
,
positive
=
pos
,
labels
=
lab
,
l2_reg
=
reg_lambda
)
out_tensor
=
exe
.
run
(
feed
=
{
'anc'
:
anc
,
'pos'
:
pos
,
'lab'
:
lab
},
fetch_list
=
[
npair_loss_op
.
name
])
self
.
__assert_close
(
out_tensor
,
out_loss
,
"inference output are different at "
+
str
(
place
)
+
", "
+
str
(
np
.
dtype
(
dtype
))
+
str
(
np
.
array
(
out_tensor
))
+
str
(
out_loss
),
str
(
np
.
dtype
(
'float32'
))
+
str
(
np
.
array
(
out_tensor
))
+
str
(
out_loss
),
atol
=
1e-3
)
def
test_check_output
(
self
):
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
()
and
core
.
op_support_gpu
(
"npair_loss"
):
places
.
append
(
core
.
CUDAPlace
(
0
))
for
place
in
places
:
self
.
check_with_place
(
place
,
self
.
dtype
,
[
18
,
6
,
3
])
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录