Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
eaa0d6a7
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
eaa0d6a7
编写于
9月 21, 2020
作者:
W
wangxinxin08
提交者:
GitHub
9月 21, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add usage of tools/anchor_cluster.py in custom dataset, test=document_fix (#1452)
上级
37f3955c
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
21 addition
and
5 deletion
+21
-5
docs/tutorials/Custom_DataSet.md
docs/tutorials/Custom_DataSet.md
+21
-5
未找到文件。
docs/tutorials/Custom_DataSet.md
浏览文件 @
eaa0d6a7
...
...
@@ -6,8 +6,9 @@
-
[
将数据集转换为VOC格式
](
#方式二将数据集转换为VOC格式
)
-
[
添加新数据源
](
#方式三添加新数据源
)
-
[
2.选择模型
](
#2选择模型
)
-
[
3.修改参数配置
](
#3修改参数配置
)
-
[
4.开始训练与部署
](
#4开始训练与部署
)
-
[
3.生成Anchor
](
#3生成Anchor
)
-
[
4.修改参数配置
](
#4修改参数配置
)
-
[
5.开始训练与部署
](
#5开始训练与部署
)
-
[
附:一个自定义数据集demo
](
#附一个自定义数据集demo
)
## 1.准备数据
...
...
@@ -97,8 +98,23 @@ PaddleDetection中提供了丰富的模型库,具体可在[模型库](../MODEL
同时也可以尝试PaddleDetection中开发的
[
YOLOv3增强模型
](
../featured_model/YOLOv3_ENHANCEMENT.md
)
、
[
YOLOv4模型
](
../featured_model/YOLO_V4.md
)
与
[
Anchor Free模型
](
../featured_model/ANCHOR_FREE_DETECTION.md
)
等。
## 3.修改参数配置
## 3.生成Anchor
在yolo系列模型中,可以运行
`tools/anchor_cluster.py`
来得到适用于你的数据集Anchor,使用方法如下:
```
bash
python tools/anchor_cluster.py
-c
configs/ppyolo/ppyolo.yml
-n
9
-s
608
-m
v2
-i
1000
```
目前
`tools/anchor_cluster.py`
支持的主要参数配置如下表所示:
| 参数 | 用途 | 默认值 | 备注 |
|:------:|:------:|:------:|:------:|
| -c/--config | 模型的配置文件 | 无默认值 | 必须指定 |
| -n/--n | 聚类的簇数 | 9 | Anchor的数目 |
| -s/--size | 图片的输入尺寸 | None | 若指定,则使用指定的尺寸,如果不指定, 则尝试从配置文件中读取图片尺寸 |
| -m/--method | 使用的Anchor聚类方法 | v2 | 目前只支持yolov2/v5的聚类算法 |
| -i/--iters | kmeans聚类算法的迭代次数 | 1000 | kmeans算法收敛或者达到迭代次数后终止 |
| -gi/--gen_iters | 遗传算法的迭代次数 | 1000 | 该参数只用于yolov5的Anchor聚类算法 |
| -t/--thresh| Anchor尺度的阈值 | 0.25 | 该参数只用于yolov5的Anchor聚类算法 |
## 4.修改参数配置
选择好模型后,需要在
`configs`
目录中找到对应的配置文件,为了适配在自定义数据集上训练,需要对参数配置做一些修改:
...
...
@@ -133,7 +149,7 @@ PaddleDetection中提供了丰富的模型库,具体可在[模型库](../MODEL
-
预训练模型配置:通过在yaml配置文件中的
`pretrain_weights: path/to/weights`
参数可以配置路径,可以是链接或权重文件路径。可直接沿用配置文件中给出的在ImageNet数据集上的预训练模型。同时我们支持训练在COCO或Obj365数据集上的模型权重作为预训练模型,做迁移学习,详情可参考
[
迁移学习文档
](
../advanced_tutorials/TRANSFER_LEARNING_cn.md
)
。
##
4
.开始训练与部署
##
5
.开始训练与部署
-
参数配置完成后,就可以开始训练模型了,具体可参考
[
训练/评估/预测
](
GETTING_STARTED_cn.md
)
入门文档。
-
训练测试完成后,根据需要可以进行模型部署:首先需要导出可预测的模型,可参考
[
导出模型教程
](
../advanced_tutorials/deploy/EXPORT_MODEL.md
)
;导出模型后就可以进行
[
C++预测部署
](
../advanced_tutorials/deploy/DEPLOY_CPP.md
)
或者
[
python端预测部署
](
../advanced_tutorials/deploy/DEPLOY_PY.md
)
。
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录