Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
f3a2e4b3
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f3a2e4b3
编写于
3月 22, 2019
作者:
N
nhzlx
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
1. Add ANAKIN_ROOT compile option
2. refine trt code test=develop
上级
4f4daa4b
变更
36
隐藏空白更改
内联
并排
Showing
36 changed file
with
356 addition
and
339 deletion
+356
-339
CMakeLists.txt
CMakeLists.txt
+1
-1
cmake/anakin_subgraph.cmake
cmake/anakin_subgraph.cmake
+32
-0
cmake/tensorrt.cmake
cmake/tensorrt.cmake
+1
-0
paddle/fluid/inference/CMakeLists.txt
paddle/fluid/inference/CMakeLists.txt
+1
-1
paddle/fluid/inference/anakin/CMakeLists.txt
paddle/fluid/inference/anakin/CMakeLists.txt
+1
-1
paddle/fluid/inference/anakin/convert/CMakeLists.txt
paddle/fluid/inference/anakin/convert/CMakeLists.txt
+16
-16
paddle/fluid/inference/anakin/convert/test_activation_op.cc
paddle/fluid/inference/anakin/convert/test_activation_op.cc
+1
-1
paddle/fluid/inference/anakin/convert/test_batch_norm_op.cc
paddle/fluid/inference/anakin/convert/test_batch_norm_op.cc
+1
-1
paddle/fluid/inference/anakin/convert/test_concat_op.cc
paddle/fluid/inference/anakin/convert/test_concat_op.cc
+2
-2
paddle/fluid/inference/anakin/convert/test_conv2d_op.cc
paddle/fluid/inference/anakin/convert/test_conv2d_op.cc
+1
-1
paddle/fluid/inference/anakin/convert/test_dropout_op.cc
paddle/fluid/inference/anakin/convert/test_dropout_op.cc
+1
-1
paddle/fluid/inference/anakin/convert/test_elementwise_op.cc
paddle/fluid/inference/anakin/convert/test_elementwise_op.cc
+1
-1
paddle/fluid/inference/anakin/convert/test_fc_op.cc
paddle/fluid/inference/anakin/convert/test_fc_op.cc
+1
-1
paddle/fluid/inference/anakin/convert/test_flatten_op.cc
paddle/fluid/inference/anakin/convert/test_flatten_op.cc
+1
-1
paddle/fluid/inference/anakin/convert/test_im2sequence_op.cc
paddle/fluid/inference/anakin/convert/test_im2sequence_op.cc
+1
-1
paddle/fluid/inference/anakin/convert/test_pool2d_op.cc
paddle/fluid/inference/anakin/convert/test_pool2d_op.cc
+2
-2
paddle/fluid/inference/anakin/convert/test_relu_op.cc
paddle/fluid/inference/anakin/convert/test_relu_op.cc
+1
-1
paddle/fluid/inference/anakin/convert/test_reshape_op.cc
paddle/fluid/inference/anakin/convert/test_reshape_op.cc
+2
-2
paddle/fluid/inference/anakin/convert/test_softmax_op.cc
paddle/fluid/inference/anakin/convert/test_softmax_op.cc
+3
-3
paddle/fluid/inference/anakin/convert/test_split_op.cc
paddle/fluid/inference/anakin/convert/test_split_op.cc
+1
-1
paddle/fluid/inference/anakin/convert/test_sum_op.cc
paddle/fluid/inference/anakin/convert/test_sum_op.cc
+1
-1
paddle/fluid/inference/anakin/convert/test_transpose_op.cc
paddle/fluid/inference/anakin/convert/test_transpose_op.cc
+2
-2
paddle/fluid/inference/anakin/convert/ut_helper.h
paddle/fluid/inference/anakin/convert/ut_helper.h
+9
-11
paddle/fluid/inference/analysis/ir_pass_manager.cc
paddle/fluid/inference/analysis/ir_pass_manager.cc
+5
-1
paddle/fluid/inference/analysis/ir_passes/CMakeLists.txt
paddle/fluid/inference/analysis/ir_passes/CMakeLists.txt
+2
-2
paddle/fluid/inference/analysis/ir_passes/anakin_subgraph_pass.cc
...luid/inference/analysis/ir_passes/anakin_subgraph_pass.cc
+7
-101
paddle/fluid/inference/analysis/ir_passes/anakin_subgraph_pass.h
...fluid/inference/analysis/ir_passes/anakin_subgraph_pass.h
+1
-0
paddle/fluid/inference/analysis/ir_passes/subgraph_util.cc
paddle/fluid/inference/analysis/ir_passes/subgraph_util.cc
+152
-0
paddle/fluid/inference/analysis/ir_passes/subgraph_util.h
paddle/fluid/inference/analysis/ir_passes/subgraph_util.h
+49
-0
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
...id/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
+47
-178
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.h
...uid/inference/analysis/ir_passes/tensorrt_subgraph_pass.h
+1
-0
paddle/fluid/inference/api/CMakeLists.txt
paddle/fluid/inference/api/CMakeLists.txt
+1
-1
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+4
-1
paddle/fluid/inference/api/details/zero_copy_tensor.cc
paddle/fluid/inference/api/details/zero_copy_tensor.cc
+2
-0
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+1
-1
paddle/fluid/operators/anakin/anakin_engine_op.cc
paddle/fluid/operators/anakin/anakin_engine_op.cc
+1
-2
未找到文件。
CMakeLists.txt
浏览文件 @
f3a2e4b3
...
...
@@ -66,7 +66,6 @@ option(WITH_CONTRIB "Compile the third-party contributation" OFF)
option
(
REPLACE_ENFORCE_GLOG
"Replace PADDLE_ENFORCE with glog/CHECK for better debug."
OFF
)
# TODO(Superjomn) Remove WITH_ANAKIN option if not needed latter.
option
(
WITH_ANAKIN
"Compile with Anakin library"
OFF
)
option
(
WITH_ANAKIN_SUBGRAPH
"Compile with Anakin subgraph library"
OFF
)
option
(
ANAKIN_BUILD_FAT_BIN
"Build anakin cuda fat-bin lib for all device plantform, ignored when WITH_ANAKIN=OFF"
OFF
)
option
(
ANAKIN_BUILD_CROSS_PLANTFORM
"Build anakin lib for any nvidia device plantform. ignored when WITH_ANAKIN=OFF"
ON
)
option
(
WITH_GRPC
"Use grpc as the default rpc framework"
${
WITH_DISTRIBUTE
}
)
...
...
@@ -192,6 +191,7 @@ include(configure) # add paddle env configuration
if
(
WITH_GPU
)
include
(
cuda
)
include
(
tensorrt
)
include
(
anakin_subgraph
)
endif
()
if
(
WITH_MKL OR WITH_MKLML
)
include
(
external/anakin
)
...
...
cmake/anakin_subgraph.cmake
0 → 100644
浏览文件 @
f3a2e4b3
if
(
NOT WITH_GPU
)
return
()
endif
()
set
(
ANAKIN_ROOT
"/usr"
CACHE PATH
"ANAKIN ROOT"
)
find_path
(
ANAKIN_INCLUDE_DIR anakin_config.h
PATHS
${
ANAKIN_ROOT
}
${
ANAKIN_ROOT
}
/include
$ENV{ANAKIN_ROOT} $ENV{ANAKIN_ROOT}/include
NO_DEFAULT_PATH
)
find_library
(
ANAKIN_LIBRARY NAMES libanakin_saber_common.so libanakin.so
PATHS
${
ANAKIN_ROOT
}
$ENV{ANAKIN_ROOT} $ENV{ANAKIN_ROOT}/lib
NO_DEFAULT_PATH
DOC
"Path to ANAKIN library."
)
if
(
ANAKIN_INCLUDE_DIR AND ANAKIN_LIBRARY
)
if
(
WITH_DSO
)
set
(
ANAKIN_FOUND ON
)
endif
(
WITH_DSO
)
else
()
set
(
ANAKIN_FOUND OFF
)
endif
()
if
(
ANAKIN_FOUND
)
message
(
STATUS
"Current ANAKIN header is
${
ANAKIN_INCLUDE_DIR
}
/anakin_config.h. "
)
include_directories
(
${
ANAKIN_ROOT
}
/include
)
include_directories
(
${
ANAKIN_ROOT
}
/include/saber
)
link_directories
(
${
ANAKIN_ROOT
}
)
add_definitions
(
-DPADDLE_WITH_ANAKIN
)
endif
()
cmake/tensorrt.cmake
浏览文件 @
f3a2e4b3
...
...
@@ -33,5 +33,6 @@ if(TENSORRT_FOUND)
message
(
STATUS
"Current TensorRT header is
${
TENSORRT_INCLUDE_DIR
}
/NvInfer.h. "
"Current TensorRT version is v
${
TENSORRT_MAJOR_VERSION
}
. "
)
include_directories
(
${
TENSORRT_INCLUDE_DIR
}
)
link_directories
(
${
TENSORRT_LIBRARY
}
)
add_definitions
(
-DPADDLE_WITH_TENSORRT
)
endif
()
paddle/fluid/inference/CMakeLists.txt
浏览文件 @
f3a2e4b3
...
...
@@ -17,7 +17,7 @@ if (TENSORRT_FOUND)
add_subdirectory
(
tensorrt
)
endif
()
if
(
WITH_ANAKIN_SUBGRAPH
)
if
(
ANAKIN_FOUND
)
add_subdirectory
(
anakin
)
endif
()
...
...
paddle/fluid/inference/anakin/CMakeLists.txt
浏览文件 @
f3a2e4b3
cc_library
(
anakin_engine SRCS engine.cc
)
cc_library
(
anakin_engine SRCS engine.cc
DEPS framework_proto
)
cc_library
(
anakin_op_teller SRCS op_teller.cc DEPS framework_proto
)
target_link_libraries
(
anakin_engine anakin anakin_saber_common
)
cc_test
(
test_anakin_engine SRCS test_anakin_engine.cc DEPS anakin_engine
)
...
...
paddle/fluid/inference/anakin/convert/CMakeLists.txt
浏览文件 @
f3a2e4b3
cc_library
(
anakin_op_converter SRCS fc.cc conv2d.cc conv2d_fusion.cc
elementwise.cc activation.cc pool2d.cc concat.cc split.cc relu.cc softmax.cc batch_norm.cc reshape.cc flatten.cc transpose.cc density_prior_box.cc detection_out.cc scale.cc dropout.cc im2sequence.cc sum.cc DEPS anakin_engine framework_proto scope op_registry
)
cc_test
(
test_anakin_fc SRCS test_fc_op.cc DEPS anakin_op_converter mul_op
)
cc_test
(
test_anakin_conv2d SRCS test_conv2d_op.cc DEPS anakin_op_converter conv_op im2col vol2col depthwise_conv
)
cc_test
(
test_anakin_activation SRCS test_activation_op.cc DEPS activation_op anakin_op_converter
)
cc_test
(
test_anakin_pool2d SRCS test_pool2d_op.cc DEPS anakin_op_converter pool_op pooling
)
cc_test
(
test_anakin_concat SRCS test_concat_op.cc DEPS anakin_op_converter concat_op concat_and_split
)
cc_test
(
test_anakin_split SRCS test_split_op.cc DEPS anakin_op_converter split_op concat_and_split
)
cc_test
(
test_anakin_elementwise SRCS test_elementwise_op.cc DEPS anakin_op_converter elementwise_add_op elementwise_mul_op
)
cc_test
(
test_anakin_relu SRCS test_relu_op.cc DEPS activation_op anakin_op_converter SERIAL
)
cc_test
(
test_anakin_softmax SRCS test_softmax_op.cc DEPS anakin_op_converter softmax_op softmax
)
cc_test
(
test_anakin_reshape SRCS test_reshape_op.cc DEPS anakin_op_converter reshape_op
)
cc_test
(
test_anakin_flatten SRCS test_flatten_op.cc DEPS anakin_op_converter flatten_op reshape_op
)
cc_test
(
test_anakin_transpose SRCS test_transpose_op.cc DEPS anakin_op_converter transpose_op
)
cc_test
(
test_anakin_batch_norm SRCS test_batch_norm_op.cc DEPS anakin_op_converter batch_norm_op
)
cc_test
(
test_anakin_dropout SRCS test_dropout_op.cc DEPS anakin_op_converter dropout_op
)
cc_test
(
test_anakin_im2sequence SRCS test_im2sequence_op.cc DEPS anakin_op_converter im2sequence_op im2col
)
cc_test
(
test_anakin_sum SRCS test_sum_op.cc DEPS anakin_op_converter sum_op selected_rows_functor
)
cc_test
(
test_anakin_fc SRCS test_fc_op.cc DEPS anakin_op_converter mul_op
SERIAL
)
cc_test
(
test_anakin_conv2d SRCS test_conv2d_op.cc DEPS anakin_op_converter conv_op im2col vol2col depthwise_conv
SERIAL
)
cc_test
(
test_anakin_activation SRCS test_activation_op.cc DEPS activation_op anakin_op_converter
SERIAL
)
cc_test
(
test_anakin_pool2d SRCS test_pool2d_op.cc DEPS anakin_op_converter pool_op pooling
SERIAL
)
cc_test
(
test_anakin_concat SRCS test_concat_op.cc DEPS anakin_op_converter concat_op concat_and_split
SERIAL
)
cc_test
(
test_anakin_split SRCS test_split_op.cc DEPS anakin_op_converter split_op concat_and_split
SERIAL
)
cc_test
(
test_anakin_elementwise SRCS test_elementwise_op.cc DEPS anakin_op_converter elementwise_add_op elementwise_mul_op
SERIAL
)
cc_test
(
test_anakin_relu SRCS test_relu_op.cc DEPS activation_op anakin_op_converter SERIAL
SERIAL
)
cc_test
(
test_anakin_softmax SRCS test_softmax_op.cc DEPS anakin_op_converter softmax_op softmax
SERIAL
)
cc_test
(
test_anakin_reshape SRCS test_reshape_op.cc DEPS anakin_op_converter reshape_op
SERIAL
)
cc_test
(
test_anakin_flatten SRCS test_flatten_op.cc DEPS anakin_op_converter flatten_op reshape_op
SERIAL
)
cc_test
(
test_anakin_transpose SRCS test_transpose_op.cc DEPS anakin_op_converter transpose_op
SERIAL
)
cc_test
(
test_anakin_batch_norm SRCS test_batch_norm_op.cc DEPS anakin_op_converter batch_norm_op
SERIAL
)
cc_test
(
test_anakin_dropout SRCS test_dropout_op.cc DEPS anakin_op_converter dropout_op
SERIAL
)
#
cc_test(test_anakin_im2sequence SRCS test_im2sequence_op.cc DEPS anakin_op_converter im2sequence_op im2col)
cc_test
(
test_anakin_sum SRCS test_sum_op.cc DEPS anakin_op_converter sum_op selected_rows_functor
SERIAL
)
paddle/fluid/inference/anakin/convert/test_activation_op.cc
浏览文件 @
f3a2e4b3
...
...
@@ -26,7 +26,7 @@ static void test_activation_op(const std::string &op_type) {
PADDLE_ENFORCE
(
converter
!=
nullptr
);
std
::
unordered_set
<
std
::
string
>
parameters
;
framework
::
Scope
scope
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
AnakinConvertValidation
validator
(
parameters
,
&
scope
);
validator
.
DeclInputVar
(
"act-X"
,
{
10
,
6
,
1
,
1
});
validator
.
DeclOutputVar
(
"act-Out"
,
{
10
,
6
,
1
,
1
});
framework
::
OpDesc
desc
;
...
...
paddle/fluid/inference/anakin/convert/test_batch_norm_op.cc
浏览文件 @
f3a2e4b3
...
...
@@ -24,7 +24,7 @@ TEST(batch_norm_op, test) {
{
"batch_norm_scale"
,
"batch_norm_bias"
,
"batch_norm_mean"
,
"batch_norm_variance"
});
framework
::
Scope
scope
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
AnakinConvertValidation
validator
(
parameters
,
&
scope
);
std
::
vector
<
int
>
param_shape
{
2
};
validator
.
DeclInputVar
(
"batch_norm_X"
,
{
1
,
2
,
5
,
5
});
...
...
paddle/fluid/inference/anakin/convert/test_concat_op.cc
浏览文件 @
f3a2e4b3
...
...
@@ -24,7 +24,7 @@ namespace anakin {
TEST
(
concat_op
,
test
)
{
std
::
unordered_set
<
std
::
string
>
parameters
({
""
});
framework
::
Scope
scope
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
AnakinConvertValidation
validator
(
parameters
,
&
scope
);
validator
.
DeclInputVar
(
"concat_x1"
,
{
1
,
2
,
1
,
1
});
validator
.
DeclInputVar
(
"concat_x2"
,
{
1
,
3
,
1
,
1
});
validator
.
DeclInputVar
(
"concat_x3"
,
{
1
,
1
,
1
,
1
});
...
...
@@ -47,7 +47,7 @@ TEST(concat_op, test) {
TEST
(
concat_op
,
test2
)
{
std
::
unordered_set
<
std
::
string
>
parameters
({
""
});
framework
::
Scope
scope
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
AnakinConvertValidation
validator
(
parameters
,
&
scope
);
validator
.
DeclInputVar
(
"concat_x1"
,
{
1
,
4
});
validator
.
DeclInputVar
(
"concat_x2"
,
{
3
,
4
});
validator
.
DeclInputVar
(
"concat_x3"
,
{
2
,
4
});
...
...
paddle/fluid/inference/anakin/convert/test_conv2d_op.cc
浏览文件 @
f3a2e4b3
...
...
@@ -27,7 +27,7 @@ TEST(conv2d_op, test) {
ASSERT_TRUE
(
conv2d_converter
!=
nullptr
);
std
::
unordered_set
<
std
::
string
>
parameters
({
"conv2d-Y"
});
framework
::
Scope
scope
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
AnakinConvertValidation
validator
(
parameters
,
&
scope
);
validator
.
DeclInputVar
(
"conv2d-X"
,
{
1
,
3
,
3
,
3
});
validator
.
DeclParamVar
(
"conv2d-Y"
,
{
4
,
3
,
1
,
1
});
validator
.
DeclOutputVar
(
"conv2d-Out"
,
{
1
,
4
,
3
,
3
});
...
...
paddle/fluid/inference/anakin/convert/test_dropout_op.cc
浏览文件 @
f3a2e4b3
...
...
@@ -24,7 +24,7 @@ namespace anakin {
TEST
(
dropout_op
,
native
)
{
std
::
unordered_set
<
std
::
string
>
parameters
;
framework
::
Scope
scope
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
AnakinConvertValidation
validator
(
parameters
,
&
scope
);
validator
.
DeclInputVar
(
"x"
,
{
1
,
1
,
2
,
2
});
validator
.
DeclOutputVar
(
"out"
,
{
1
,
1
,
2
,
2
});
validator
.
DeclOutputVar
(
"mask"
,
{
1
,
1
,
2
,
2
});
...
...
paddle/fluid/inference/anakin/convert/test_elementwise_op.cc
浏览文件 @
f3a2e4b3
...
...
@@ -24,7 +24,7 @@ namespace anakin {
static
void
test_elementwise_op
(
const
std
::
string
&
op_type
)
{
std
::
unordered_set
<
std
::
string
>
parameters
;
framework
::
Scope
scope
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
AnakinConvertValidation
validator
(
parameters
,
&
scope
);
validator
.
DeclInputVar
(
"x"
,
{
1
,
1
,
2
,
2
});
validator
.
DeclInputVar
(
"y"
,
{
1
,
1
,
2
,
2
});
validator
.
DeclOutputVar
(
"out"
,
{
1
,
1
,
2
,
2
});
...
...
paddle/fluid/inference/anakin/convert/test_fc_op.cc
浏览文件 @
f3a2e4b3
...
...
@@ -26,7 +26,7 @@ TEST(fc_op, test) {
std
::
unordered_set
<
std
::
string
>
parameters
({
"mul_y"
});
framework
::
Scope
scope
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
AnakinConvertValidation
validator
(
parameters
,
&
scope
);
validator
.
DeclInputVar
(
"mul_x"
,
{
1
,
1
,
2
,
2
});
validator
.
DeclParamVar
(
"mul_y"
,
{
4
,
2
});
validator
.
DeclOutputVar
(
"mul_out"
,
{
1
,
2
});
...
...
paddle/fluid/inference/anakin/convert/test_flatten_op.cc
浏览文件 @
f3a2e4b3
...
...
@@ -26,7 +26,7 @@ TEST(flatten_op, test) {
std
::
unordered_set
<
std
::
string
>
parameters
;
framework
::
Scope
scope
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
AnakinConvertValidation
validator
(
parameters
,
&
scope
);
validator
.
DeclInputVar
(
"flatten-X"
,
{
3
,
10
,
10
,
4
});
validator
.
DeclOutputVar
(
"flatten-Out"
,
{
3
,
400
,
1
,
1
});
framework
::
OpDesc
desc
;
...
...
paddle/fluid/inference/anakin/convert/test_im2sequence_op.cc
浏览文件 @
f3a2e4b3
...
...
@@ -24,7 +24,7 @@ namespace anakin {
TEST
(
im2sequence_op
,
native
)
{
std
::
unordered_set
<
std
::
string
>
parameters
;
framework
::
Scope
scope
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
AnakinConvertValidation
validator
(
parameters
,
&
scope
);
std
::
vector
<
int
>
kernels
=
{
6
,
1
};
std
::
vector
<
int
>
strides
=
{
1
,
1
};
...
...
paddle/fluid/inference/anakin/convert/test_pool2d_op.cc
浏览文件 @
f3a2e4b3
...
...
@@ -27,7 +27,7 @@ void test_pool2d(bool global_pooling, bool ceil_mode,
framework
::
Scope
scope
;
std
::
unordered_set
<
std
::
string
>
parameters
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
AnakinConvertValidation
validator
(
parameters
,
&
scope
);
// The ITensor's Dims should not contain the batch size.
// So, the ITensor's Dims of input and output should be C * H * W.
...
...
@@ -72,7 +72,7 @@ void test_pool2d2(bool global_pooling, bool ceil_mode,
framework
::
Scope
scope
;
std
::
unordered_set
<
std
::
string
>
parameters
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
AnakinConvertValidation
validator
(
parameters
,
&
scope
);
// The ITensor's Dims should not contain the batch size.
// So, the ITensor's Dims of input and output should be C * H * W.
...
...
paddle/fluid/inference/anakin/convert/test_relu_op.cc
浏览文件 @
f3a2e4b3
...
...
@@ -26,7 +26,7 @@ static void test_activation_op(const std::string &op_type) {
PADDLE_ENFORCE
(
converter
!=
nullptr
);
std
::
unordered_set
<
std
::
string
>
parameters
;
framework
::
Scope
scope
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
AnakinConvertValidation
validator
(
parameters
,
&
scope
);
validator
.
DeclInputVar
(
"act-X"
,
{
10
,
6
,
1
,
1
});
validator
.
DeclOutputVar
(
"act-Out"
,
{
10
,
6
,
1
,
1
});
framework
::
OpDesc
desc
;
...
...
paddle/fluid/inference/anakin/convert/test_reshape_op.cc
浏览文件 @
f3a2e4b3
...
...
@@ -25,7 +25,7 @@ TEST(reshape, test) {
ASSERT_TRUE
(
converter
);
framework
::
Scope
scope
;
std
::
unordered_set
<
std
::
string
>
parameters
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
AnakinConvertValidation
validator
(
parameters
,
&
scope
);
// validator.DeclInputVar("reshape-X", {2, 3, 3, 1});
// validator.DeclOutputVar("reshape-Out", {3, 2, 1, 3});
...
...
@@ -48,7 +48,7 @@ TEST(reshape, test) {
TEST
(
reshape
,
test2
)
{
framework
::
Scope
scope
;
std
::
unordered_set
<
std
::
string
>
parameters
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
AnakinConvertValidation
validator
(
parameters
,
&
scope
);
validator
.
DeclInputVar
(
"reshape-X"
,
{
1
,
2
,
4
});
validator
.
DeclOutputVar
(
"reshape-Out"
,
{
1
,
4
,
2
});
...
...
paddle/fluid/inference/anakin/convert/test_softmax_op.cc
浏览文件 @
f3a2e4b3
...
...
@@ -25,10 +25,10 @@ TEST(softmax, test) {
ASSERT_TRUE
(
converter
);
framework
::
Scope
scope
;
std
::
unordered_set
<
std
::
string
>
parameters
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
AnakinConvertValidation
validator
(
parameters
,
&
scope
);
validator
.
DeclInputVar
(
"softmax-X"
,
{
1
,
10
});
validator
.
DeclOutputVar
(
"softmax-Out"
,
{
1
,
10
});
validator
.
DeclInputVar
(
"softmax-X"
,
{
1
,
10
,
2
});
validator
.
DeclOutputVar
(
"softmax-Out"
,
{
1
,
10
,
2
});
framework
::
OpDesc
desc
;
desc
.
SetType
(
"softmax"
);
...
...
paddle/fluid/inference/anakin/convert/test_split_op.cc
浏览文件 @
f3a2e4b3
...
...
@@ -26,7 +26,7 @@ void AnakinSliceTest(const std::vector<int> &in_shape,
const
std
::
vector
<
int
>
&
sections
)
{
std
::
unordered_set
<
std
::
string
>
parameters
({
""
});
framework
::
Scope
scope
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
AnakinConvertValidation
validator
(
parameters
,
&
scope
);
validator
.
DeclInputVar
(
"split_input"
,
in_shape
);
std
::
vector
<
std
::
string
>
output_vars
;
...
...
paddle/fluid/inference/anakin/convert/test_sum_op.cc
浏览文件 @
f3a2e4b3
...
...
@@ -25,7 +25,7 @@ namespace anakin {
TEST
(
sum
,
native
)
{
std
::
unordered_set
<
std
::
string
>
parameters
;
framework
::
Scope
scope
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
AnakinConvertValidation
validator
(
parameters
,
&
scope
);
validator
.
DeclInputVar
(
"sum_x1"
,
{
1
,
2
,
1
,
2
});
validator
.
DeclInputVar
(
"sum_x2"
,
{
1
,
2
,
1
,
2
});
validator
.
DeclOutputVar
(
"sum_out"
,
{
1
,
2
,
1
,
2
});
...
...
paddle/fluid/inference/anakin/convert/test_transpose_op.cc
浏览文件 @
f3a2e4b3
...
...
@@ -25,7 +25,7 @@ TEST(transpose_op, test) {
ASSERT_TRUE
(
converter
!=
nullptr
);
std
::
unordered_set
<
std
::
string
>
parameters
;
framework
::
Scope
scope
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
AnakinConvertValidation
validator
(
parameters
,
&
scope
);
validator
.
DeclInputVar
(
"transpose-X"
,
{
2
,
3
,
4
,
5
});
validator
.
DeclOutputVar
(
"transpose-Out"
,
{
4
,
2
,
5
,
3
});
...
...
@@ -47,7 +47,7 @@ TEST(transpose_op, test) {
TEST
(
transpose_op
,
test2
)
{
std
::
unordered_set
<
std
::
string
>
parameters
;
framework
::
Scope
scope
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
AnakinConvertValidation
validator
(
parameters
,
&
scope
);
validator
.
DeclInputVar
(
"transpose-X"
,
{
3
,
4
,
5
});
validator
.
DeclOutputVar
(
"transpose-Out"
,
{
3
,
5
,
4
});
...
...
paddle/fluid/inference/anakin/convert/ut_helper.h
浏览文件 @
f3a2e4b3
...
...
@@ -84,7 +84,7 @@ class AnakinConvertValidation {
AnakinConvertValidation
()
=
delete
;
AnakinConvertValidation
(
const
std
::
unordered_set
<
std
::
string
>&
parameters
,
framework
::
Scope
&
scope
)
framework
::
Scope
*
scope
)
:
parameters_
(
parameters
),
scope_
(
scope
),
place_
(
0
)
{
PADDLE_ENFORCE_EQ
(
cudaStreamCreate
(
&
stream_
),
0
);
engine_
.
reset
(
new
AnakinEngine
<
NV
,
Precision
::
FP32
>
(
true
));
...
...
@@ -108,7 +108,7 @@ class AnakinConvertValidation {
void
DeclVar
(
const
std
::
string
&
name
,
const
std
::
vector
<
int
>
dim_vec
)
{
platform
::
CUDADeviceContext
ctx
(
place_
);
auto
*
x
=
scope_
.
Var
(
name
);
auto
*
x
=
scope_
->
Var
(
name
);
auto
*
x_tensor
=
x
->
GetMutable
<
framework
::
LoDTensor
>
();
x_tensor
->
Resize
(
framework
::
make_ddim
(
dim_vec
));
RandomizeTensor
(
x_tensor
,
place_
,
ctx
);
...
...
@@ -120,13 +120,13 @@ class AnakinConvertValidation {
// should init anakin engine here.
Singleton
<
AnakinOpConverter
>::
Global
().
ConvertOp
(
desc
,
parameters_
,
scope_
,
engine_
.
get
(),
true
/*test_mode*/
);
desc
,
parameters_
,
*
scope_
,
engine_
.
get
(),
true
/*test_mode*/
);
engine_
->
Freeze
();
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
temp_max_input_shape
;
for
(
const
auto
&
input
:
op_desc_
->
InputArgumentNames
())
{
if
(
parameters_
.
count
(
input
))
continue
;
auto
&
t
=
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
scope_
,
auto
&
t
=
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
*
scope_
,
input
);
auto
t_shape
=
framework
::
vectorize2int
(
t
.
dims
());
while
(
t_shape
.
size
()
<
4
)
{
...
...
@@ -147,14 +147,14 @@ class AnakinConvertValidation {
std
::
unordered_set
<
std
::
string
>
neglected_output
=
{})
{
// Execute Fluid Op
platform
::
CUDADeviceContext
ctx
(
place_
);
op_
->
Run
(
scope_
,
place_
);
op_
->
Run
(
*
scope_
,
place_
);
// std::vector<framework::LoDTensor> input_vector;
// std::vector<framework::LoDTensor> output_vector;
std
::
map
<
std
::
string
,
framework
::
LoDTensor
*>
inputs
;
for
(
const
auto
&
input
:
op_desc_
->
InputArgumentNames
())
{
if
(
parameters_
.
count
(
input
))
continue
;
auto
*
var
=
scope_
.
FindVar
(
input
);
auto
*
var
=
scope_
->
FindVar
(
input
);
auto
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
inputs
.
insert
({
input
,
tensor
});
}
...
...
@@ -164,7 +164,7 @@ class AnakinConvertValidation {
for
(
const
auto
&
output
:
op_desc_
->
OutputArgumentNames
())
{
if
(
neglected_output
.
count
(
output
))
continue
;
std
::
vector
<
float
>
fluid_out
;
auto
*
var
=
scope_
.
FindVar
(
output
);
auto
*
var
=
scope_
->
FindVar
(
output
);
auto
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
TensorToVector
(
*
tensor
,
ctx
,
&
fluid_out
);
fluid_outputs
.
push_back
(
fluid_out
);
...
...
@@ -177,7 +177,7 @@ class AnakinConvertValidation {
for
(
const
auto
&
output
:
op_desc_
->
OutputArgumentNames
())
{
if
(
neglected_output
.
count
(
output
))
continue
;
std
::
vector
<
float
>
anakin_out
;
auto
*
var
=
scope_
.
FindVar
(
output
);
auto
*
var
=
scope_
->
FindVar
(
output
);
auto
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
TensorToVector
(
*
tensor
,
ctx
,
&
anakin_out
);
...
...
@@ -189,15 +189,13 @@ class AnakinConvertValidation {
}
}
framework
::
Scope
&
scope
()
{
return
scope_
;
}
private:
std
::
unique_ptr
<
AnakinNvEngineT
>
engine_
{
nullptr
};
cudaStream_t
stream_
;
std
::
unique_ptr
<
framework
::
OperatorBase
>
op_
;
std
::
unique_ptr
<
framework
::
OpDesc
>
op_desc_
;
const
std
::
unordered_set
<
std
::
string
>&
parameters_
;
framework
::
Scope
&
scope_
;
framework
::
Scope
*
scope_
;
platform
::
CUDAPlace
place_
;
};
...
...
paddle/fluid/inference/analysis/ir_pass_manager.cc
浏览文件 @
f3a2e4b3
...
...
@@ -97,7 +97,11 @@ void IRPassManager::CreatePasses(Argument *argument,
bool
use_static_engine
=
argument
->
tensorrt_use_static_engine
();
bool
model_from_memory
=
argument
->
model_from_memory
();
if
((
!
model_from_memory
&&
use_static_engine
))
{
bool
int8_valid
=
!
(
model_from_memory
&&
enable_int8
);
PADDLE_ENFORCE
(
int8_valid
,
"TRT INT8 Now don't support model load from memory."
);
if
((
!
model_from_memory
&&
use_static_engine
)
||
enable_int8
)
{
std
::
string
model_opt_cache_dir
=
argument
->
Has
(
"model_dir"
)
?
argument
->
model_dir
()
...
...
paddle/fluid/inference/analysis/ir_passes/CMakeLists.txt
浏览文件 @
f3a2e4b3
cc_library
(
subgraph_detector SRCS subgraph_detector.cc DEPS proto_desc
)
cc_library
(
subgraph_detector SRCS subgraph_detector.cc
subgraph_util.cc
DEPS proto_desc
)
if
(
WITH_TESTING
)
add_dependencies
(
subgraph_detector gtest
)
endif
()
...
...
@@ -15,7 +15,7 @@ if (WITH_GPU AND TENSORRT_FOUND)
set
(
INFER_IR_PASSES
${
INFER_IR_PASSES
}
tensorrt_subgraph_pass CACHE INTERNAL
""
)
endif
()
if
(
WITH_ANAKIN_SUBGRAPH
)
if
(
ANAKIN_FOUND
)
cc_library
(
anakin_subgraph_pass SRCS anakin_subgraph_pass.cc DEPS subgraph_detector anakin_op_teller
)
set
(
analysis_deps
${
analysis_deps
}
...
...
paddle/fluid/inference/analysis/ir_passes/anakin_subgraph_pass.cc
浏览文件 @
f3a2e4b3
...
...
@@ -35,9 +35,6 @@ namespace analysis {
using
framework
::
ir
::
Node
;
std
::
vector
<
std
::
string
>
ExtractAnakinParameters
(
const
std
::
unordered_set
<
Node
*>
&
nodes
);
std
::
unique_ptr
<
framework
::
ir
::
Graph
>
analysis
::
AnakinSubgraphPass
::
ApplyImpl
(
std
::
unique_ptr
<
framework
::
ir
::
Graph
>
graph
)
const
{
framework
::
ir
::
FusePassBase
::
Init
(
"anakin_subgraph_pass"
,
graph
.
get
());
...
...
@@ -51,11 +48,10 @@ std::unique_ptr<framework::ir::Graph> analysis::AnakinSubgraphPass::ApplyImpl(
fuser
();
std
::
vector
<
std
::
string
>
graph_param_names
=
Extract
Anakin
Parameters
(
graph
->
Nodes
());
ExtractParameters
(
graph
->
Nodes
());
// those parameter already exist in anakin, and should not have another copy
// in
// fluid.
// in fluid.
std
::
vector
<
std
::
string
>
repetitive_params
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
...
...
@@ -157,74 +153,13 @@ void AnakinSubgraphPass::CreateAnakinOp(
op_desc
->
SetType
(
"anakin_engine"
);
std
::
unordered_map
<
std
::
string
,
std
::
string
>
output_name_map
;
auto
&
subgraph_nodes
=
*
Agent
(
node
).
subgraph
();
// The following procedure is used to rename all the intermediate
// variables and the output variables of the subgraph.
// Why we do this?
// During the transition from fluid OP to anakin OP, we map
// the input and output Tensor(fluid data structure) of fluid OP
// to the corresponding ITensor (trt data structure) through the
// Tensor name. When we set up ITensor for an variable, we must
// ensure that it has not been set before.
// If there is variable in the fluid graph, which is not only the
// input of a OP, but also the output of a Op, there will be problems.
// So we have to rename the variable in the subgraph to make sure
// it is either an OP's input or an OP's output.
auto
&
subgraph_nodes
=
*
Agent
(
node
).
subgraph
();
for
(
size_t
index
=
0
;
index
<
block_desc
.
OpSize
();
++
index
)
{
framework
::
proto
::
OpDesc
*
op
=
block_desc
.
Op
(
index
)
->
Proto
();
auto
correspond_node
=
subgraph_nodes
[
index
];
PADDLE_ENFORCE_EQ
(
correspond_node
->
Name
(),
op
->
type
());
std
::
unordered_map
<
std
::
string
,
size_t
>
var2id
;
for
(
auto
*
in_var
:
correspond_node
->
inputs
)
{
var2id
[
in_var
->
Name
()]
=
in_var
->
id
();
}
// rename for the input variables of op inside subgraph
for
(
int
i
=
0
;
i
<
op
->
inputs_size
();
i
++
)
{
// one input
auto
*
in_var
=
op
->
mutable_inputs
(
i
);
std
::
vector
<
std
::
string
>
replaced_names
;
for
(
int
k
=
0
;
k
<
in_var
->
arguments_size
();
k
++
)
{
// all the arguments
std
::
string
arg_value
=
in_var
->
arguments
(
k
);
std
::
string
arg_value_with_id
=
arg_value
+
std
::
to_string
(
var2id
[
arg_value
]);
if
(
input_names_with_id
.
count
(
arg_value_with_id
))
{
replaced_names
.
push_back
(
arg_value
);
}
else
{
replaced_names
.
push_back
(
arg_value_with_id
);
}
}
in_var
->
clear_arguments
();
for
(
size_t
k
=
0
;
k
<
replaced_names
.
size
();
k
++
)
{
in_var
->
add_arguments
(
replaced_names
[
k
]);
}
}
var2id
.
clear
();
for
(
auto
out_var
:
correspond_node
->
outputs
)
{
var2id
[
out_var
->
Name
()]
=
out_var
->
id
();
}
// rename for the output variables of op inside subgraph
for
(
int
i
=
0
;
i
<
op
->
outputs_size
();
i
++
)
{
framework
::
proto
::
OpDesc_Var
*
out_var
=
op
->
mutable_outputs
(
i
);
std
::
vector
<
std
::
string
>
replaced_names
;
for
(
int
k
=
0
;
k
<
out_var
->
arguments_size
();
k
++
)
{
std
::
string
arg_value
=
out_var
->
arguments
(
k
);
std
::
string
arg_value_with_id
=
arg_value
+
std
::
to_string
(
var2id
[
arg_value
]);
if
(
output_names_with_id
.
count
(
arg_value_with_id
))
{
output_name_map
[
arg_value
]
=
arg_value_with_id
;
}
replaced_names
.
push_back
(
arg_value_with_id
);
}
out_var
->
clear_arguments
();
for
(
size_t
k
=
0
;
k
<
replaced_names
.
size
();
k
++
)
{
out_var
->
add_arguments
(
replaced_names
[
k
]);
}
}
}
RenameAndGetOutputs
(
subgraph_nodes
,
&
block_desc
,
input_names_with_id
,
&
output_names_with_id
,
&
output_names
,
&
output_name_map
,
false
);
// When anakin engine runs at the end of the operation,
// output_mapping help us copy the data from the renamed ITensor
...
...
@@ -249,8 +184,7 @@ void AnakinSubgraphPass::CreateAnakinOp(
SetAttr
(
op_desc
->
Proto
(),
"subgraph"
,
block_desc
.
Proto
()
->
SerializeAsString
());
// Set attrs
SetAttr
(
op_desc
->
Proto
(),
"parameters"
,
ExtractAnakinParameters
(
graph
->
Nodes
()));
SetAttr
(
op_desc
->
Proto
(),
"parameters"
,
params
);
SetAttr
(
op_desc
->
Proto
(),
"output_name_mapping"
,
output_mapping
);
int
predictor_id
=
Get
<
int
>
(
"predictor_id"
);
auto
engine_key
=
GenerateAnakinEngineKey
(
...
...
@@ -277,34 +211,6 @@ void AnakinSubgraphPass::CreateAnakinOp(
param_set
,
output_mapping
,
anakin_engine
);
}
std
::
vector
<
std
::
string
>
ExtractAnakinParameters
(
const
std
::
unordered_set
<
Node
*>
&
nodes
)
{
// We can judge whether a variable is a parameter by
// its presistable property, but sometimes the presistable
// of the feed op output is true, so we have to identify it.
std
::
vector
<
std
::
string
>
feed_outputs
;
for
(
const
auto
&
node
:
nodes
)
{
if
(
!
node
->
IsOp
())
continue
;
std
::
string
op_type
=
node
->
Op
()
->
Type
();
if
(
op_type
==
"feed"
||
op_type
==
"fetch"
)
{
std
::
vector
<
std
::
string
>
output_names
=
node
->
Op
()
->
OutputArgumentNames
();
std
::
copy
(
output_names
.
begin
(),
output_names
.
end
(),
std
::
back_inserter
(
feed_outputs
));
}
}
std
::
vector
<
std
::
string
>
parameters
;
for
(
const
auto
&
node
:
nodes
)
{
if
(
!
node
->
IsVar
())
continue
;
if
(
node
->
Var
()
->
Persistable
()
&&
std
::
find
(
feed_outputs
.
begin
(),
feed_outputs
.
end
(),
node
->
Name
())
==
feed_outputs
.
end
())
{
parameters
.
push_back
(
node
->
Name
());
}
}
return
parameters
;
}
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
...
...
paddle/fluid/inference/analysis/ir_passes/anakin_subgraph_pass.h
浏览文件 @
f3a2e4b3
...
...
@@ -19,6 +19,7 @@
#include <vector>
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/anakin/engine.h"
#include "paddle/fluid/inference/analysis/ir_passes/subgraph_util.h"
using
anakin
::
Precision
;
using
anakin
::
saber
::
NV
;
...
...
paddle/fluid/inference/analysis/ir_passes/subgraph_util.cc
0 → 100644
浏览文件 @
f3a2e4b3
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
/*
* This file defines the the class to partition a graph.
*/
#include "paddle/fluid/inference/analysis/ir_passes/subgraph_util.h"
#include <algorithm>
#include <string>
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
using
framework
::
ir
::
Node
;
std
::
vector
<
std
::
string
>
ExtractParameters
(
const
std
::
unordered_set
<
Node
*>
&
nodes
)
{
// We can judge whether a variable is a parameter by
// its presistable property, but sometimes the presistable
// of the feed op output is true, so we have to identify it.
std
::
vector
<
std
::
string
>
feed_outputs
;
for
(
const
auto
&
node
:
nodes
)
{
if
(
!
node
->
IsOp
())
continue
;
std
::
string
op_type
=
node
->
Op
()
->
Type
();
if
(
op_type
==
"feed"
||
op_type
==
"fetch"
)
{
std
::
vector
<
std
::
string
>
output_names
=
node
->
Op
()
->
OutputArgumentNames
();
std
::
copy
(
output_names
.
begin
(),
output_names
.
end
(),
std
::
back_inserter
(
feed_outputs
));
}
}
std
::
vector
<
std
::
string
>
parameters
;
for
(
const
auto
&
node
:
nodes
)
{
if
(
!
node
->
IsVar
())
continue
;
if
(
node
->
Var
()
->
Persistable
()
&&
std
::
find
(
feed_outputs
.
begin
(),
feed_outputs
.
end
(),
node
->
Name
())
==
feed_outputs
.
end
())
{
parameters
.
push_back
(
node
->
Name
());
}
}
return
parameters
;
}
void
RenameAndGetOutputs
(
const
std
::
vector
<
framework
::
ir
::
Node
*>
&
subgraph_nodes
,
framework
::
BlockDesc
*
block_desc
,
const
std
::
set
<
std
::
string
>
&
input_names_with_id
,
std
::
set
<
std
::
string
>
*
output_names_with_id
,
std
::
set
<
std
::
string
>
*
output_names
,
std
::
unordered_map
<
std
::
string
,
std
::
string
>
*
output_name_map
,
bool
is_trt
)
{
//// In the normal case, the paddle-trt exists bug when runing the googlenet.
// When there are more than two convolutions of 1 * 1 with the same input, the
// paddle-tensorrt will do the merging optimization, which fuse those conv
// into one conv, and then trigger bug. So, We should use strategy to avoid
// this optimization for the time being. This bug will be fixed in the future.
std
::
unordered_map
<
std
::
string
/*name*/
,
int
/*ITensor_quote_num*/
>
same_hierarchy_conv2d_num_map
;
for
(
size_t
index
=
0
;
index
<
block_desc
->
OpSize
();
++
index
)
{
framework
::
proto
::
OpDesc
*
op
=
block_desc
->
Op
(
index
)
->
Proto
();
framework
::
OpDesc
op_desc
(
*
op
,
nullptr
);
auto
correspond_node
=
subgraph_nodes
[
index
];
PADDLE_ENFORCE_EQ
(
correspond_node
->
Name
(),
op
->
type
());
std
::
unordered_map
<
std
::
string
,
size_t
>
var2id
;
std
::
unordered_map
<
std
::
string
,
framework
::
ir
::
Node
*>
in_vars
;
for
(
auto
*
in_var
:
correspond_node
->
inputs
)
{
var2id
[
in_var
->
Name
()]
=
in_var
->
id
();
in_vars
[
in_var
->
Name
()]
=
in_var
;
}
// rename for the input variables of op inside subgraph
for
(
int
i
=
0
;
i
<
op
->
inputs_size
();
i
++
)
{
// one input
auto
*
in_var
=
op
->
mutable_inputs
(
i
);
std
::
vector
<
std
::
string
>
replaced_names
;
for
(
int
k
=
0
;
k
<
in_var
->
arguments_size
();
k
++
)
{
// all the arguments
std
::
string
arg_value
=
in_var
->
arguments
(
k
);
std
::
string
arg_value_with_id
=
arg_value
+
std
::
to_string
(
var2id
[
arg_value
]);
if
(
input_names_with_id
.
count
(
arg_value_with_id
))
{
replaced_names
.
push_back
(
arg_value
);
}
else
{
replaced_names
.
push_back
(
arg_value_with_id
);
}
}
in_var
->
clear_arguments
();
for
(
size_t
k
=
0
;
k
<
replaced_names
.
size
();
k
++
)
{
in_var
->
add_arguments
(
replaced_names
[
k
]);
}
}
var2id
.
clear
();
for
(
auto
out_var
:
correspond_node
->
outputs
)
{
var2id
[
out_var
->
Name
()]
=
out_var
->
id
();
}
if
(
op_desc
.
Type
()
==
"conv2d"
&&
is_trt
)
{
auto
input_var_name
=
op_desc
.
Input
(
"Input"
).
front
();
auto
filter_var_name
=
op_desc
.
Input
(
"Filter"
).
front
();
auto
out_var_name
=
op_desc
.
Output
(
"Output"
).
front
();
auto
filter_shape
=
in_vars
[
filter_var_name
]
->
Var
()
->
GetShape
();
const
std
::
vector
<
int
>
strides
=
boost
::
get
<
std
::
vector
<
int
>>
(
op_desc
.
GetAttr
(
"strides"
));
const
std
::
vector
<
int
>
paddings
=
boost
::
get
<
std
::
vector
<
int
>>
(
op_desc
.
GetAttr
(
"paddings"
));
if
(
same_hierarchy_conv2d_num_map
[
input_var_name
]
>
0
)
{
(
*
output_names_with_id
)
.
insert
(
out_var_name
+
std
::
to_string
(
var2id
[
out_var_name
]));
(
*
output_names
).
insert
(
out_var_name
);
}
else
if
(
filter_shape
[
2
]
==
1
&&
filter_shape
[
3
]
==
1
&&
strides
[
0
]
==
1
&&
strides
[
1
]
==
1
&&
paddings
[
0
]
==
0
&&
paddings
[
1
]
==
0
)
{
same_hierarchy_conv2d_num_map
[
input_var_name
]
+=
1
;
}
}
// rename for the output variables of op inside subgraph
for
(
int
i
=
0
;
i
<
op
->
outputs_size
();
i
++
)
{
framework
::
proto
::
OpDesc_Var
*
out_var
=
op
->
mutable_outputs
(
i
);
std
::
vector
<
std
::
string
>
replaced_names
;
for
(
int
k
=
0
;
k
<
out_var
->
arguments_size
();
k
++
)
{
std
::
string
arg_value
=
out_var
->
arguments
(
k
);
std
::
string
arg_value_with_id
=
arg_value
+
std
::
to_string
(
var2id
[
arg_value
]);
if
(
output_names_with_id
->
count
(
arg_value_with_id
))
{
(
*
output_name_map
)[
arg_value
]
=
arg_value_with_id
;
}
replaced_names
.
push_back
(
arg_value_with_id
);
}
out_var
->
clear_arguments
();
for
(
size_t
k
=
0
;
k
<
replaced_names
.
size
();
k
++
)
{
out_var
->
add_arguments
(
replaced_names
[
k
]);
}
}
}
}
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/analysis/ir_passes/subgraph_util.h
0 → 100644
浏览文件 @
f3a2e4b3
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
/*
* This file defines the the class to partition a graph.
*/
#pragma once
#include <set>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_traits.h"
#include "paddle/fluid/framework/ir/node.h"
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
using
framework
::
ir
::
Node
;
std
::
vector
<
std
::
string
>
ExtractParameters
(
const
std
::
unordered_set
<
Node
*>
&
nodes
);
void
RenameAndGetOutputs
(
const
std
::
vector
<
framework
::
ir
::
Node
*>
&
subgraph_nodes
,
framework
::
BlockDesc
*
block_desc
,
const
std
::
set
<
std
::
string
>
&
input_names_with_id
,
std
::
set
<
std
::
string
>
*
output_names_with_id
,
std
::
set
<
std
::
string
>
*
output_names
,
std
::
unordered_map
<
std
::
string
,
std
::
string
>
*
output_name_map
,
bool
is_trt
=
true
);
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
浏览文件 @
f3a2e4b3
...
...
@@ -31,17 +31,6 @@ namespace analysis {
using
framework
::
ir
::
Node
;
std
::
vector
<
std
::
string
>
ExtractParameters
(
const
std
::
unordered_set
<
Node
*>
&
nodes
);
void
RenameAndGetOutputs
(
const
std
::
vector
<
framework
::
ir
::
Node
*>
&
subgraph_nodes
,
framework
::
BlockDesc
*
block_desc
,
const
std
::
set
<
std
::
string
>
&
input_names_with_id
,
std
::
set
<
std
::
string
>
*
output_names_with_id
,
std
::
set
<
std
::
string
>
*
output_names
,
std
::
unordered_map
<
std
::
string
,
std
::
string
>
*
output_name_map
);
std
::
unique_ptr
<
framework
::
ir
::
Graph
>
analysis
::
TensorRtSubgraphPass
::
ApplyImpl
(
std
::
unique_ptr
<
framework
::
ir
::
Graph
>
graph
)
const
{
framework
::
ir
::
FusePassBase
::
Init
(
"tensorrt_subgraph_pass"
,
graph
.
get
());
...
...
@@ -217,7 +206,7 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
// Get "" when there is no cached calibration table data.
bool
load_from_memory
=
Get
<
bool
>
(
"model_from_memory"
);
std
::
string
calibration_data
=
""
;
if
(
!
load_from_memory
&&
use_static_engine
)
{
if
(
enable_int8
)
{
calibration_data
=
GetTrtCalibTableData
(
Get
<
std
::
string
>
(
"model_opt_cache_dir"
),
engine_key
,
enable_int8
);
}
...
...
@@ -226,13 +215,7 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
SetAttr
(
op_desc
->
Proto
(),
"enable_int8"
,
enable_int8
);
SetAttr
(
op_desc
->
Proto
(),
"engine_key"
,
engine_key
);
std
::
string
trt_engine_serialized_data
=
""
;
if
(
load_from_memory
)
{
std
::
map
<
std
::
string
,
std
::
string
>
engine_opt_info
=
Get
<
std
::
map
<
std
::
string
,
std
::
string
>>
(
"engine_opt_info"
);
if
(
engine_opt_info
.
count
(
engine_key
))
{
trt_engine_serialized_data
=
engine_opt_info
[
engine_key
];
}
}
SetAttr
(
op_desc
->
Proto
(),
"engine_serialized_data"
,
trt_engine_serialized_data
);
...
...
@@ -240,176 +223,62 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
if
(
enable_int8
&&
calibration_data
.
size
()
!=
0
)
{
calibrator
.
reset
(
new
tensorrt
::
TRTInt8Calibrator
(
calibration_data
));
}
// When in int8 mode and calibration_mode, the program just produce the
// calibration table data.
bool
calibration_mode
=
(
enable_int8
&&
calibration_data
.
size
()
==
0
);
if
(
!
calibration_mode
&&
use_static_engine
&&
trt_engine_serialized_data
.
empty
())
{
std
::
copy
(
params
.
begin
(),
params
.
end
(),
std
::
back_inserter
(
*
repetitive_params
));
if
(
use_static_engine
&&
!
load_from_memory
)
{
trt_engine_serialized_data
=
GetTrtEngineSerializedData
(
Get
<
std
::
string
>
(
"model_opt_cache_dir"
),
engine_key
);
}
if
(
calibration_mode
)
{
// calibraion mode means generate int8 calibration table data process.
return
;
}
if
(
trt_engine_serialized_data
.
empty
())
{
LOG
(
INFO
)
<<
"Prepare TRT engine (Optimize model structure, Select OP "
"kernel etc). This process may cost a lot of time."
;
std
::
unique_ptr
<
tensorrt
::
TensorRTEngine
>
trt_engine
(
new
tensorrt
::
TensorRTEngine
(
Get
<
int
>
(
"max_batch_size"
),
Get
<
int
>
(
"workspace_size"
),
enable_int8
,
calibrator
.
get
(),
Get
<
int
>
(
"gpu_device_id"
)));
auto
*
scope
=
param_scope
();
framework
::
BlockDesc
block_desc_temp
(
nullptr
,
block_desc
.
Proto
());
std
::
unordered_set
<
std
::
string
>
param_set
(
params
.
begin
(),
params
.
end
());
inference
::
Singleton
<
inference
::
tensorrt
::
OpConverter
>::
Global
()
.
ConvertBlockToTRTEngine
(
&
block_desc_temp
,
*
scope
,
std
::
vector
<
std
::
string
>
(
input_names
.
begin
(),
input_names
.
end
()),
param_set
,
output_mapping
,
trt_engine
.
get
());
nvinfer1
::
IHostMemory
*
serialized_engine_data
=
trt_engine
->
Serialize
();
trt_engine_serialized_data
=
std
::
string
((
const
char
*
)
serialized_engine_data
->
data
(),
serialized_engine_data
->
size
());
if
(
use_static_engine
&&
!
load_from_memory
)
{
SaveTrtEngineSerializedDataToFile
(
GetTrtEngineSerializedPath
(
Get
<
std
::
string
>
(
"model_opt_cache_dir"
),
engine_key
),
trt_engine_serialized_data
);
}
}
else
{
std
::
copy
(
params
.
begin
(),
params
.
end
(),
std
::
back_inserter
(
*
repetitive_params
));
bool
need_serialize
=
(
use_static_engine
&&
!
load_from_memory
);
if
(
need_serialize
)
{
trt_engine_serialized_data
=
GetTrtEngineSerializedData
(
Get
<
std
::
string
>
(
"model_opt_cache_dir"
),
engine_key
);
// we can load the engine info serialized before from the disk.
if
(
!
trt_engine_serialized_data
.
empty
())
{
SetAttr
(
op_desc
->
Proto
(),
"engine_serialized_data"
,
trt_engine_serialized_data
);
LOG
(
INFO
)
<<
"Load TRT Optimized Info from "
<<
GetTrtEngineSerializedPath
(
Get
<
std
::
string
>
(
"model_opt_cache_dir"
),
engine_key
);
}
SetAttr
(
op_desc
->
Proto
(),
"engine_serialized_data"
,
trt_engine_serialized_data
);
}
}
std
::
vector
<
std
::
string
>
ExtractParameters
(
const
std
::
unordered_set
<
Node
*>
&
nodes
)
{
// We can judge whether a variable is a parameter by
// its presistable property, but sometimes the presistable
// of the feed op output is true, so we have to identify it.
std
::
vector
<
std
::
string
>
feed_outputs
;
for
(
const
auto
&
node
:
nodes
)
{
if
(
!
node
->
IsOp
())
continue
;
std
::
string
op_type
=
node
->
Op
()
->
Type
();
if
(
op_type
==
"feed"
||
op_type
==
"fetch"
)
{
std
::
vector
<
std
::
string
>
output_names
=
node
->
Op
()
->
OutputArgumentNames
();
std
::
copy
(
output_names
.
begin
(),
output_names
.
end
(),
std
::
back_inserter
(
feed_outputs
));
return
;
}
}
std
::
vector
<
std
::
string
>
parameters
;
for
(
const
auto
&
node
:
nodes
)
{
if
(
!
node
->
IsVar
())
continue
;
if
(
node
->
Var
()
->
Persistable
()
&&
std
::
find
(
feed_outputs
.
begin
(),
feed_outputs
.
end
(),
node
->
Name
())
==
feed_outputs
.
end
())
{
parameters
.
push_back
(
node
->
Name
());
}
}
return
parameters
;
}
void
RenameAndGetOutputs
(
const
std
::
vector
<
framework
::
ir
::
Node
*>
&
subgraph_nodes
,
framework
::
BlockDesc
*
block_desc
,
const
std
::
set
<
std
::
string
>
&
input_names_with_id
,
std
::
set
<
std
::
string
>
*
output_names_with_id
,
std
::
set
<
std
::
string
>
*
output_names
,
std
::
unordered_map
<
std
::
string
,
std
::
string
>
*
output_name_map
)
{
//// In the normal case, the paddle-trt exists bug when runing the googlenet.
// When there are more than two convolutions of 1 * 1 with the same input, the
// paddle-tensorrt will do the merging optimization, which fuse those conv
// into one conv, and then trigger bug. So, We should use strategy to avoid
// this optimization for the time being. This bug will be fixed in the future.
std
::
unordered_map
<
std
::
string
/*name*/
,
int
/*ITensor_quote_num*/
>
same_hierarchy_conv2d_num_map
;
for
(
size_t
index
=
0
;
index
<
block_desc
->
OpSize
();
++
index
)
{
framework
::
proto
::
OpDesc
*
op
=
block_desc
->
Op
(
index
)
->
Proto
();
framework
::
OpDesc
op_desc
(
*
op
,
nullptr
);
auto
correspond_node
=
subgraph_nodes
[
index
];
PADDLE_ENFORCE_EQ
(
correspond_node
->
Name
(),
op
->
type
());
std
::
unordered_map
<
std
::
string
,
size_t
>
var2id
;
std
::
unordered_map
<
std
::
string
,
framework
::
ir
::
Node
*>
in_vars
;
for
(
auto
*
in_var
:
correspond_node
->
inputs
)
{
var2id
[
in_var
->
Name
()]
=
in_var
->
id
();
in_vars
[
in_var
->
Name
()]
=
in_var
;
}
// rename for the input variables of op inside subgraph
for
(
int
i
=
0
;
i
<
op
->
inputs_size
();
i
++
)
{
// one input
auto
*
in_var
=
op
->
mutable_inputs
(
i
);
std
::
vector
<
std
::
string
>
replaced_names
;
for
(
int
k
=
0
;
k
<
in_var
->
arguments_size
();
k
++
)
{
// all the arguments
std
::
string
arg_value
=
in_var
->
arguments
(
k
);
std
::
string
arg_value_with_id
=
arg_value
+
std
::
to_string
(
var2id
[
arg_value
]);
if
(
input_names_with_id
.
count
(
arg_value_with_id
))
{
replaced_names
.
push_back
(
arg_value
);
}
else
{
replaced_names
.
push_back
(
arg_value_with_id
);
}
}
in_var
->
clear_arguments
();
for
(
size_t
k
=
0
;
k
<
replaced_names
.
size
();
k
++
)
{
in_var
->
add_arguments
(
replaced_names
[
k
]);
}
}
var2id
.
clear
();
for
(
auto
out_var
:
correspond_node
->
outputs
)
{
var2id
[
out_var
->
Name
()]
=
out_var
->
id
();
}
if
(
op_desc
.
Type
()
==
"conv2d"
)
{
auto
input_var_name
=
op_desc
.
Input
(
"Input"
).
front
();
auto
filter_var_name
=
op_desc
.
Input
(
"Filter"
).
front
();
auto
out_var_name
=
op_desc
.
Output
(
"Output"
).
front
();
auto
filter_shape
=
in_vars
[
filter_var_name
]
->
Var
()
->
GetShape
();
const
std
::
vector
<
int
>
strides
=
boost
::
get
<
std
::
vector
<
int
>>
(
op_desc
.
GetAttr
(
"strides"
));
const
std
::
vector
<
int
>
paddings
=
boost
::
get
<
std
::
vector
<
int
>>
(
op_desc
.
GetAttr
(
"paddings"
));
if
(
same_hierarchy_conv2d_num_map
[
input_var_name
]
>
0
)
{
(
*
output_names_with_id
)
.
insert
(
out_var_name
+
std
::
to_string
(
var2id
[
out_var_name
]));
(
*
output_names
).
insert
(
out_var_name
);
}
else
if
(
filter_shape
[
2
]
==
1
&&
filter_shape
[
3
]
==
1
&&
strides
[
0
]
==
1
&&
strides
[
1
]
==
1
&&
paddings
[
0
]
==
0
&&
paddings
[
1
]
==
0
)
{
same_hierarchy_conv2d_num_map
[
input_var_name
]
+=
1
;
}
}
// rename for the output variables of op inside subgraph
for
(
int
i
=
0
;
i
<
op
->
outputs_size
();
i
++
)
{
framework
::
proto
::
OpDesc_Var
*
out_var
=
op
->
mutable_outputs
(
i
);
std
::
vector
<
std
::
string
>
replaced_names
;
for
(
int
k
=
0
;
k
<
out_var
->
arguments_size
();
k
++
)
{
std
::
string
arg_value
=
out_var
->
arguments
(
k
);
std
::
string
arg_value_with_id
=
arg_value
+
std
::
to_string
(
var2id
[
arg_value
]);
if
(
output_names_with_id
->
count
(
arg_value_with_id
))
{
(
*
output_name_map
)[
arg_value
]
=
arg_value_with_id
;
}
replaced_names
.
push_back
(
arg_value_with_id
);
}
out_var
->
clear_arguments
();
for
(
size_t
k
=
0
;
k
<
replaced_names
.
size
();
k
++
)
{
out_var
->
add_arguments
(
replaced_names
[
k
]);
}
}
// the following code will NOT run in following situation:
// 1. calibraion mode (generate trt int8 calibraiton table data)
// 2. already load serialized trt engine info.
LOG
(
INFO
)
<<
"Prepare TRT engine (Optimize model structure, Select OP "
"kernel etc). This process may cost a lot of time."
;
std
::
unique_ptr
<
tensorrt
::
TensorRTEngine
>
trt_engine
(
new
tensorrt
::
TensorRTEngine
(
Get
<
int
>
(
"max_batch_size"
),
Get
<
int
>
(
"workspace_size"
),
enable_int8
,
calibrator
.
get
(),
Get
<
int
>
(
"gpu_device_id"
)));
auto
*
scope
=
param_scope
();
framework
::
BlockDesc
block_desc_temp
(
nullptr
,
block_desc
.
Proto
());
std
::
unordered_set
<
std
::
string
>
param_set
(
params
.
begin
(),
params
.
end
());
inference
::
Singleton
<
inference
::
tensorrt
::
OpConverter
>::
Global
()
.
ConvertBlockToTRTEngine
(
&
block_desc_temp
,
*
scope
,
std
::
vector
<
std
::
string
>
(
input_names
.
begin
(),
input_names
.
end
()),
param_set
,
output_mapping
,
trt_engine
.
get
());
nvinfer1
::
IHostMemory
*
serialized_engine_data
=
trt_engine
->
Serialize
();
trt_engine_serialized_data
=
std
::
string
((
const
char
*
)
serialized_engine_data
->
data
(),
serialized_engine_data
->
size
());
if
(
need_serialize
)
{
SaveTrtEngineSerializedDataToFile
(
GetTrtEngineSerializedPath
(
Get
<
std
::
string
>
(
"model_opt_cache_dir"
),
engine_key
),
trt_engine_serialized_data
);
}
SetAttr
(
op_desc
->
Proto
(),
"engine_serialized_data"
,
trt_engine_serialized_data
);
}
}
// namespace analysis
...
...
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.h
浏览文件 @
f3a2e4b3
...
...
@@ -20,6 +20,7 @@
#include <vector>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/analysis/ir_passes/subgraph_util.h"
namespace
paddle
{
namespace
inference
{
...
...
paddle/fluid/inference/api/CMakeLists.txt
浏览文件 @
f3a2e4b3
...
...
@@ -27,7 +27,7 @@ if(WITH_GPU AND TENSORRT_FOUND)
set
(
inference_deps
${
inference_deps
}
tensorrt_engine tensorrt_converter
)
endif
()
if
(
WITH_ANAKIN_SUBGRAPH
)
if
(
ANAKIN_FOUND
)
set
(
inference_deps
${
inference_deps
}
anakin_op_converter anakin_engine
)
endif
()
...
...
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
f3a2e4b3
...
...
@@ -40,10 +40,11 @@
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
#endif
#if PADDLE_WITH_ANAKIN
#include "paddle/fluid/inference/anakin/convert/op_converter.h"
#endif
DECLARE_bool
(
profile
);
...
...
@@ -817,6 +818,7 @@ USE_TRT_CONVERTER(conv2d_transpose);
USE_TRT_CONVERTER
(
leaky_relu
);
#endif
#if PADDLE_WITH_ANAKIN
USE_ANAKIN_CONVERTER
(
mul
);
USE_ANAKIN_CONVERTER
(
fc
);
USE_ANAKIN_CONVERTER
(
conv2d
);
...
...
@@ -838,3 +840,4 @@ USE_ANAKIN_CONVERTER(detection_out);
USE_ANAKIN_CONVERTER
(
density_prior_box
);
USE_ANAKIN_CONVERTER
(
dropout
);
USE_ANAKIN_CONVERTER
(
sum
);
#endif
paddle/fluid/inference/api/details/zero_copy_tensor.cc
浏览文件 @
f3a2e4b3
...
...
@@ -81,6 +81,8 @@ PaddleDType ZeroCopyTensor::type() {
return
PaddleDType
::
FLOAT32
;
}
else
if
(
type
==
framework
::
proto
::
VarType
::
INT64
)
{
return
PaddleDType
::
INT64
;
}
else
if
(
type
==
framework
::
proto
::
VarType
::
INT32
)
{
return
PaddleDType
::
INT32
;
}
else
{
LOG
(
ERROR
)
<<
"unknown type, only support float32 and int64 now."
;
}
...
...
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
f3a2e4b3
...
...
@@ -34,7 +34,7 @@ if (WITH_GPU AND TENSORRT_FOUND)
add_subdirectory
(
tensorrt
)
endif
()
if
(
WITH_ANAKIN_SUBGRAPH
)
if
(
ANAKIN_FOUND
)
add_subdirectory
(
anakin
)
endif
()
...
...
paddle/fluid/operators/anakin/anakin_engine_op.cc
浏览文件 @
f3a2e4b3
...
...
@@ -39,8 +39,7 @@ class AnakinEngineOpMaker : public framework::OpProtoAndCheckerMaker {
class
AnakinEngineInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{}
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{}
};
}
// namespace operators
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录