未验证 提交 e52d90a3 编写于 作者: Z Zhaolong Xing 提交者: GitHub

Merge pull request #14527 from hjchen2/develop

Refine split TensorRT plugin
...@@ -19,9 +19,6 @@ namespace paddle { ...@@ -19,9 +19,6 @@ namespace paddle {
namespace inference { namespace inference {
namespace tensorrt { namespace tensorrt {
/*
* SplitOp.
*/
class SplitOpConverter : public OpConverter { class SplitOpConverter : public OpConverter {
public: public:
void operator()(const framework::proto::OpDesc& op, void operator()(const framework::proto::OpDesc& op,
...@@ -40,16 +37,11 @@ class SplitOpConverter : public OpConverter { ...@@ -40,16 +37,11 @@ class SplitOpConverter : public OpConverter {
int axis = boost::get<int>(op_desc.GetAttr("axis")); int axis = boost::get<int>(op_desc.GetAttr("axis"));
std::vector<int> output_lengths = std::vector<int> output_lengths =
boost::get<std::vector<int>>(op_desc.GetAttr("sections")); boost::get<std::vector<int>>(op_desc.GetAttr("sections"));
// split on batch is not supported in TensorRT
PADDLE_ENFORCE(axis != 0); PADDLE_ENFORCE(axis != 0);
if (axis < 0) { axis += (axis < 0) ? input_dims.nbDims : -1;
axis += input_dims.nbDims;
} else {
axis -= 1;
}
PADDLE_ENFORCE(output_lengths.size() == output_num); PADDLE_ENFORCE(output_lengths.size() == output_num);
//
plugin::SplitPlugin* plugin = new plugin::SplitPlugin(axis, output_lengths); plugin::SplitPlugin* plugin = new plugin::SplitPlugin(axis, output_lengths);
nvinfer1::IPluginLayer* layer = nvinfer1::IPluginLayer* layer =
engine_->AddPlugin(&input, input_num, plugin); engine_->AddPlugin(&input, input_num, plugin);
......
...@@ -20,30 +20,92 @@ namespace paddle { ...@@ -20,30 +20,92 @@ namespace paddle {
namespace inference { namespace inference {
namespace tensorrt { namespace tensorrt {
TEST(split_op, test) { template <int BatchSize, int Axis>
void TensorRTSplitTest(const std::vector<int> &in_shape,
const std::vector<int> &sections) {
std::unordered_set<std::string> parameters({""}); std::unordered_set<std::string> parameters({""});
framework::Scope scope; framework::Scope scope;
TRTConvertValidation validator(10, parameters, scope, 1000); TRTConvertValidation validator(BatchSize + 1, parameters, scope, 10000);
validator.DeclInputVar("split_input", nvinfer1::DimsCHW(3, 2, 2));
validator.DeclOutputVar("split_out1", nvinfer1::DimsCHW(2, 2, 2)); auto make_dim = [](const std::vector<int> &shape) {
validator.DeclOutputVar("split_out2", nvinfer1::DimsCHW(1, 2, 2)); nvinfer1::DimsCHW dim;
dim.c() = shape[0];
dim.h() = shape[1];
dim.w() = shape[2];
return dim;
};
validator.DeclInputVar("split_input", make_dim(in_shape));
std::vector<std::string> output_vars;
for (size_t i = 0; i < sections.size(); ++i) {
auto out_shape = in_shape;
out_shape[Axis - 1] = sections[i];
std::string output_name = "split_out" + std::to_string(i);
validator.DeclOutputVar(output_name, make_dim(out_shape));
output_vars.push_back(output_name);
}
// Prepare Op description // Prepare Op description
framework::OpDesc desc; framework::OpDesc desc;
desc.SetType("split"); desc.SetType("split");
desc.SetInput("X", {"split_input"}); desc.SetInput("X", {"split_input"});
desc.SetOutput("Out", {"split_out1", "split_out2"}); desc.SetOutput("Out", output_vars);
int num = 0; desc.SetAttr("axis", Axis);
int axis = 1; desc.SetAttr("num", 0);
std::vector<int> output_lengths = {2, 1}; desc.SetAttr("sections", sections);
desc.SetAttr("axis", axis);
desc.SetAttr("num", num);
desc.SetAttr("sections", output_lengths);
validator.SetOp(*desc.Proto()); validator.SetOp(*desc.Proto());
validator.Execute(1); validator.Execute(BatchSize);
}
// batch = 0, axis = 1, same shape
TEST(split_op, test_same_shape_axis1_batch1) {
TensorRTSplitTest<1, 1>({4, 2, 2}, {2, 2});
}
// batch = 0, axis = 1, different shape
TEST(split_op, test_different_shape_axis1_batch1) {
TensorRTSplitTest<1, 1>({3, 2, 2}, {2, 1});
}
// batch = 10, axis = 1, same shape
TEST(split_op, test_same_shape_axis1_batch10) {
TensorRTSplitTest<10, 1>({4, 2, 2}, {2, 2});
}
// batch = 10, axis = 1, different shape
TEST(split_op, test_different_shape_axis1_batch10) {
TensorRTSplitTest<10, 1>({3, 2, 2}, {2, 1});
}
// batch = 0, axis = 2, same shape
TEST(split_op, test_same_shape_axis2_batch1) {
TensorRTSplitTest<1, 2>({3, 4, 2}, {2, 2});
}
// batch = 0, axis = 2, different shape
TEST(split_op, test_different_shape_axis2_batch1) {
TensorRTSplitTest<1, 2>({3, 3, 2}, {2, 1});
}
// batch = 10, axis = 2, same shape
TEST(split_op, test_same_shape_axis2_batch10) {
TensorRTSplitTest<10, 2>({3, 4, 2}, {2, 2});
}
// batch = 10, axis = 2, different shape
TEST(split_op, test_different_shape_axis2_batch10) {
TensorRTSplitTest<10, 2>({3, 3, 2}, {2, 1});
}
// batch = 0, axis = 3, same shape
TEST(split_op, test_same_shape_axis3_batch1) {
TensorRTSplitTest<1, 3>({3, 2, 4}, {2, 2});
}
// batch = 0, axis = 3, different shape
TEST(split_op, test_different_shape_axis3_batch1) {
TensorRTSplitTest<1, 3>({3, 2, 3}, {2, 1});
}
// batch = 10, axis = 3, same shape
TEST(split_op, test_same_shape_axis3_batch10) {
TensorRTSplitTest<10, 3>({3, 2, 4}, {2, 2});
}
// batch = 10, axis = 3, different shape
TEST(split_op, test_different_shape_axis3_batch10) {
TensorRTSplitTest<10, 3>({3, 2, 3}, {2, 1});
} }
} // namespace tensorrt } // namespace tensorrt
......
...@@ -12,6 +12,8 @@ ...@@ -12,6 +12,8 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include <cuda_fp16.h>
#include <algorithm>
#include "paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h" #include "paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h"
namespace paddle { namespace paddle {
...@@ -19,6 +21,52 @@ namespace inference { ...@@ -19,6 +21,52 @@ namespace inference {
namespace tensorrt { namespace tensorrt {
namespace plugin { namespace plugin {
// copied from operators::math::SplitFunctor
template <typename T>
__global__ void SplitKernel(const T* input_data, const int in_row,
const int in_col, const int* out_cols,
int out_cols_size, T** outputs_data) {
int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
int curr_segment = 0;
int curr_offset = out_cols[0];
for (; tid_x < in_col; tid_x += blockDim.x * gridDim.x) {
int curr_col_offset = out_cols[curr_segment + 1];
while (curr_col_offset <= tid_x) {
curr_offset = curr_col_offset;
++curr_segment;
curr_col_offset = out_cols[curr_segment + 1];
}
int local_col = tid_x - curr_offset;
int segment_width = curr_col_offset - curr_offset;
T* output_ptr = outputs_data[curr_segment];
if (output_ptr != nullptr) {
int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
for (; tid_y < in_row; tid_y += blockDim.y * gridDim.y)
output_ptr[tid_y * segment_width + local_col] =
input_data[tid_y * in_col + tid_x];
}
}
}
template <typename T>
__global__ void SplitKernel(const T* input_data, const int in_row,
const int in_col, const int fixed_out_col,
T** outputs_data) {
int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
for (; tid_x < in_col; tid_x += blockDim.x * gridDim.x) {
int split = tid_x / fixed_out_col;
int in_offset = tid_x - split * fixed_out_col;
T* output_ptr = outputs_data[split];
if (output_ptr != nullptr) {
int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
for (; tid_y < in_row; tid_y += blockDim.y * gridDim.y)
output_ptr[tid_y * fixed_out_col + in_offset] =
input_data[tid_y * in_col + tid_x];
}
}
}
nvinfer1::Dims SplitPlugin::getOutputDimensions( nvinfer1::Dims SplitPlugin::getOutputDimensions(
int index, const nvinfer1::Dims* input_dims, int num_inputs) { int index, const nvinfer1::Dims* input_dims, int num_inputs) {
PADDLE_ENFORCE_EQ(num_inputs, 1); PADDLE_ENFORCE_EQ(num_inputs, 1);
...@@ -31,48 +79,96 @@ nvinfer1::Dims SplitPlugin::getOutputDimensions( ...@@ -31,48 +79,96 @@ nvinfer1::Dims SplitPlugin::getOutputDimensions(
int SplitPlugin::initialize() { int SplitPlugin::initialize() {
PADDLE_ENFORCE_LE(axis_, nvinfer1::Dims::MAX_DIMS); PADDLE_ENFORCE_LE(axis_, nvinfer1::Dims::MAX_DIMS);
// notice input dims is [C, H, W]
nvinfer1::Dims dims = this->getInputDims(0);
outer_rows_ = 1;
inner_cols_ = 1;
for (int i = 0; i < axis_; ++i) {
outer_rows_ *= dims.d[i];
}
for (int i = axis_ + 1; i < dims.nbDims; ++i) {
inner_cols_ *= dims.d[i];
}
same_shape_ = true;
std::vector<int> segment_offsets(1, 0); std::vector<int> segment_offsets(1, 0);
for (int i = 0; i < this->getNbOutputs(); ++i) { for (int i = 0; i < this->getNbOutputs(); ++i) {
segment_offsets.push_back(segment_offsets.back() + output_length_[i]); if (output_length_[i] != output_length_[0]) {
same_shape_ = false;
}
segment_offsets.push_back(segment_offsets.back() +
output_length_[i] * inner_cols_);
} }
segment_offsets_ = segment_offsets; inner_cols_ *= dims.d[axis_];
nvinfer1::Dims dims = this->getInputDims(0); d_segment_offsets_ = segment_offsets;
nx_ = 1; segment_offsets_ = std::move(segment_offsets);
for (int i = dims.nbDims - 1; i > axis_; --i) { d_output_ptrs_.resize(this->getNbOutputs(), nullptr);
nx_ *= dims.d[i]; return 0;
}
template <typename T>
inline void Split(cudaStream_t stream, const bool same_shape,
const int outer_rows, const int inner_cols,
const std::vector<int>& segment_offsets,
const int* d_segment_offsets, const T* input, T** outputs) {
const int kThreadsPerBlock = 1024;
const int kMaxBlocks = 65535;
int block_cols = kThreadsPerBlock;
if (inner_cols < kThreadsPerBlock) { // block_cols is aligned by 32.
block_cols = ((inner_cols + 31) >> 5) << 5;
} }
ny_ = dims.d[axis_]; int block_rows = kThreadsPerBlock / block_cols;
nz_ = 1; dim3 block_size = dim3(block_cols, block_rows, 1);
for (int i = axis_ - 1; i >= 0; --i) {
nz_ *= dims.d[i]; int grid_cols =
std::min((inner_cols + block_cols - 1) / block_cols, kMaxBlocks);
int grid_rows =
std::min(kMaxBlocks / grid_cols, std::max(outer_rows / block_rows, 1));
dim3 grid_size = dim3(grid_cols, grid_rows, 1);
if (same_shape) {
SplitKernel<<<grid_size, block_size, 0, stream>>>(
input, outer_rows, inner_cols, segment_offsets[1], outputs);
} else {
SplitKernel<<<grid_size, block_size, 0, stream>>>(
input, outer_rows, inner_cols, d_segment_offsets,
static_cast<int>(segment_offsets.size()), outputs);
} }
return 0;
} }
int SplitPlugin::enqueue(int batchSize, const void* const* inputs, int SplitPlugin::enqueue(int batchSize, const void* const* inputs,
void** outputs, void* workspace, cudaStream_t stream) { void** outputs, void* workspace, cudaStream_t stream) {
auto const& input_dims = this->getInputDims(0); float const* input_ptr = reinterpret_cast<float const*>(inputs[0]);
int input_size = 0; if (((batchSize == 1 && axis_ == 0) || axis_ == -1) &&
float const* idata = reinterpret_cast<float const*>(inputs[0]); this->getNbOutputs() < 10) {
float** odatas = reinterpret_cast<float**>(outputs); float** output_ptrs = reinterpret_cast<float**>(outputs);
int data_type_size = (this->getDataType() == nvinfer1::DataType::kFLOAT)
// kernel impl here. ? sizeof(float)
int inputBatchOffset = nx_ * ny_ * nz_; : sizeof(__half);
for (size_t i = 0; i < this->getNbOutputs(); i++) { for (int i = 0; i < this->getNbOutputs(); ++i) {
for (size_t j = 0; j < batchSize; j++) { PADDLE_ENFORCE(
cudaMemcpyAsync( cudaMemcpyAsync(
odatas[i] + output_ptrs[i], input_ptr + segment_offsets_[i],
j * (segment_offsets_[i + 1] - segment_offsets_[i]) * nx_ * (segment_offsets_[i + 1] - segment_offsets_[i]) * data_type_size,
sizeof(float), cudaMemcpyDeviceToDevice, stream) == cudaSuccess);
inputs[0] + }
(inputBatchOffset * j + segment_offsets_[i] * nx_) * } else {
sizeof(float), outer_rows_ *= batchSize;
(segment_offsets_[i + 1] - segment_offsets_[i]) * nx_ * sizeof(float), const int* d_segment_offsets_ptr =
cudaMemcpyDeviceToDevice, stream); thrust::raw_pointer_cast(&d_segment_offsets_[0]);
float** output_ptrs = thrust::raw_pointer_cast(&d_output_ptrs_[0]);
PADDLE_ENFORCE(cudaMemcpyAsync(output_ptrs, outputs,
this->getNbOutputs() * sizeof(float*),
cudaMemcpyHostToDevice,
stream) == cudaSuccess);
if (this->getDataType() == nvinfer1::DataType::kFLOAT) {
Split(stream, same_shape_, outer_rows_, inner_cols_, segment_offsets_,
d_segment_offsets_ptr, input_ptr, output_ptrs);
} else {
Split(stream, same_shape_, outer_rows_, inner_cols_, segment_offsets_,
d_segment_offsets_ptr, (__half*)input_ptr, // NOLINT
(__half**)output_ptrs); // NOLINT
} }
} }
return cudaGetLastError() != cudaSuccess; return cudaGetLastError() != cudaSuccess;
} }
......
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
#pragma once #pragma once
#include <thrust/device_vector.h>
#include <vector> #include <vector>
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h" #include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
...@@ -25,7 +26,7 @@ namespace plugin { ...@@ -25,7 +26,7 @@ namespace plugin {
class SplitPlugin : public PluginTensorRT { class SplitPlugin : public PluginTensorRT {
public: public:
SplitPlugin(int axis, std::vector<int> const &output_lengths) SplitPlugin(int axis, std::vector<int> const &output_lengths)
: axis_(axis), output_length_(output_lengths) {} : axis_(axis), same_shape_(true), output_length_(output_lengths) {}
SplitPlugin(void const *serial_data, size_t serial_length) { SplitPlugin(void const *serial_data, size_t serial_length) {
deserializeBase(serial_data, serial_length); deserializeBase(serial_data, serial_length);
...@@ -60,9 +61,13 @@ class SplitPlugin : public PluginTensorRT { ...@@ -60,9 +61,13 @@ class SplitPlugin : public PluginTensorRT {
} }
int axis_; int axis_;
int outer_rows_;
int inner_cols_;
bool same_shape_;
std::vector<int> output_length_; std::vector<int> output_length_;
int nx_, ny_, nz_;
std::vector<int> segment_offsets_; std::vector<int> segment_offsets_;
thrust::device_vector<int> d_segment_offsets_;
thrust::device_vector<float *> d_output_ptrs_;
}; };
} // namespace plugin } // namespace plugin
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册