Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
f00a4c00
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f00a4c00
编写于
12月 09, 2021
作者:
W
wangguanzhong
提交者:
GitHub
12月 09, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[cherry-pick] fix timer in deploy (#4857)
* fix timer in deploy * fix mot_keypoint deploy
上级
d36ba700
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
308 addition
and
223 deletion
+308
-223
deploy/pptracking/python/mot_jde_infer.py
deploy/pptracking/python/mot_jde_infer.py
+23
-16
deploy/pptracking/python/mot_sde_infer.py
deploy/pptracking/python/mot_sde_infer.py
+70
-49
deploy/python/det_keypoint_unite_infer.py
deploy/python/det_keypoint_unite_infer.py
+10
-2
deploy/python/infer.py
deploy/python/infer.py
+55
-55
deploy/python/keypoint_infer.py
deploy/python/keypoint_infer.py
+24
-24
deploy/python/mot_jde_infer.py
deploy/python/mot_jde_infer.py
+33
-19
deploy/python/mot_keypoint_unite_infer.py
deploy/python/mot_keypoint_unite_infer.py
+16
-9
deploy/python/mot_sde_infer.py
deploy/python/mot_sde_infer.py
+77
-49
未找到文件。
deploy/pptracking/python/mot_jde_infer.py
浏览文件 @
f00a4c00
...
...
@@ -121,32 +121,32 @@ class JDE_Detector(Detector):
online_scores
[
cls_id
].
append
(
tscore
)
return
online_tlwhs
,
online_scores
,
online_ids
def
predict
(
self
,
image_list
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
def
predict
(
self
,
image_list
,
threshold
=
0.5
,
repeats
=
1
,
add_timer
=
True
):
'''
Args:
image_list (list[str]): path of images, only support one image path
(batch_size=1) in tracking model
threshold (float): threshold of predicted box' score
repeats (int): repeat number for prediction
add_timer (bool): whether add timer during prediction
Returns:
online_tlwhs, online_scores, online_ids (dict[np.array])
'''
self
.
det_times
.
preprocess_time_s
.
start
()
# preprocess
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image_list
)
self
.
det_times
.
preprocess_time_s
.
end
()
pred_dets
,
pred_embs
=
None
,
None
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
end
()
self
.
det_times
.
inference_time_s
.
start
()
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
pred_dets
=
boxes_tensor
.
copy_to_cpu
()
self
.
det_times
.
inference_time_s
.
start
()
# model prediction
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
...
...
@@ -154,14 +154,16 @@ class JDE_Detector(Detector):
pred_dets
=
boxes_tensor
.
copy_to_cpu
()
embs_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
1
])
pred_embs
=
embs_tensor
.
copy_to_cpu
()
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
if
add_timer
:
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
postprocess_time_s
.
start
()
self
.
det_times
.
postprocess_time_s
.
start
()
# postprocess
online_tlwhs
,
online_scores
,
online_ids
=
self
.
postprocess
(
pred_dets
,
pred_embs
,
threshold
)
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
if
add_timer
:
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
return
online_tlwhs
,
online_scores
,
online_ids
...
...
@@ -175,7 +177,12 @@ def predict_image(detector, image_list):
for
frame_id
,
img_file
in
enumerate
(
image_list
):
frame
=
cv2
.
imread
(
img_file
)
if
FLAGS
.
run_benchmark
:
detector
.
predict
([
img_file
],
FLAGS
.
threshold
,
warmup
=
10
,
repeats
=
10
)
# warmup
detector
.
predict
(
[
img_file
],
FLAGS
.
threshold
,
repeats
=
10
,
add_timer
=
False
)
# run benchmark
detector
.
predict
(
[
img_file
],
FLAGS
.
threshold
,
repeats
=
10
,
add_timer
=
True
)
cm
,
gm
,
gu
=
get_current_memory_mb
()
detector
.
cpu_mem
+=
cm
detector
.
gpu_mem
+=
gm
...
...
deploy/pptracking/python/mot_sde_infer.py
浏览文件 @
f00a4c00
...
...
@@ -154,8 +154,8 @@ class SDE_Detector(Detector):
ori_image_shape
,
threshold
=
0.5
,
scaled
=
False
,
warmup
=
0
,
repeats
=
1
):
repeats
=
1
,
add_timer
=
True
):
'''
Args:
image_path (list[str]): path of images, only support one image path
...
...
@@ -164,43 +164,46 @@ class SDE_Detector(Detector):
threshold (float): threshold of predicted box' score
scaled (bool): whether the coords after detector outputs are scaled,
default False in jde yolov3, set True in general detector.
repeats (int): repeat number for prediction
add_timer (bool): whether add timer during prediction
Returns:
pred_dets (np.ndarray, [N, 6]): 'x,y,w,h,score,cls_id'
pred_xyxys (np.ndarray, [N, 4]): 'x1,y1,x2,y2'
'''
self
.
det_times
.
preprocess_time_s
.
start
()
# preprocess
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image_path
)
self
.
det_times
.
preprocess_time_s
.
end
()
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
end
()
self
.
det_times
.
inference_time_s
.
start
()
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
boxes
=
boxes_tensor
.
copy_to_cpu
()
self
.
det_times
.
inference_time_s
.
start
()
# model prediction
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
boxes
=
boxes_tensor
.
copy_to_cpu
()
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
if
add_timer
:
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
postprocess_time_s
.
start
()
self
.
det_times
.
postprocess_time_s
.
start
()
# postprocess
if
len
(
boxes
)
==
0
:
pred_dets
=
np
.
zeros
((
1
,
6
),
dtype
=
np
.
float32
)
pred_xyxys
=
np
.
zeros
((
1
,
4
),
dtype
=
np
.
float32
)
else
:
pred_dets
,
pred_xyxys
=
self
.
postprocess
(
boxes
,
ori_image_shape
,
threshold
,
inputs
,
scaled
=
scaled
)
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
if
add_timer
:
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
return
pred_dets
,
pred_xyxys
...
...
@@ -284,8 +287,8 @@ class SDE_DetectorPicoDet(DetectorPicoDet):
ori_image_shape
,
threshold
=
0.5
,
scaled
=
False
,
warmup
=
0
,
repeats
=
1
):
repeats
=
1
,
add_timer
=
True
):
'''
Args:
image_path (list[str]): path of images, only support one image path
...
...
@@ -294,27 +297,26 @@ class SDE_DetectorPicoDet(DetectorPicoDet):
threshold (float): threshold of predicted box' score
scaled (bool): whether the coords after detector outputs are scaled,
default False in jde yolov3, set True in general detector.
repeats (int): repeat number for prediction
add_timer (bool): whether add timer during prediction
Returns:
pred_dets (np.ndarray, [N, 6]): 'x,y,w,h,score,cls_id'
pred_xyxys (np.ndarray, [N, 4]): 'x1,y1,x2,y2'
'''
self
.
det_times
.
preprocess_time_s
.
start
()
# preprocess
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image_path
)
self
.
det_times
.
preprocess_time_s
.
end
()
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
end
()
self
.
det_times
.
inference_time_s
.
start
()
np_score_list
,
np_boxes_list
=
[],
[]
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
boxes
=
boxes_tensor
.
copy_to_cpu
()
self
.
det_times
.
inference_time_s
.
start
()
# model prediction
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
np_score_list
.
clear
()
...
...
@@ -328,9 +330,11 @@ class SDE_DetectorPicoDet(DetectorPicoDet):
np_boxes_list
.
append
(
self
.
predictor
.
get_output_handle
(
output_names
[
out_idx
+
num_outs
]).
copy_to_cpu
())
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
if
add_timer
:
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
postprocess_time_s
.
start
()
self
.
det_times
.
postprocess_time_s
.
start
()
# postprocess
self
.
picodet_postprocess
=
PicoDetPostProcess
(
inputs
[
'image'
].
shape
[
2
:],
inputs
[
'im_shape'
],
...
...
@@ -346,8 +350,9 @@ class SDE_DetectorPicoDet(DetectorPicoDet):
else
:
pred_dets
,
pred_xyxys
=
self
.
postprocess
(
boxes
,
ori_image_shape
,
threshold
)
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
if
add_timer
:
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
return
pred_dets
,
pred_xyxys
...
...
@@ -503,42 +508,43 @@ class SDE_ReID(object):
def
predict
(
self
,
crops
,
pred_dets
,
warmup
=
0
,
repeats
=
1
,
add_timer
=
True
,
MTMCT
=
False
,
frame_id
=
0
,
seq_name
=
''
):
self
.
det_times
.
preprocess_time_s
.
start
()
# preprocess
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
crops
)
self
.
det_times
.
preprocess_time_s
.
end
()
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
feature_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
pred_embs
=
feature_tensor
.
copy_to_cpu
()
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
end
()
self
.
det_times
.
inference_time_s
.
start
()
self
.
det_times
.
inference_time_s
.
start
()
# model prediction
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
feature_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
pred_embs
=
feature_tensor
.
copy_to_cpu
()
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
if
add_timer
:
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
postprocess_time_s
.
start
()
self
.
det_times
.
postprocess_time_s
.
start
()
# postprocess
if
MTMCT
==
False
:
tracking_outs
=
self
.
postprocess
(
pred_dets
,
pred_embs
)
else
:
tracking_outs
=
self
.
postprocess_mtmct
(
pred_dets
,
pred_embs
,
frame_id
,
seq_name
)
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
if
add_timer
:
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
return
tracking_outs
...
...
@@ -549,13 +555,23 @@ def predict_image(detector, reid_model, image_list):
frame
=
cv2
.
imread
(
img_file
)
ori_image_shape
=
list
(
frame
.
shape
[:
2
])
if
FLAGS
.
run_benchmark
:
# warmup
pred_dets
,
pred_xyxys
=
detector
.
predict
(
[
img_file
],
ori_image_shape
,
FLAGS
.
threshold
,
FLAGS
.
scaled
,
warmup
=
10
,
repeats
=
10
)
repeats
=
10
,
add_timer
=
False
)
# run benchmark
pred_dets
,
pred_xyxys
=
detector
.
predict
(
[
img_file
],
ori_image_shape
,
FLAGS
.
threshold
,
FLAGS
.
scaled
,
repeats
=
10
,
add_timer
=
True
)
cm
,
gm
,
gu
=
get_current_memory_mb
()
detector
.
cpu_mem
+=
cm
detector
.
gpu_mem
+=
gm
...
...
@@ -574,8 +590,13 @@ def predict_image(detector, reid_model, image_list):
crops
=
reid_model
.
get_crops
(
pred_xyxys
,
frame
)
if
FLAGS
.
run_benchmark
:
# warmup
tracking_outs
=
reid_model
.
predict
(
crops
,
pred_dets
,
warmup
=
10
,
repeats
=
10
)
crops
,
pred_dets
,
repeats
=
10
,
add_timer
=
False
)
# run benchmark
tracking_outs
=
reid_model
.
predict
(
crops
,
pred_dets
,
repeats
=
10
,
add_timer
=
True
)
else
:
tracking_outs
=
reid_model
.
predict
(
crops
,
pred_dets
)
...
...
deploy/python/det_keypoint_unite_infer.py
浏览文件 @
f00a4c00
...
...
@@ -68,8 +68,12 @@ def predict_with_given_det(image, det_res, keypoint_detector,
batch_images
=
rec_images
[
start_index
:
end_index
]
batch_records
=
np
.
array
(
records
[
start_index
:
end_index
])
if
run_benchmark
:
# warmup
keypoint_result
=
keypoint_detector
.
predict
(
batch_images
,
keypoint_threshold
,
warmup
=
10
,
repeats
=
10
)
batch_images
,
keypoint_threshold
,
repeats
=
10
,
add_timer
=
False
)
# run benchmark
keypoint_result
=
keypoint_detector
.
predict
(
batch_images
,
keypoint_threshold
,
repeats
=
10
,
add_timer
=
True
)
else
:
keypoint_result
=
keypoint_detector
.
predict
(
batch_images
,
keypoint_threshold
)
...
...
@@ -100,8 +104,12 @@ def topdown_unite_predict(detector,
det_timer
.
preprocess_time_s
.
end
()
if
FLAGS
.
run_benchmark
:
# warmup
results
=
detector
.
predict
(
[
image
],
FLAGS
.
det_threshold
,
repeats
=
10
,
add_timer
=
False
)
# run benchmark
results
=
detector
.
predict
(
[
image
],
FLAGS
.
det_threshold
,
warmup
=
10
,
repeats
=
10
)
[
image
],
FLAGS
.
det_threshold
,
repeats
=
10
,
add_timer
=
True
)
cm
,
gm
,
gu
=
get_current_memory_mb
()
detector
.
cpu_mem
+=
cm
detector
.
gpu_mem
+=
gm
...
...
deploy/python/infer.py
浏览文件 @
f00a4c00
...
...
@@ -125,35 +125,33 @@ class Detector(object):
results
[
'masks'
]
=
np_masks
return
results
def
predict
(
self
,
image_list
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
def
predict
(
self
,
image_list
,
threshold
=
0.5
,
repeats
=
1
,
add_timer
=
True
):
'''
Args:
image_list (list): list of image
threshold (float): threshold of predicted box' score
repeats (int): repeat number for prediction
add_timer (bool): whether add timer during prediction
Returns:
results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
MaskRCNN's results include 'masks': np.ndarray:
shape: [N, im_h, im_w]
'''
self
.
det_times
.
preprocess_time_s
.
start
()
# preprocess
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image_list
)
self
.
det_times
.
preprocess_time_s
.
end
()
np_boxes
,
np_masks
=
None
,
None
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
np_boxes
=
boxes_tensor
.
copy_to_cpu
()
if
self
.
pred_config
.
mask
:
masks_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
2
])
np_masks
=
masks_tensor
.
copy_to_cpu
()
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
end
()
self
.
det_times
.
inference_time_s
.
start
()
self
.
det_times
.
inference_time_s
.
start
()
# model prediction
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
...
...
@@ -164,9 +162,12 @@ class Detector(object):
if
self
.
pred_config
.
mask
:
masks_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
2
])
np_masks
=
masks_tensor
.
copy_to_cpu
()
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
postprocess_time_s
.
start
()
if
add_timer
:
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
postprocess_time_s
.
start
()
# postprocess
results
=
[]
if
reduce
(
lambda
x
,
y
:
x
*
y
,
np_boxes
.
shape
)
<
6
:
print
(
'[WARNNING] No object detected.'
)
...
...
@@ -174,8 +175,9 @@ class Detector(object):
else
:
results
=
self
.
postprocess
(
np_boxes
,
np_masks
,
inputs
,
np_boxes_num
,
threshold
=
threshold
)
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
len
(
image_list
)
if
add_timer
:
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
len
(
image_list
)
return
results
def
get_timer
(
self
):
...
...
@@ -228,36 +230,30 @@ class DetectorSOLOv2(Detector):
self
.
det_times
=
Timer
()
self
.
cpu_mem
,
self
.
gpu_mem
,
self
.
gpu_util
=
0
,
0
,
0
def
predict
(
self
,
image
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
def
predict
(
self
,
image
,
threshold
=
0.5
,
repeats
=
1
,
add_timer
=
True
):
'''
Args:
image (str/np.ndarray): path of image/ np.ndarray read by cv2
threshold (float): threshold of predicted box' score
repeats (int): repeat number for prediction
add_timer (bool): whether add timer during prediction
Returns:
results (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
'cate_label': label of segm, shape:[N]
'cate_score': confidence score of segm, shape:[N]
'''
self
.
det_times
.
preprocess_time_s
.
start
()
# preprocess
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image
)
self
.
det_times
.
preprocess_time_s
.
end
()
np_label
,
np_score
,
np_segms
=
None
,
None
,
None
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
np_boxes_num
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
]).
copy_to_cpu
()
np_label
=
self
.
predictor
.
get_output_handle
(
output_names
[
1
]).
copy_to_cpu
()
np_score
=
self
.
predictor
.
get_output_handle
(
output_names
[
2
]).
copy_to_cpu
()
np_segms
=
self
.
predictor
.
get_output_handle
(
output_names
[
3
]).
copy_to_cpu
()
self
.
det_times
.
inference_time_s
.
start
()
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
end
()
self
.
det_times
.
inference_time_s
.
start
()
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
...
...
@@ -269,8 +265,9 @@ class DetectorSOLOv2(Detector):
2
]).
copy_to_cpu
()
np_segms
=
self
.
predictor
.
get_output_handle
(
output_names
[
3
]).
copy_to_cpu
()
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
img_num
+=
1
if
add_timer
:
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
img_num
+=
1
return
dict
(
segm
=
np_segms
,
...
...
@@ -325,38 +322,32 @@ class DetectorPicoDet(Detector):
self
.
det_times
=
Timer
()
self
.
cpu_mem
,
self
.
gpu_mem
,
self
.
gpu_util
=
0
,
0
,
0
def
predict
(
self
,
image
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
def
predict
(
self
,
image
,
threshold
=
0.5
,
repeats
=
1
,
add_timer
=
True
):
'''
Args:
image (str/np.ndarray): path of image/ np.ndarray read by cv2
threshold (float): threshold of predicted box' score
repeats (int): repeat number for prediction
add_timer (bool): whether add timer during prediction
Returns:
results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
'''
self
.
det_times
.
preprocess_time_s
.
start
()
# preprocess
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image
)
self
.
det_times
.
preprocess_time_s
.
end
()
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
np_score_list
,
np_boxes_list
=
[],
[]
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
np_score_list
.
clear
()
np_boxes_list
.
clear
()
output_names
=
self
.
predictor
.
get_output_names
()
num_outs
=
int
(
len
(
output_names
)
/
2
)
for
out_idx
in
range
(
num_outs
):
np_score_list
.
append
(
self
.
predictor
.
get_output_handle
(
output_names
[
out_idx
])
.
copy_to_cpu
())
np_boxes_list
.
append
(
self
.
predictor
.
get_output_handle
(
output_names
[
out_idx
+
num_outs
]).
copy_to_cpu
())
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
end
()
self
.
det_times
.
inference_time_s
.
start
()
self
.
det_times
.
inference_time_s
.
start
()
# model_prediction
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
np_score_list
.
clear
()
...
...
@@ -370,9 +361,12 @@ class DetectorPicoDet(Detector):
np_boxes_list
.
append
(
self
.
predictor
.
get_output_handle
(
output_names
[
out_idx
+
num_outs
]).
copy_to_cpu
())
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
img_num
+=
1
self
.
det_times
.
postprocess_time_s
.
start
()
if
add_timer
:
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
img_num
+=
1
self
.
det_times
.
postprocess_time_s
.
start
()
# postprocess
self
.
postprocess
=
PicoDetPostProcess
(
inputs
[
'image'
].
shape
[
2
:],
inputs
[
'im_shape'
],
...
...
@@ -380,7 +374,8 @@ class DetectorPicoDet(Detector):
strides
=
self
.
pred_config
.
fpn_stride
,
nms_threshold
=
self
.
pred_config
.
nms
[
'nms_threshold'
])
np_boxes
,
np_boxes_num
=
self
.
postprocess
(
np_score_list
,
np_boxes_list
)
self
.
det_times
.
postprocess_time_s
.
end
()
if
add_timer
:
self
.
det_times
.
postprocess_time_s
.
end
()
return
dict
(
boxes
=
np_boxes
,
boxes_num
=
np_boxes_num
)
...
...
@@ -647,8 +642,13 @@ def predict_image(detector, image_list, batch_size=1):
end_index
=
min
((
i
+
1
)
*
batch_size
,
len
(
image_list
))
batch_image_list
=
image_list
[
start_index
:
end_index
]
if
FLAGS
.
run_benchmark
:
# warmup
detector
.
predict
(
batch_image_list
,
FLAGS
.
threshold
,
warmup
=
10
,
repeats
=
10
)
batch_image_list
,
FLAGS
.
threshold
,
repeats
=
10
,
add_timer
=
False
)
# run benchmark
detector
.
predict
(
batch_image_list
,
FLAGS
.
threshold
,
repeats
=
10
,
add_timer
=
True
)
cm
,
gm
,
gu
=
get_current_memory_mb
()
detector
.
cpu_mem
+=
cm
detector
.
gpu_mem
+=
gm
...
...
deploy/python/keypoint_infer.py
浏览文件 @
f00a4c00
...
...
@@ -145,41 +145,33 @@ class KeyPoint_Detector(Detector):
raise
ValueError
(
"Unsupported arch: {}, expect {}"
.
format
(
self
.
pred_config
.
arch
,
KEYPOINT_SUPPORT_MODELS
))
def
predict
(
self
,
image_list
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
def
predict
(
self
,
image_list
,
threshold
=
0.5
,
repeats
=
1
,
add_timer
=
True
):
'''
Args:
image_list (list): list of image
threshold (float): threshold of predicted box' score
repeats (int): repeat number for prediction
add_timer (bool): whether add timer during prediction
Returns:
results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
MaskRCNN's results include 'masks': np.ndarray:
shape: [N, im_h, im_w]
'''
self
.
det_times
.
preprocess_time_s
.
start
()
# preprocess
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image_list
)
np_boxes
,
np_masks
=
None
,
None
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
self
.
det_times
.
preprocess_time_s
.
end
()
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
np_boxes
=
boxes_tensor
.
copy_to_cpu
()
if
self
.
pred_config
.
tagmap
:
masks_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
1
])
heat_k
=
self
.
predictor
.
get_output_handle
(
output_names
[
2
])
inds_k
=
self
.
predictor
.
get_output_handle
(
output_names
[
3
])
np_masks
=
[
masks_tensor
.
copy_to_cpu
(),
heat_k
.
copy_to_cpu
(),
inds_k
.
copy_to_cpu
()
]
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
end
()
self
.
det_times
.
inference_time_s
.
start
()
self
.
det_times
.
inference_time_s
.
start
()
# model prediction
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
...
...
@@ -193,13 +185,16 @@ class KeyPoint_Detector(Detector):
masks_tensor
.
copy_to_cpu
(),
heat_k
.
copy_to_cpu
(),
inds_k
.
copy_to_cpu
()
]
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
if
add_timer
:
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
postprocess_time_s
.
start
()
self
.
det_times
.
postprocess_time_s
.
start
()
# postprocess
results
=
self
.
postprocess
(
np_boxes
,
np_masks
,
inputs
,
threshold
=
threshold
)
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
len
(
image_list
)
if
add_timer
:
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
len
(
image_list
)
return
results
...
...
@@ -266,7 +261,12 @@ class PredictConfig_KeyPoint():
def
predict_image
(
detector
,
image_list
):
for
i
,
img_file
in
enumerate
(
image_list
):
if
FLAGS
.
run_benchmark
:
detector
.
predict
([
img_file
],
FLAGS
.
threshold
,
warmup
=
10
,
repeats
=
10
)
# warmup
detector
.
predict
(
[
img_file
],
FLAGS
.
threshold
,
repeats
=
10
,
add_timer
=
False
)
# run benchmark
detector
.
predict
(
[
img_file
],
FLAGS
.
threshold
,
repeats
=
10
,
add_timer
=
True
)
cm
,
gm
,
gu
=
get_current_memory_mb
()
detector
.
cpu_mem
+=
cm
detector
.
gpu_mem
+=
gm
...
...
@@ -300,7 +300,7 @@ def predict_video(detector, camera_id):
if
not
os
.
path
.
exists
(
FLAGS
.
output_dir
):
os
.
makedirs
(
FLAGS
.
output_dir
)
out_path
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
video_name
+
'.mp4'
)
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
writer
=
cv2
.
VideoWriter
(
out_path
,
fourcc
,
fps
,
(
width
,
height
))
index
=
1
while
(
1
):
...
...
deploy/python/mot_jde_infer.py
浏览文件 @
f00a4c00
...
...
@@ -120,31 +120,31 @@ class JDE_Detector(Detector):
online_scores
[
cls_id
].
append
(
tscore
)
return
online_tlwhs
,
online_scores
,
online_ids
def
predict
(
self
,
image_list
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
def
predict
(
self
,
image_list
,
threshold
=
0.5
,
repeats
=
1
,
add_timer
=
True
):
'''
Args:
image_list (list): list of image
threshold (float): threshold of predicted box' score
repeats (int): repeat number for prediction
add_timer (bool): whether add timer during prediction
Returns:
online_tlwhs, online_scores, online_ids (dict[np.array])
'''
self
.
det_times
.
preprocess_time_s
.
start
()
# preprocess
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image_list
)
self
.
det_times
.
preprocess_time_s
.
end
()
pred_dets
,
pred_embs
=
None
,
None
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
end
()
self
.
det_times
.
inference_time_s
.
start
()
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
pred_dets
=
boxes_tensor
.
copy_to_cpu
()
self
.
det_times
.
inference_time_s
.
start
()
# model prediction
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
...
...
@@ -152,13 +152,17 @@ class JDE_Detector(Detector):
pred_dets
=
boxes_tensor
.
copy_to_cpu
()
embs_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
1
])
pred_embs
=
embs_tensor
.
copy_to_cpu
()
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
postprocess_time_s
.
start
()
if
add_timer
:
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
postprocess_time_s
.
start
()
# postprocess
online_tlwhs
,
online_scores
,
online_ids
=
self
.
postprocess
(
pred_dets
,
pred_embs
,
threshold
)
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
if
add_timer
:
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
return
online_tlwhs
,
online_scores
,
online_ids
...
...
@@ -172,7 +176,12 @@ def predict_image(detector, image_list):
for
frame_id
,
img_file
in
enumerate
(
image_list
):
frame
=
cv2
.
imread
(
img_file
)
if
FLAGS
.
run_benchmark
:
detector
.
predict
([
frame
],
FLAGS
.
threshold
,
warmup
=
10
,
repeats
=
10
)
# warmup
detector
.
predict
(
[
frame
],
FLAGS
.
threshold
,
repeats
=
10
,
add_timer
=
False
)
# run benchmark
detector
.
predict
(
[
frame
],
FLAGS
.
threshold
,
repeats
=
10
,
add_timer
=
True
)
cm
,
gm
,
gu
=
get_current_memory_mb
()
detector
.
cpu_mem
+=
cm
detector
.
gpu_mem
+=
gm
...
...
@@ -181,9 +190,14 @@ def predict_image(detector, image_list):
else
:
online_tlwhs
,
online_scores
,
online_ids
=
detector
.
predict
(
[
frame
],
FLAGS
.
threshold
)
online_im
=
plot_tracking_dict
(
frame
,
num_classes
,
online_tlwhs
,
online_ids
,
online_scores
,
frame_id
,
ids2names
=
ids2names
)
online_im
=
plot_tracking_dict
(
frame
,
num_classes
,
online_tlwhs
,
online_ids
,
online_scores
,
frame_id
,
ids2names
=
ids2names
)
if
FLAGS
.
save_images
:
if
not
os
.
path
.
exists
(
FLAGS
.
output_dir
):
os
.
makedirs
(
FLAGS
.
output_dir
)
...
...
@@ -211,7 +225,7 @@ def predict_video(detector, camera_id):
os
.
makedirs
(
FLAGS
.
output_dir
)
out_path
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
video_name
)
if
not
FLAGS
.
save_images
:
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
writer
=
cv2
.
VideoWriter
(
out_path
,
fourcc
,
fps
,
(
width
,
height
))
frame_id
=
0
timer
=
MOTTimer
()
...
...
deploy/python/mot_keypoint_unite_infer.py
浏览文件 @
f00a4c00
...
...
@@ -64,8 +64,12 @@ def mot_keypoint_unite_predict_image(mot_model,
frame
=
cv2
.
imread
(
img_file
)
if
FLAGS
.
run_benchmark
:
# warmup
online_tlwhs
,
online_scores
,
online_ids
=
mot_model
.
predict
(
[
frame
],
FLAGS
.
mot_threshold
,
warmup
=
10
,
repeats
=
10
)
[
frame
],
FLAGS
.
mot_threshold
,
repeats
=
10
,
add_timer
=
False
)
# run benchmark
online_tlwhs
,
online_scores
,
online_ids
=
mot_model
.
predict
(
[
frame
],
FLAGS
.
mot_threshold
,
repeats
=
10
,
add_timer
=
True
)
cm
,
gm
,
gu
=
get_current_memory_mb
()
mot_model
.
cpu_mem
+=
cm
mot_model
.
gpu_mem
+=
gm
...
...
@@ -84,13 +88,16 @@ def mot_keypoint_unite_predict_image(mot_model,
FLAGS
.
run_benchmark
)
else
:
warmup
=
10
if
FLAGS
.
run_benchmark
else
0
if
FLAGS
.
run_benchmark
:
keypoint_results
=
keypoint_model
.
predict
(
[
frame
],
FLAGS
.
keypoint_threshold
,
repeats
=
10
,
add_timer
=
False
)
repeats
=
10
if
FLAGS
.
run_benchmark
else
1
keypoint_results
=
keypoint_model
.
predict
(
[
frame
],
FLAGS
.
keypoint_threshold
,
warmup
=
warmup
,
repeats
=
repeats
)
[
frame
],
FLAGS
.
keypoint_threshold
,
repeats
=
repeats
)
if
FLAGS
.
run_benchmark
:
cm
,
gm
,
gu
=
get_current_memory_mb
()
...
...
@@ -103,7 +110,7 @@ def mot_keypoint_unite_predict_image(mot_model,
keypoint_results
,
visual_thread
=
FLAGS
.
keypoint_threshold
,
returnimg
=
True
,
ids
=
online_ids
ids
=
online_ids
[
0
]
if
KEYPOINT_SUPPORT_MODELS
[
keypoint_arch
]
==
'keypoint_topdown'
else
None
)
...
...
@@ -144,7 +151,7 @@ def mot_keypoint_unite_predict_video(mot_model,
os
.
makedirs
(
FLAGS
.
output_dir
)
out_path
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
video_name
)
if
not
FLAGS
.
save_images
:
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
writer
=
cv2
.
VideoWriter
(
out_path
,
fourcc
,
fps
,
(
width
,
height
))
frame_id
=
0
timer_mot
=
FPSTimer
()
...
...
@@ -193,7 +200,7 @@ def mot_keypoint_unite_predict_video(mot_model,
keypoint_results
,
visual_thread
=
FLAGS
.
keypoint_threshold
,
returnimg
=
True
,
ids
=
online_ids
ids
=
online_ids
[
0
]
if
KEYPOINT_SUPPORT_MODELS
[
keypoint_arch
]
==
'keypoint_topdown'
else
None
)
...
...
deploy/python/mot_sde_infer.py
浏览文件 @
f00a4c00
...
...
@@ -178,40 +178,43 @@ class SDE_Detector(Detector):
return
pred_dets
,
pred_xyxys
def
predict
(
self
,
image
,
scaled
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
def
predict
(
self
,
image
,
scaled
,
threshold
=
0.5
,
repeats
=
1
,
add_timer
=
True
):
'''
Args:
image (np.ndarray): image numpy data
threshold (float): threshold of predicted box' score
scaled (bool): whether the coords after detector outputs are scaled,
default False in jde yolov3, set True in general detector.
threshold (float): threshold of predicted box' score
repeats (int): repeat number for prediction
add_timer (bool): whether add timer during prediction
Returns:
pred_dets (np.ndarray, [N, 6])
'''
self
.
det_times
.
preprocess_time_s
.
start
()
# preprocess
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image
)
self
.
det_times
.
preprocess_time_s
.
end
()
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
boxes
=
boxes_tensor
.
copy_to_cpu
()
self
.
det_times
.
inference_time_s
.
start
()
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
end
()
self
.
det_times
.
inference_time_s
.
start
()
# model prediction
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
boxes
=
boxes_tensor
.
copy_to_cpu
()
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
postprocess_time_s
.
start
()
if
add_timer
:
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
postprocess_time_s
.
start
()
# postprocess
if
len
(
boxes
)
==
0
:
pred_dets
=
np
.
zeros
((
1
,
6
),
dtype
=
np
.
float32
)
pred_xyxys
=
np
.
zeros
((
1
,
4
),
dtype
=
np
.
float32
)
...
...
@@ -223,8 +226,9 @@ class SDE_Detector(Detector):
pred_dets
,
pred_xyxys
=
self
.
postprocess
(
boxes
,
input_shape
,
im_shape
,
scale_factor
,
threshold
,
scaled
)
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
if
add_timer
:
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
return
pred_dets
,
pred_xyxys
...
...
@@ -271,7 +275,8 @@ class SDE_DetectorPicoDet(DetectorPicoDet):
assert
batch_size
==
1
,
"The JDE Detector only supports batch size=1 now"
self
.
pred_config
=
pred_config
def
postprocess_bboxes
(
self
,
boxes
,
input_shape
,
im_shape
,
scale_factor
,
threshold
):
def
postprocess_bboxes
(
self
,
boxes
,
input_shape
,
im_shape
,
scale_factor
,
threshold
):
over_thres_idx
=
np
.
nonzero
(
boxes
[:,
1
:
2
]
>=
threshold
)[
0
]
if
len
(
over_thres_idx
)
==
0
:
pred_dets
=
np
.
zeros
((
1
,
6
),
dtype
=
np
.
float32
)
...
...
@@ -299,33 +304,35 @@ class SDE_DetectorPicoDet(DetectorPicoDet):
(
pred_tlwhs
,
pred_scores
,
pred_cls_ids
),
axis
=
1
)
return
pred_dets
,
pred_xyxys
def
predict
(
self
,
image
,
scaled
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
def
predict
(
self
,
image
,
scaled
,
threshold
=
0.5
,
repeats
=
1
,
add_timer
=
True
):
'''
Args:
image (np.ndarray): image numpy data
threshold (float): threshold of predicted box' score
scaled (bool): whether the coords after detector outputs are scaled,
default False in jde yolov3, set True in general detector.
threshold (float): threshold of predicted box' score
repeats (int): repeat number for prediction
add_timer (bool): whether add timer during prediction
Returns:
pred_dets (np.ndarray, [N, 6])
'''
self
.
det_times
.
preprocess_time_s
.
start
()
# preprocess
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image
)
self
.
det_times
.
preprocess_time_s
.
end
()
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
np_score_list
,
np_boxes_list
=
[],
[]
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
boxes
=
boxes_tensor
.
copy_to_cpu
()
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
end
()
self
.
det_times
.
inference_time_s
.
start
()
self
.
det_times
.
inference_time_s
.
start
()
# model prediction
np_score_list
,
np_boxes_list
=
[],
[]
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
np_score_list
.
clear
()
...
...
@@ -340,9 +347,12 @@ class SDE_DetectorPicoDet(DetectorPicoDet):
self
.
predictor
.
get_output_handle
(
output_names
[
out_idx
+
num_outs
]).
copy_to_cpu
())
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
img_num
+=
1
self
.
det_times
.
postprocess_time_s
.
start
()
if
add_timer
:
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
img_num
+=
1
self
.
det_times
.
postprocess_time_s
.
start
()
# postprocess
self
.
postprocess
=
PicoDetPostProcess
(
inputs
[
'image'
].
shape
[
2
:],
inputs
[
'im_shape'
],
...
...
@@ -360,9 +370,10 @@ class SDE_DetectorPicoDet(DetectorPicoDet):
scale_factor
=
inputs
[
'scale_factor'
]
pred_dets
,
pred_xyxys
=
self
.
postprocess_bboxes
(
boxes
,
input_shape
,
im_shape
,
scale_factor
,
threshold
)
if
add_timer
:
self
.
det_times
.
postprocess_time_s
.
end
()
return
pred_dets
,
pred_xyxys
class
SDE_ReID
(
object
):
def
__init__
(
self
,
...
...
@@ -445,35 +456,36 @@ class SDE_ReID(object):
return
online_tlwhs
,
online_scores
,
online_ids
def
predict
(
self
,
crops
,
pred_dets
,
warmup
=
0
,
repeats
=
1
):
self
.
det_times
.
preprocess_time_s
.
start
()
def
predict
(
self
,
crops
,
pred_dets
,
repeats
=
1
,
add_timer
=
True
):
# preprocess
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
crops
)
self
.
det_times
.
preprocess_time_s
.
end
()
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
if
add_timer
:
self
.
det_times
.
preprocess_time_s
.
end
()
self
.
det_times
.
inference_time_s
.
start
()
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
feature_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
pred_embs
=
feature_tensor
.
copy_to_cpu
()
self
.
det_times
.
inference_time_s
.
start
()
# model prediction
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
feature_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
pred_embs
=
feature_tensor
.
copy_to_cpu
()
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
if
add_timer
:
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
postprocess_time_s
.
start
()
self
.
det_times
.
postprocess_time_s
.
start
()
# postprocess
online_tlwhs
,
online_scores
,
online_ids
=
self
.
postprocess
(
pred_dets
,
pred_embs
)
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
if
add_timer
:
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
return
online_tlwhs
,
online_scores
,
online_ids
...
...
@@ -483,8 +495,20 @@ def predict_image(detector, reid_model, image_list):
for
i
,
img_file
in
enumerate
(
image_list
):
frame
=
cv2
.
imread
(
img_file
)
if
FLAGS
.
run_benchmark
:
# warmup
pred_dets
,
pred_xyxys
=
detector
.
predict
(
[
frame
],
FLAGS
.
scaled
,
FLAGS
.
threshold
,
warmup
=
10
,
repeats
=
10
)
[
frame
],
FLAGS
.
scaled
,
FLAGS
.
threshold
,
repeats
=
10
,
add_timer
=
True
)
# run benchmark
pred_dets
,
pred_xyxys
=
detector
.
predict
(
[
frame
],
FLAGS
.
scaled
,
FLAGS
.
threshold
,
repeats
=
10
,
add_timer
=
True
)
cm
,
gm
,
gu
=
get_current_memory_mb
()
detector
.
cpu_mem
+=
cm
detector
.
gpu_mem
+=
gm
...
...
@@ -503,8 +527,12 @@ def predict_image(detector, reid_model, image_list):
crops
=
reid_model
.
get_crops
(
pred_xyxys
,
frame
)
if
FLAGS
.
run_benchmark
:
# warmup
online_tlwhs
,
online_scores
,
online_ids
=
reid_model
.
predict
(
crops
,
pred_dets
,
repeats
=
10
,
add_timer
=
False
)
# run benchmark
online_tlwhs
,
online_scores
,
online_ids
=
reid_model
.
predict
(
crops
,
pred_dets
,
warmup
=
10
,
repeats
=
10
)
crops
,
pred_dets
,
repeats
=
10
,
add_timer
=
False
)
else
:
online_tlwhs
,
online_scores
,
online_ids
=
reid_model
.
predict
(
crops
,
pred_dets
)
...
...
@@ -538,7 +566,7 @@ def predict_video(detector, reid_model, camera_id):
os
.
makedirs
(
FLAGS
.
output_dir
)
out_path
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
video_name
)
if
not
FLAGS
.
save_images
:
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
writer
=
cv2
.
VideoWriter
(
out_path
,
fourcc
,
fps
,
(
width
,
height
))
frame_id
=
0
timer
=
MOTTimer
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录