Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
fba3712a
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fba3712a
编写于
12月 20, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add multi-input to forward function in Layer
上级
3cd10a7c
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
75 addition
and
74 deletion
+75
-74
python/paddle/fluid/imperative/layers.py
python/paddle/fluid/imperative/layers.py
+4
-13
python/paddle/fluid/tests/unittests/test_imperative_mnist.py
python/paddle/fluid/tests/unittests/test_imperative_mnist.py
+71
-61
未找到文件。
python/paddle/fluid/imperative/layers.py
浏览文件 @
fba3712a
...
...
@@ -29,18 +29,9 @@ class PyLayer(core.Layer):
self
.
_helper
=
LayerHelper
(
type
(
self
).
__name__
,
**
kwargs
)
self
.
_dtype
=
kwargs
.
get
(
"dtype"
,
core
.
VarDesc
.
VarType
.
FP32
)
def
__call__
(
self
,
inputs
):
if
not
isinstance
(
inputs
,
list
)
and
not
isinstance
(
inputs
,
tuple
):
inputs
=
[
inputs
]
var_inputs
=
[]
for
x
in
inputs
:
py_var
=
base
.
to_variable
(
x
)
var_inputs
.
append
(
py_var
)
outputs
=
self
.
forward
(
var_inputs
)
def
__call__
(
self
,
*
inputs
):
outputs
=
self
.
forward
(
*
inputs
)
return
outputs
def
forward
(
self
,
inputs
):
r
eturn
[]
def
forward
(
self
,
*
inputs
):
r
aise
NotImplementedError
python/paddle/fluid/tests/unittests/test_imperative_mnist.py
浏览文件 @
fba3712a
...
...
@@ -18,81 +18,91 @@ import numpy as np
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.fluid.imperative.nn
import
Conv2D
from
paddle.fluid.imperative.nn
import
Conv2D
,
Pool2D
class
SimpleImgConvPool
(
fluid
.
imperative
.
PyLayer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
pool_size
,
pool_stride
,
pool_padding
=
0
,
pool_type
=
'max'
,
global_pooling
=
False
,
conv_stride
=
1
,
conv_padding
=
0
,
conv_dilation
=
1
,
conv_groups
=
1
,
act
=
None
,
use_cudnn
=
False
,
param_attr
=
None
,
bias_attr
=
None
):
super
(
SimpleImgConvPool
,
self
).
__init__
()
# groups = 1
# dilation = [1, 1]
# pad = [0, 0]
# stride = [1, 1]
# input_size = [2, 3, 5, 5] # NCHW
# assert np.mod(input_size[1], groups) == 0
# f_c = input_size[1] // groups
# filter_size = [6, f_c, 3, 3]
self
.
_conv2d
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
conv_stride
,
padding
=
conv_padding
,
dilation
=
conv_dilation
,
groups
=
conv_groups
,
param_attr
=
None
,
bias_attr
=
None
,
use_cudnn
=
use_cudnn
)
self
.
_pool2d
=
Pool2D
(
pool_size
=
pool_size
,
pool_type
=
pool_type
,
pool_stride
=
pool_stride
,
pool_padding
=
pool_padding
,
global_pooling
=
global_pooling
,
use_cudnn
=
use_cudnn
)
@
contextlib
.
contextmanager
def
new_program_scope
():
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
with
fluid
.
program_guard
(
prog
,
startup_prog
):
yield
def
forward
(
self
,
inputs
):
x
=
self
.
_conv2d
(
inputs
)
x
=
self
.
_pool2d
(
x
)
return
x
class
MNIST
(
fluid
.
imperative
.
PyLayer
):
def
__init__
(
self
):
super
(
MNIST
,
self
).
__init__
()
groups
=
1
dilation
=
[
1
,
1
]
pad
=
[
0
,
0
]
stride
=
[
1
,
1
]
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
assert
np
.
mod
(
input_size
[
1
],
groups
)
==
0
f_c
=
input_size
[
1
]
//
groups
filter_size
=
[
6
,
f_c
,
3
,
3
]
def
__init__
(
self
,
param_attr
=
None
,
bias_attr
=
None
):
super
(
MNIST
,
self
).
__init__
(
param_attr
=
param_attr
,
bias_attr
=
bias_attr
)
self
.
_
conv2d
=
Conv2D
(
self
.
_
simple_img_conv_pool_1
=
SimpleImgConvPool
(
num_channels
=
3
,
filter_size
=
5
,
num_filters
=
20
,
filter_size
=
3
,
stride
=
stride
,
padding
=
pad
,
dilation
=
dilation
,
groups
=
groups
,
use_cudnn
=
False
)
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
self
.
_simple_img_conv_pool_2
=
SimpleImgConvPool
(
num_channels
=
3
,
filter_size
=
5
,
num_filters
=
50
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
def
forward
(
self
,
inputs
):
x
=
self
.
_conv2d
(
inputs
)
x
=
self
.
_simple_img_conv_pool_1
(
inputs
)
x
=
self
.
_simple_img_conv_pool_2
(
x
)
return
x
class
TestImperativeMnist
(
unittest
.
TestCase
):
# def test_layer(self):
# with fluid.imperative.guard():
# cl = core.Layer()
# cl.forward([])
# l = fluid.imperative.PyLayer()
# l.forward([])
# def test_layer_in_out(self):
# np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
# with fluid.imperative.guard():
# l = MyLayer()
# x = l(np_inp)[0]
# self.assertIsNotNone(x)
# dy_out = x._numpy()
# x._backward()
# dy_grad = l._x_for_debug._gradient()
# with new_program_scope():
# inp = fluid.layers.data(
# name="inp", shape=[3], append_batch_size=False)
# l = MyLayer()
# x = l(inp)[0]
# param_grads = fluid.backward.append_backward(
# x, parameter_list=[l._x_for_debug.name])[0]
# exe = fluid.Executor(fluid.CPUPlace())
# static_out, static_grad = exe.run(
# feed={inp.name: np_inp},
# fetch_list=[x.name, param_grads[1].name])
# self.assertTrue(np.allclose(dy_out, static_out))
# self.assertTrue(np.allclose(dy_grad, static_grad))
def
test_mnist_cpu_float32
(
self
):
with
fluid
.
imperative
.
guard
():
mnist
=
MNIST
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录