提交 e43f5bc7 编写于 作者: M minqiyang

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into fix_dist_resnet_ut_in_py36

test=develop
......@@ -109,7 +109,8 @@ function(op_library TARGET)
# Define operators that don't need pybind here.
foreach(manual_pybind_op "compare_op" "logical_op" "nccl_op"
"tensor_array_read_write_op" "tensorrt_engine_op" "conv_fusion_op")
"tensor_array_read_write_op" "tensorrt_engine_op" "conv_fusion_op"
"fusion_transpose_flatten_concat_op")
if ("${TARGET}" STREQUAL "${manual_pybind_op}")
set(pybind_flag 1)
endif()
......
......@@ -117,7 +117,7 @@ cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto)
cc_library(shape_inference SRCS shape_inference.cc DEPS ddim attribute device_context)
if (NOT WIN32)
cc_library(transfer_scope_cache SRCS transfer_scope_cache.cc DEPS scope framework_proto)
cc_library(transfer_scope_cache SRCS transfer_scope_cache.cc DEPS scope framework_proto device_context)
cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope glog
shape_inference data_transform lod_tensor profiler transfer_scope_cache)
else()
......
......@@ -17,16 +17,28 @@
namespace paddle {
namespace framework {
// Holds all the transfer scope across the process.
std::unordered_map<size_t, Scope*>& global_transfer_data_cache() {
thread_local auto* x = new std::unordered_map<size_t, Scope*>;
typedef std::unordered_map<size_t, Scope*> map_t;
thread_local std::unique_ptr<map_t> x(new map_t);
return *x;
}
// Holds all the transfer scope for this thread.
std::unordered_set<Scope*>& global_transfer_scope_cache() {
thread_local auto* x = new std::unordered_set<Scope*>;
typedef std::unordered_set<Scope*> set_t;
thread_local std::unique_ptr<set_t> x(new set_t);
return *x;
}
// Try to create a transfer scope. If one cached scope has match the
// requirement, just return that one.
// Inputs:
// @type0: the source kernel type.
// @type1: the target kernel type.
// @scope: the execution scope of this op.
// Returns: A scope used to hold the transfer data across the different kernel
// type.
Scope* TryCreateTransferScope(OpKernelType type0, OpKernelType type1,
const Scope* scope) {
Scope* new_scope{nullptr};
......@@ -46,27 +58,5 @@ Scope* TryCreateTransferScope(OpKernelType type0, OpKernelType type1,
return new_scope;
}
void RemoveKidsFromTransferScopeCache(Scope* scope) {
auto it = global_transfer_scope_cache().find(scope);
if (it != global_transfer_scope_cache().end()) {
global_transfer_scope_cache().erase(it);
}
for (auto* s : scope->kids()) {
auto it = global_transfer_scope_cache().find(s);
if (it != global_transfer_scope_cache().end()) {
global_transfer_scope_cache().erase(it);
}
}
// remove global transfer data cache
auto& cache = global_transfer_data_cache();
for (auto it = cache.begin(); it != cache.end();) {
if (it->second == scope)
it = cache.erase(it);
else
it++;
}
}
} // namespace framework
} // namespace paddle
include(operators)
register_operators()
register_operators(EXCLUDES fusion_transpose_flatten_concat_op)
if (WITH_GPU)
op_library(fusion_transpose_flatten_concat_op)
file(APPEND ${pybind_file} "USE_CUDA_ONLY_OP(fusion_transpose_flatten_concat);\n")
endif()
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fused/fusion_transpose_flatten_concat_op.h"
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using framework::Tensor;
class TransposeFlattenConcatFusionOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE_GE(ctx->Inputs("X").size(), 1UL,
"Inputs(X) of ConcatOp should be empty.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of ConcatOp should not be null.");
auto ins = ctx->GetInputsDim("X");
const size_t n = ins.size();
PADDLE_ENFORCE_GT(n, 0, "Input tensors count should > 0.");
std::vector<int> trans_axis =
ctx->Attrs().Get<std::vector<int>>("trans_axis");
int flatten_axis = ctx->Attrs().Get<int>("flatten_axis");
int concat_axis = ctx->Attrs().Get<int>("concat_axis");
size_t x_rank = ins[0].size();
size_t trans_axis_size = trans_axis.size();
PADDLE_ENFORCE_EQ(x_rank, trans_axis_size,
"The input tensor's rank(%d) "
"should be equal to the permutation axis's size(%d)",
x_rank, trans_axis_size);
auto dims0 =
GetFlattenShape(flatten_axis, GetPermuteShape(trans_axis, ins[0]));
std::vector<int> out_dims(dims0);
for (size_t i = 1; i < n; i++) {
auto dimsi =
GetFlattenShape(flatten_axis, GetPermuteShape(trans_axis, ins[i]));
for (int j = 0; j < static_cast<int>(dims0.size()); j++) {
if (j == concat_axis) {
out_dims[concat_axis] += dimsi[j];
} else {
PADDLE_ENFORCE_EQ(out_dims[j], dimsi[j],
"After flatting, the %d-th dim should be save "
"except the specify axis.",
j);
}
}
}
if (out_dims[concat_axis] < 0) {
out_dims[concat_axis] = -1;
}
ctx->SetOutputDim("Out", framework::make_ddim(out_dims));
}
};
class TransposeFlattenConcatFusionOpMaker
: public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput(
"X",
"(Tensor) The input tensor, tensors with rank up to 6 are supported.")
.AsDuplicable();
AddOutput("Out", "(Tensor)The output tensor.");
AddAttr<std::vector<int>>(
"trans_axis",
"(vector<int>) A list of values, and the size of the list should be "
"the same with the input tensor rank. This operator permutes the input "
"tensor's axes according to the values given.");
AddAttr<int>("flatten_axis",
"(int)"
"Indicate up to which input dimensions (exclusive) should be"
"flattened to the outer dimension of the output. The value"
"for axis must be in the range [0, R], where R is the rank of"
"the input tensor. When axis = 0, the shape of the output"
"tensor is (1, (d_0 X d_1 ... d_n), where the shape of the"
"input tensor is (d_0, d_1, ... d_n).");
AddAttr<int>("concat_axis",
"The axis along which the input tensors will be concatenated. "
"It should be 0 or 1, since the tensor is 2D after flatting.");
AddComment(R"DOC(
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(fusion_transpose_flatten_concat,
ops::TransposeFlattenConcatFusionOp,
ops::TransposeFlattenConcatFusionOpMaker,
paddle::framework::EmptyGradOpMaker);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fused/fusion_transpose_flatten_concat_op.h"
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/cudnn_helper.h"
namespace paddle {
namespace operators {
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;
template <typename T>
class TransposeFlattenConcatFusionKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto ins = ctx.MultiInput<framework::Tensor>("X");
auto* out = ctx.Output<framework::Tensor>("Out");
out->mutable_data<T>(ctx.GetPlace());
auto odims = out->dims();
std::vector<int> trans_axis = ctx.Attr<std::vector<int>>("trans_axis");
int flatten_axis = ctx.Attr<int>("flatten_axis");
int concat_axis = ctx.Attr<int>("concat_axis");
int rank = ins[0]->dims().size();
// use at least 4D in cudnnTransformTensor
int max_dim = rank < 4 ? 4 : rank;
std::vector<int> stride_x(max_dim, 0);
std::vector<int> stride_y(max_dim, 0);
std::vector<int> dims_y(max_dim, 0);
cudnnTensorDescriptor_t in_desc;
cudnnTensorDescriptor_t out_desc;
CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&in_desc));
CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&out_desc));
cudnnDataType_t cudnn_dtype = CudnnDataType<T>::type;
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
auto handle = dev_ctx.cudnn_handle();
T* odata = out->data<T>();
for (size_t k = 0; k < ins.size(); ++k) {
auto perm_shape = GetPermuteShape(trans_axis, ins[k]->dims());
int osize = 1;
auto idims = ins[k]->dims();
for (int i = 0; i < rank; i++) {
stride_x[i] = 1;
for (int j = trans_axis[i] + 1; j < rank; j++) {
stride_x[i] *= idims[j];
}
dims_y[i] = perm_shape[i];
osize *= perm_shape[i];
}
stride_y[rank - 1] = 1;
for (int i = rank - 2; i >= 0; i--) {
if (((i + 1) == flatten_axis) && (concat_axis == 1)) {
stride_y[i] = odims[1];
} else {
stride_y[i] = stride_y[i + 1] * perm_shape[i + 1];
}
}
// Since concat is aftern flatten, the output is 2D tensor.
// If concat_axis is 0, each input's permutated tensor is continuous.
// If concat_axis is 1, the stride of 0-th dim of each input's
// permutated tensor is odims()[1].
for (int i = rank; i < max_dim; i++) {
stride_x[i] = 1;
stride_y[i] = 1;
dims_y[i] = 1;
}
CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
in_desc, cudnn_dtype, max_dim, dims_y.data(), stride_x.data()));
CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
out_desc, cudnn_dtype, max_dim, dims_y.data(), stride_y.data()));
CUDNN_ENFORCE(platform::dynload::cudnnTransformTensor(
handle, CudnnDataType<T>::kOne(), in_desc,
static_cast<const void*>(ins[k]->data<T>()),
CudnnDataType<T>::kZero(), out_desc, static_cast<void*>(odata)));
if (concat_axis == 0) {
odata += osize;
} else {
auto flat_shape = GetFlattenShape(flatten_axis, perm_shape);
odata += flat_shape[1];
}
}
CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(in_desc));
CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(out_desc));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(fusion_transpose_flatten_concat,
ops::TransposeFlattenConcatFusionKernel<float>,
ops::TransposeFlattenConcatFusionKernel<double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/ddim.h"
namespace paddle {
namespace operators {
inline std::vector<int32_t> GetPermuteShape(const std::vector<int>& axis,
const framework::DDim& in_dims) {
std::vector<int32_t> out_dims(in_dims.size());
for (size_t i = 0; i < axis.size(); i++) {
out_dims[i] = in_dims[axis[i]];
}
return out_dims;
}
inline std::vector<int32_t> GetFlattenShape(const int axis,
const std::vector<int>& in_dims) {
int64_t outer = 1, inner = 1;
for (int i = 0; i < static_cast<int>(in_dims.size()); ++i) {
if (i < axis) {
outer *= in_dims[i];
} else {
inner *= in_dims[i];
}
}
std::vector<int32_t> out_shape(2);
out_shape[0] = outer;
out_shape[1] = inner;
return out_shape;
}
} // namespace operators
} // namespace paddle
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
class TestFusionTransposeFlattenConcationOp(OpTest):
def setUp(self):
self.init_test_case()
self.op_type = "fusion_transpose_flatten_concat"
ins = []
flats = []
for i in range(len(self.shapes)):
in_shape = self.shapes[i]
a = np.random.random(in_shape).astype("float32")
ins.append(("x%d" % i, a))
b = a.transpose(self.trans_axis)
flat_shape = (np.prod(b.shape[:self.flatten_axis]),
np.prod(b.shape[self.flatten_axis:]))
c = b.reshape(flat_shape)
flats.append(c)
out = np.concatenate(flats, axis=self.concat_axis)
self.inputs = {'X': ins}
self.attrs = {
'trans_axis': list(self.trans_axis),
'flatten_axis': self.flatten_axis,
'concat_axis': self.concat_axis
}
self.outputs = {'Out': out}
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
self.check_output_with_place(place, 1e-6)
else:
pass
def init_test_case(self):
self.shapes = [(3, 4, 17, 17), (3, 8, 7, 7), (3, 12, 5, 5)]
self.trans_axis = (0, 2, 3, 1)
self.flatten_axis = 1
self.concat_axis = 1
class TestCase1(TestFusionTransposeFlattenConcationOp):
def init_test_case(self):
self.shapes = [(3, 4, 18, 17), (3, 8, 18, 7), (6, 12, 9, 5)]
self.trans_axis = (0, 2, 3, 1)
self.flatten_axis = 2
self.concat_axis = 1
class TestCase2(TestFusionTransposeFlattenConcationOp):
def init_test_case(self):
self.shapes = [(3, 8, 20, 17), (3, 8, 19, 17), (3, 8, 40, 17)]
self.trans_axis = (0, 2, 3, 1)
self.flatten_axis = 2
self.concat_axis = 0
class TestCase3(TestFusionTransposeFlattenConcationOp):
def init_test_case(self):
self.shapes = [(3, 8, 20, 17), (3, 8, 19, 17), (3, 8, 40, 17)]
self.trans_axis = (0, 3, 2, 1)
self.flatten_axis = 1
self.concat_axis = 1
class TestCase4(TestFusionTransposeFlattenConcationOp):
def init_test_case(self):
self.shapes = [(3, 8, 9, 17), (8, 3, 9, 17), (4, 6, 9, 17)]
self.trans_axis = (0, 2, 1, 3)
self.flatten_axis = 3
self.concat_axis = 1
class TestCase5(TestFusionTransposeFlattenConcationOp):
def init_test_case(self):
self.shapes = [(3, 8, 9, 17, 2), (3, 8, 2, 17, 9), (3, 17, 9, 8, 2)]
self.trans_axis = (0, 2, 1, 4, 3)
self.flatten_axis = 1
self.concat_axis = 1
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册