Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
e4e37640
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e4e37640
编写于
3月 12, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
use memory Copy. test=develop
上级
626fb859
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
39 addition
and
23 deletion
+39
-23
paddle/fluid/operators/detection/yolo_box_op.cc
paddle/fluid/operators/detection/yolo_box_op.cc
+11
-8
paddle/fluid/operators/detection/yolo_box_op.cu
paddle/fluid/operators/detection/yolo_box_op.cu
+16
-7
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+3
-3
python/paddle/fluid/tests/unittests/test_yolo_box_op.py
python/paddle/fluid/tests/unittests/test_yolo_box_op.py
+1
-1
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
+8
-4
未找到文件。
paddle/fluid/operators/detection/yolo_box_op.cc
浏览文件 @
e4e37640
...
...
@@ -74,9 +74,8 @@ class YoloBoxOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void
Make
()
override
{
AddInput
(
"X"
,
"The input tensor of YoloBox operator, "
"This is a 4-D tensor with shape of [N, C, H, W]. "
"H and W should be same, and the second dimension(C) stores "
"The input tensor of YoloBox operator is a 4-D tensor with "
"shape of [N, C, H, W]. The second dimension(C) stores "
"box locations, confidence score and classification one-hot "
"keys of each anchor box. Generally, X should be the output "
"of YOLOv3 network."
);
...
...
@@ -91,10 +90,10 @@ class YoloBoxOpMaker : public framework::OpProtoAndCheckerMaker {
"batch num, M is output box number, and the 3rd dimension "
"stores [xmin, ymin, xmax, ymax] coordinates of boxes."
);
AddOutput
(
"Scores"
,
"The output tensor ofdetection boxes scores of YoloBox "
"operator, This is a 3-D tensor with shape of
[N, M, C],
"
"
N is the batch num, M is output box number, C is the
"
"
class
number."
);
"The output tensor of
detection boxes scores of YoloBox "
"operator, This is a 3-D tensor with shape of "
"
[N, M, :attr:`class_num`], N is the batch num, M is
"
"
output box
number."
);
AddAttr
<
int
>
(
"class_num"
,
"The number of classes to predict."
);
AddAttr
<
std
::
vector
<
int
>>
(
"anchors"
,
...
...
@@ -112,7 +111,7 @@ class YoloBoxOpMaker : public framework::OpProtoAndCheckerMaker {
"be ignored."
)
.
SetDefault
(
0.01
);
AddComment
(
R"DOC(
This operator generate YOLO detection boxes from output of YOLOv3 network.
This operator generate
s
YOLO detection boxes from output of YOLOv3 network.
The output of previous network is in shape [N, C, H, W], while H and W
should be the same, H and W specify the grid size, each grid point predict
...
...
@@ -150,6 +149,10 @@ class YoloBoxOpMaker : public framework::OpProtoAndCheckerMaker {
:attr:`conf_thresh` should be ignored, and box final scores is the product of
confidence scores and classification scores.
$$
score_{pred} = score_{conf} * score_{class}
$$
)DOC"
);
}
};
...
...
paddle/fluid/operators/detection/yolo_box_op.cu
浏览文件 @
e4e37640
...
...
@@ -83,12 +83,22 @@ class YoloBoxOpCUDAKernel : public framework::OpKernel<T> {
const
int
an_num
=
anchors
.
size
()
/
2
;
int
input_size
=
downsample_ratio
*
h
;
Tensor
anchors_t
,
cpu_anchors_t
;
auto
cpu_anchors_data
=
cpu_anchors_t
.
mutable_data
<
int
>
({
an_num
*
2
},
platform
::
CPUPlace
());
std
::
copy
(
anchors
.
begin
(),
anchors
.
end
(),
cpu_anchors_data
);
TensorCopySync
(
cpu_anchors_t
,
ctx
.
GetPlace
(),
&
anchors_t
);
auto
anchors_data
=
anchors_t
.
data
<
int
>
();
/* Tensor anchors_t, cpu_anchors_t; */
/* auto cpu_anchors_data = */
/* cpu_anchors_t.mutable_data<int>({an_num * 2}, platform::CPUPlace()); */
/* std::copy(anchors.begin(), anchors.end(), cpu_anchors_data); */
/* TensorCopySync(cpu_anchors_t, ctx.GetPlace(), &anchors_t); */
/* auto anchors_data = anchors_t.data<int>(); */
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
auto
&
allocator
=
platform
::
DeviceTemporaryAllocator
::
Instance
().
Get
(
dev_ctx
);
int
bytes
=
sizeof
(
int
)
*
anchors
.
size
();
auto
anchors_ptr
=
allocator
.
Allocate
(
sizeof
(
int
)
*
anchors
.
size
());
int
*
anchors_data
=
reinterpret_cast
<
int
*>
(
anchors_ptr
->
ptr
());
const
auto
gplace
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
());
const
auto
cplace
=
platform
::
CPUPlace
();
memory
::
Copy
(
gplace
,
anchors_data
,
cplace
,
anchors
.
data
(),
bytes
,
dev_ctx
.
stream
());
const
T
*
input_data
=
input
->
data
<
T
>
();
const
int
*
imgsize_data
=
img_size
->
data
<
int
>
();
...
...
@@ -96,7 +106,6 @@ class YoloBoxOpCUDAKernel : public framework::OpKernel<T> {
T
*
scores_data
=
scores
->
mutable_data
<
T
>
({
n
,
box_num
,
class_num
},
ctx
.
GetPlace
());
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
set_zero
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
set_zero
(
dev_ctx
,
boxes
,
static_cast
<
T
>
(
0
));
set_zero
(
dev_ctx
,
scores
,
static_cast
<
T
>
(
0
));
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
e4e37640
...
...
@@ -632,8 +632,8 @@ def yolo_box(x,
Returns:
Variable: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
and a 3-D tensor with shape [N, M,
C], the classification scores
of boxes.
and a 3-D tensor with shape [N, M,
:attr:`class_num`], the classification
scores
of boxes.
Raises:
TypeError: Input x of yolov_box must be Variable
...
...
@@ -647,7 +647,7 @@ def yolo_box(x,
x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
anchors = [10, 13, 16, 30, 33, 23]
loss = fluid.layers.yolo
v3_loss
(x=x, class_num=80, anchors=anchors,
loss = fluid.layers.yolo
_box
(x=x, class_num=80, anchors=anchors,
conf_thresh=0.01, downsample_ratio=32)
"""
helper
=
LayerHelper
(
'yolo_box'
,
**
locals
())
...
...
python/paddle/fluid/tests/unittests/test_yolo_box_op.py
浏览文件 @
e4e37640
# Copyright (c) 201
8
PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 201
9
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
浏览文件 @
e4e37640
...
...
@@ -75,8 +75,8 @@ def YOLOv3Loss(x, gtbox, gtlabel, attrs):
mask_num
=
len
(
anchor_mask
)
class_num
=
attrs
[
"class_num"
]
ignore_thresh
=
attrs
[
'ignore_thresh'
]
downsample
_ratio
=
attrs
[
'downsample_ratio
'
]
input_size
=
downsample
_ratio
*
h
downsample
=
attrs
[
'downsample
'
]
input_size
=
downsample
*
h
x
=
x
.
reshape
((
n
,
mask_num
,
5
+
class_num
,
h
,
w
)).
transpose
((
0
,
1
,
3
,
4
,
2
))
loss
=
np
.
zeros
((
n
)).
astype
(
'float32'
)
...
...
@@ -86,6 +86,10 @@ def YOLOv3Loss(x, gtbox, gtlabel, attrs):
pred_box
[:,
:,
:,
:,
0
]
=
(
grid_x
+
sigmoid
(
pred_box
[:,
:,
:,
:,
0
]))
/
w
pred_box
[:,
:,
:,
:,
1
]
=
(
grid_y
+
sigmoid
(
pred_box
[:,
:,
:,
:,
1
]))
/
h
x
[:,
:,
:,
:,
5
:]
=
np
.
where
(
x
[:,
:,
:,
:,
5
:]
<
-
0.5
,
x
[:,
:,
:,
:,
5
:],
np
.
ones_like
(
x
[:,
:,
:,
:,
5
:])
*
1.0
/
class_num
)
mask_anchors
=
[]
for
m
in
anchor_mask
:
mask_anchors
.
append
((
anchors
[
2
*
m
],
anchors
[
2
*
m
+
1
]))
...
...
@@ -172,7 +176,7 @@ class TestYolov3LossOp(OpTest):
"anchor_mask"
:
self
.
anchor_mask
,
"class_num"
:
self
.
class_num
,
"ignore_thresh"
:
self
.
ignore_thresh
,
"downsample
_ratio"
:
self
.
downsample_ratio
,
"downsample
"
:
self
.
downsample
,
}
self
.
inputs
=
{
...
...
@@ -204,7 +208,7 @@ class TestYolov3LossOp(OpTest):
self
.
anchor_mask
=
[
1
,
2
]
self
.
class_num
=
5
self
.
ignore_thresh
=
0.5
self
.
downsample
_ratio
=
32
self
.
downsample
=
32
self
.
x_shape
=
(
3
,
len
(
self
.
anchor_mask
)
*
(
5
+
self
.
class_num
),
5
,
5
)
self
.
gtbox_shape
=
(
3
,
5
,
4
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录