Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
f70a80fc
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f70a80fc
编写于
4月 13, 2022
作者:
Z
zhiboniu
提交者:
zhiboniu
4月 13, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
keypoint docs add flops¶ms;
test=document_fix
上级
8a5906c8
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
25 addition
and
16 deletion
+25
-16
configs/keypoint/README.md
configs/keypoint/README.md
+11
-8
configs/keypoint/README_en.md
configs/keypoint/README_en.md
+14
-8
未找到文件。
configs/keypoint/README.md
浏览文件 @
f70a80fc
...
...
@@ -34,20 +34,23 @@ PaddleDetection 关键点检测能力紧跟业内最新最优算法方案,包
## 模型推荐
### 移动端模型推荐
| 检测模型 | 关键点模型 | 输入尺寸 | COCO数据集精度 | 平均推理耗时 (FP16) | 参数量 (M) | Flops (G) | 模型权重 | Paddle-Lite部署模型(FP16) |
| :----------------------------------------------------------- | :------------------------------------ | :------------------------------: | :-----------------------------: | :------------------------------------: | --------------------------- | :-------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
|
[
PicoDet-S-Pedestrian
](
../picodet/legacy_model/application/pedestrian_detection/picodet_s_192_pedestrian.yml
)
|
[
PP-TinyPose
](
./tinypose_128x96.yml
)
| 检测:192x192
<br>
关键点:128x96 | 检测mAP:29.0
<br>
关键点AP:58.1 | 检测耗时:2.37ms
<br>
关键点耗时:3.27ms | 检测:1.18
<br/>
关键点:1.36 | 检测:0.35
<br/>
关键点:0.08 |
[
检测
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams
)
<br>
[
关键点
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams
)
|
[
检测
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16.nb
)
<br>
[
关键点
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16.nb
)
|
|
[
PicoDet-S-Pedestrian
](
../picodet/legacy_model/application/pedestrian_detection/picodet_s_320_pedestrian.yml
)
|
[
PP-TinyPose
](
./tinypose_256x192.yml
)
| 检测:320x320
<br>
关键点:256x192 | 检测mAP:38.5
<br>
关键点AP:68.8 | 检测耗时:6.30ms
<br>
关键点耗时:8.33ms | 检测:1.18
<br/>
关键点:1.36 | 检测:0.97
<br/>
关键点:0.32 |
[
检测
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams
)
<br>
[
关键点
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams
)
|
[
检测
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16.nb
)
<br>
[
关键点
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_fp16.nb
)
|
|检测模型| 关键点模型 | 输入尺寸 | COCO数据集精度| 平均推理耗时 (FP16) | 模型权重 | Paddle-Lite部署模型(FP16)|
| :----| :------------------------ | :-------: | :------: | :------: | :---: | :---: |
|
[
PicoDet-S-Pedestrian
](
../../picodet/application/pedestrian_detection/picodet_s_192_pedestrian.yml
)
|
[
PP-TinyPose
](
./tinypose_128x96.yml
)
| 检测:192x192
<br>
关键点:128x96 | 检测mAP:29.0
<br>
关键点AP:58.1 | 检测耗时:2.37ms
<br>
关键点耗时:3.27ms |
[
检测
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams
)
<br>
[
关键点
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams
)
|
[
检测
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16.nb
)
<br>
[
关键点
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16.nb
)
|
|
[
PicoDet-S-Pedestrian
](
../../picodet/application/pedestrian_detection/picodet_s_320_pedestrian.yml
)
|
[
PP-TinyPose
](
./tinypose_256x192.yml
)
| 检测:320x320
<br>
关键点:256x192 | 检测mAP:38.5
<br>
关键点AP:68.8 | 检测耗时:6.30ms
<br>
关键点耗时:8.33ms |
[
检测
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams
)
<br>
[
关键点
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams
)
|
[
检测
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16.nb
)
<br>
[
关键点
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_fp16.nb
)
|
*
详细关于PP-TinyPose的使用请参考
[
文档
](
(./tiny_pose/README.md
)
)。
### 服务端模型推荐
|检测模型| 关键点模型 | 输入尺寸 | COCO数据集精度| 模型权重 |
| :----| :------------------------ | :-------: | :------: | :------: |
|
[
PP-YOLOv2
](
https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml
)
|
[
HRNet-w32
](
./hrnet/hrnet_w32_384x288.yml
)
| 检测:640x640
<br>
关键点:384x288 | 检测mAP:49.5
<br>
关键点AP:77.8 |
[
检测
](
https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams
)
<br>
[
关键点
](
https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams
)
|
|
[
PP-YOLOv2
](
https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml
)
|
[
HRNet-w32
](
./hrnet/hrnet_w32_256x192.yml
)
| 检测:640x640
<br>
关键点:256x192 | 检测mAP:49.5
<br>
关键点AP:76.9 |
[
检测
](
https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams
)
<br>
[
关键点
](
https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams
)
|
| 检测模型 | 关键点模型 | 输入尺寸 | COCO数据集精度 | 参数量 (M) | Flops (G) | 模型权重 |
| :----------------------------------------------------------- | :----------------------------------------- | :------------------------------: | :-----------------------------: | :----------------------: | :----------------------: | :----------------------------------------------------------: |
|
[
PP-YOLOv2
](
https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml
)
|
[
HRNet-w32
](
./hrnet/hrnet_w32_384x288.yml
)
| 检测:640x640
<br>
关键点:384x288 | 检测mAP:49.5
<br>
关键点AP:77.8 | 检测:54.6
<br/>
关键点:28.6 | 检测:115.8
<br/>
关键点:17.3 |
[
检测
](
https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams
)
<br>
[
关键点
](
https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams
)
|
|
[
PP-YOLOv2
](
https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml
)
|
[
HRNet-w32
](
./hrnet/hrnet_w32_256x192.yml
)
| 检测:640x640
<br>
关键点:256x192 | 检测mAP:49.5
<br>
关键点AP:76.9 | 检测:54.6
<br/>
关键点:28.6 | 检测:115.8
<br/>
关键点:7.68 |
[
检测
](
https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams
)
<br>
[
关键点
](
https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams
)
|
## 模型库
## 模型库
COCO数据集
...
...
configs/keypoint/README_en.md
浏览文件 @
f70a80fc
...
...
@@ -36,19 +36,25 @@ At the same time, PaddleDetection provides [PP-TinyPose](./tiny_pose/README.md)
## Model Recommendation
### Mobile Terminal
|Detection Model| Keypoint Model | Input Size | Accuracy of COCO| Average Inference Time (FP16) | Model Weight | Paddle-Lite Inference Model(FP16)|
| :----| :------------------------ | :-------: | :------: | :------: | :---: | :---: |
|
[
PicoDet-S-Pedestrian
](
../../picodet/application/pedestrian_detection/picodet_s_192_pedestrian.yml
)
|
[
PP-TinyPose
](
./tinypose_128x96.yml
)
| Detection:192x192
<br>
Keypoint:128x96 | Detection mAP:29.0
<br>
Keypoint AP:58.1 | Detection:2.37ms
<br>
Keypoint:3.27ms |
[
Detection
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams
)
<br>
[
Keypoint
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams
)
|
[
Detection
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16.nb
)
<br>
[
Keypoint
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16.nb
)
|
|
[
PicoDet-S-Pedestrian
](
../../picodet/application/pedestrian_detection/picodet_s_320_pedestrian.yml
)
|
[
PP-TinyPose
](
./tinypose_256x192.yml
)
| Detection:320x320
<br>
Keypoint:256x192 | Detection mAP:38.5
<br>
Keypoint AP:68.8 | Detection:6.30ms
<br>
Keypoint:8.33ms |
[
Detection
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams
)
<br>
[
Keypoint
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams
)
|
[
Detection
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16.nb
)
<br>
[
Keypoint
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_fp16.nb
)
|
| Detection Model | Keypoint Model | Input Size | Accuracy of COCO | Average Inference Time (FP16) | Params (M) | Flops (G) | Model Weight | Paddle-Lite Inference Model(FP16) |
| :----------------------------------------------------------- | :------------------------------------ | :-------------------------------------: | :--------------------------------------: | :-----------------------------------: | :--------------------------------: | :--------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
|
[
PicoDet-S-Pedestrian
](
../../picodet/legacy_model/application/pedestrian_detection/picodet_s_192_pedestrian.yml
)
|
[
PP-TinyPose
](
./tinypose_128x96.yml
)
| Detection:192x192
<br>
Keypoint:128x96 | Detection mAP:29.0
<br>
Keypoint AP:58.1 | Detection:2.37ms
<br>
Keypoint:3.27ms | Detection:1.18
<br/>
Keypoint:1.36 | Detection:0.35
<br/>
Keypoint:0.08 |
[
Detection
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams
)
<br>
[
Keypoint
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams
)
|
[
Detection
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16.nb
)
<br>
[
Keypoint
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16.nb
)
|
|
[
PicoDet-S-Pedestrian
](
../../picodet/legacy_model/application/pedestrian_detection/picodet_s_320_pedestrian.yml
)
|
[
PP-TinyPose
](
./tinypose_256x192.yml
)
| Detection:320x320
<br>
Keypoint:256x192 | Detection mAP:38.5
<br>
Keypoint AP:68.8 | Detection:6.30ms
<br>
Keypoint:8.33ms | Detection:1.18
<br/>
Keypoint:1.36 | Detection:0.97
<br/>
Keypoint:0.32 |
[
Detection
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams
)
<br>
[
Keypoint
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams
)
|
[
Detection
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16.nb
)
<br>
[
Keypoint
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_fp16.nb
)
|
*
Specific documents of PP-TinyPose, please refer to
[
Document
](
(./tiny_pose/README.md
)
)。
### Teminal Server
|Detection Model| Keypoint Model | Input Size | Accuracy of COCO| Model Weight |
| :----| :------------------------ | :-------: | :------: | :------: |
|
[
PP-YOLOv2
](
https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml
)
|
[
HRNet-w32
](
./hrnet/hrnet_w32_384x288.yml
)
| Detection:640x640
<br>
Keypoint:384x288 | Detection mAP:49.5
<br>
Keypoint AP:77.8 |
[
Detection
](
https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams
)
<br>
[
Keypoint
](
https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams
)
|
|
[
PP-YOLOv2
](
https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml
)
|
[
HRNet-w32
](
./hrnet/hrnet_w32_256x192.yml
)
| Detection:640x640
<br>
Keypoint:256x192 | Detection mAP:49.5
<br>
Keypoint AP:76.9 |
[
Detection
](
https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams
)
<br>
[
Keypoint
](
https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams
)
|
| Detection Model | Keypoint Model | Input Size | Accuracy of COCO | Params (M) | Flops (G) | Model Weight |
| :----------------------------------------------------------- | :----------------------------------------- | :-------------------------------------: | :--------------------------------------: | :-----------------------------: | :-----------------------------: | :----------------------------------------------------------: |
|
[
PP-YOLOv2
](
https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml
)
|
[
HRNet-w32
](
./hrnet/hrnet_w32_384x288.yml
)
| Detection:640x640
<br>
Keypoint:384x288 | Detection mAP:49.5
<br>
Keypoint AP:77.8 | Detection:54.6
<br/>
Keypoint:28.6 | Detection:115.8
<br/>
Keypoint:17.3 |
[
Detection
](
https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams
)
<br>
[
Keypoint
](
https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams
)
|
|
[
PP-YOLOv2
](
https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml
)
|
[
HRNet-w32
](
./hrnet/hrnet_w32_256x192.yml
)
| Detection:640x640
<br>
Keypoint:256x192 | Detection mAP:49.5
<br>
Keypoint AP:76.9 | Detection:54.6
<br/>
Keypoint:28.6 | Detection:115.8
<br/>
Keypoint:7.68 |
[
Detection
](
https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams
)
<br>
[
Keypoint
](
https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams
)
|
## Model Zoo
## Model Zoo
COCO Dataset
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录