Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
e3a8929c
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e3a8929c
编写于
1月 25, 2019
作者:
J
JiabinYang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
little change
上级
cddecad7
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
159 addition
and
61 deletion
+159
-61
paddle/fluid/inference/utils/CMakeLists.txt
paddle/fluid/inference/utils/CMakeLists.txt
+2
-2
python/paddle/fluid/imperative/nn.py
python/paddle/fluid/imperative/nn.py
+1
-1
python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
...n/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
+108
-58
python/paddle/fluid/tests/unittests/test_imperative_split.py
python/paddle/fluid/tests/unittests/test_imperative_split.py
+48
-0
未找到文件。
paddle/fluid/inference/utils/CMakeLists.txt
浏览文件 @
e3a8929c
cc_library
(
benchmark SRCS benchmark.cc DEPS enforce
)
cc_library
(
benchmark SRCS benchmark.cc DEPS enforce
)
cc_test
(
test_benchmark SRCS benchmark_tester.cc DEPS benchmark
)
cc_test
(
test_benchmark SRCS benchmark_tester.cc DEPS benchmark
)
cc_binary
(
visualizer SRCS visualizer.cc DEPS analysis
#
cc_binary(visualizer SRCS visualizer.cc DEPS analysis
paddle_pass_builder ir_pass_manager pass graph_viz_pass analysis_passes
)
#
paddle_pass_builder ir_pass_manager pass graph_viz_pass analysis_passes)
python/paddle/fluid/imperative/nn.py
浏览文件 @
e3a8929c
...
@@ -295,7 +295,7 @@ class EMBEDDING(layers.Layer):
...
@@ -295,7 +295,7 @@ class EMBEDDING(layers.Layer):
self
.
_param_attr
=
param_attr
self
.
_param_attr
=
param_attr
self
.
_dtype
=
dtype
self
.
_dtype
=
dtype
self
.
_remote_prefetch
=
self
.
is_sparse
and
(
not
self
.
is_distributed
)
self
.
_remote_prefetch
=
self
.
_is_sparse
and
(
not
self
.
_
is_distributed
)
if
self
.
_remote_prefetch
:
if
self
.
_remote_prefetch
:
assert
self
.
_is_sparse
is
True
and
self
.
_is_distributed
is
False
assert
self
.
_is_sparse
is
True
and
self
.
_is_distributed
is
False
...
...
python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
浏览文件 @
e3a8929c
...
@@ -18,23 +18,28 @@ import unittest
...
@@ -18,23 +18,28 @@ import unittest
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid.imperative.nn
import
EMBEDDING
from
paddle.fluid.imperative.nn
import
EMBEDDING
import
paddle.fluid.framework
as
framework
import
paddle.fluid.framework
as
framework
import
paddle.fluid.optimizer
as
optimizer
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.imperative.base
import
to_variable
import
numpy
as
np
from
paddle.fluid.backward
import
append_backward
from
paddle.fluid.backward
import
append_backward
class
SimpleLSTMRNN
(
fluid
.
imperative
.
Layer
):
class
SimpleLSTMRNN
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
hidden_size
,
num_layers
=
2
,
init_scale
=
0.1
,
dropout
=
None
):
def
__init__
(
self
,
hidden_size
,
num_steps
,
num_layers
=
2
,
init_scale
=
0.1
,
dropout
=
None
):
super
(
SimpleLSTMRNN
,
self
).
__init__
()
self
.
_hidden_size
=
hidden_size
self
.
_hidden_size
=
hidden_size
self
.
_num_layers
=
num_layers
self
.
_num_layers
=
num_layers
self
.
_init_scale
=
init_scale
self
.
_init_scale
=
init_scale
self
.
_dropout
=
dropout
self
.
_dropout
=
dropout
self
.
input
=
None
self
.
input
=
None
self
.
num_steps
=
num_steps
def
_build_once
(
self
,
def
_build_once
(
self
,
input_embedding
,
init_hidden
=
None
,
init_cell
=
None
):
input_embedding
,
seq_len
,
init_hidden
=
None
,
init_cell
=
None
):
self
.
weight_1_arr
=
[]
self
.
weight_1_arr
=
[]
self
.
weight_2_arr
=
[]
self
.
weight_2_arr
=
[]
self
.
bias_arr
=
[]
self
.
bias_arr
=
[]
...
@@ -57,7 +62,7 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
...
@@ -57,7 +62,7 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
default_initializer
=
fluid
.
initializer
.
Constant
(
0.0
))
default_initializer
=
fluid
.
initializer
.
Constant
(
0.0
))
self
.
bias_arr
.
append
(
bias_1
)
self
.
bias_arr
.
append
(
bias_1
)
pre_hidden
=
self
.
layers
.
slice
(
pre_hidden
=
fluid
.
layers
.
slice
(
init_hidden
,
axes
=
[
0
],
starts
=
[
i
],
ends
=
[
i
+
1
])
init_hidden
,
axes
=
[
0
],
starts
=
[
i
],
ends
=
[
i
+
1
])
pre_cell
=
fluid
.
layers
.
slice
(
pre_cell
=
fluid
.
layers
.
slice
(
init_cell
,
axes
=
[
0
],
starts
=
[
i
],
ends
=
[
i
+
1
])
init_cell
,
axes
=
[
0
],
starts
=
[
i
],
ends
=
[
i
+
1
])
...
@@ -65,22 +70,20 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
...
@@ -65,22 +70,20 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
pre_hidden
,
shape
=
[
-
1
,
self
.
_hidden_size
])
pre_hidden
,
shape
=
[
-
1
,
self
.
_hidden_size
])
pre_cell
=
fluid
.
layers
.
reshape
(
pre_cell
=
fluid
.
layers
.
reshape
(
pre_cell
,
shape
=
[
-
1
,
self
.
_hidden_size
])
pre_cell
,
shape
=
[
-
1
,
self
.
_hidden_size
])
fluid
.
hidden_array
.
append
(
pre_hidden
)
self
.
hidden_array
.
append
(
pre_hidden
)
fluid
.
cell_array
.
append
(
pre_cell
)
self
.
cell_array
.
append
(
pre_cell
)
def
forward
(
self
,
def
forward
(
self
,
input_embedding
,
init_hidden
=
None
,
init_cell
=
None
):
input_embedding
,
seq_len
,
init_hidden
=
None
,
init_cell
=
None
):
res
=
[]
res
=
[]
for
index
in
range
(
se
q_len
):
for
index
in
range
(
se
lf
.
num_steps
):
self
.
input
=
fluid
.
layers
.
slice
(
self
.
input
=
fluid
.
layers
.
slice
(
input_embedding
,
axes
=
[
1
],
starts
=
[
index
],
ends
=
[
index
+
1
])
input_embedding
,
axes
=
[
1
],
starts
=
[
index
],
ends
=
[
index
+
1
])
self
.
input
=
fluid
.
layers
.
reshape
(
self
.
input
=
fluid
.
layers
.
reshape
(
self
.
input
,
shape
=
[
-
1
,
self
.
_hidden_size
])
self
.
input
,
shape
=
[
-
1
,
self
.
_hidden_size
])
for
k
in
range
(
self
.
_num_layers
):
for
k
in
range
(
self
.
_num_layers
):
pre_hidden
=
self
.
hidden_array
[
k
]
pre_hidden
=
self
.
hidden_array
[
k
]
print
(
"pre_hidden shape is:{}"
.
format
(
pre_hidden
.
shape
))
print
(
"input shape is:{}"
.
format
(
self
.
input
.
shape
))
pre_cell
=
self
.
cell_array
[
k
]
pre_cell
=
self
.
cell_array
[
k
]
weight_1
=
self
.
weight_1_arr
[
k
]
weight_1
=
self
.
weight_1_arr
[
k
]
bias
=
self
.
bias_arr
[
k
]
bias
=
self
.
bias_arr
[
k
]
...
@@ -89,38 +92,41 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
...
@@ -89,38 +92,41 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
gate_input
=
fluid
.
layers
.
matmul
(
x
=
nn
,
y
=
weight_1
)
gate_input
=
fluid
.
layers
.
matmul
(
x
=
nn
,
y
=
weight_1
)
gate_input
=
fluid
.
layers
.
elementwise_add
(
gate_input
,
bias
)
gate_input
=
fluid
.
layers
.
elementwise_add
(
gate_input
,
bias
)
i
,
j
,
f
,
o
=
fluid
.
layers
.
split
(
print
(
"gate_input shape is: {}"
.
format
(
gate_input
.
shape
))
gate_input
,
num_or_sections
=
4
,
dim
=-
1
)
print
(
"gate_input value is :{}"
.
format
(
gate_input
.
_numpy
()))
print
(
"gate_input desc is :{}"
.
format
(
gate_input
))
c
=
pre_cell
*
fluid
.
layers
.
sigmoid
(
f
)
+
fluid
.
layers
.
sigmoid
(
# i, j, f, o = fluid.layers.split(gate_input, num_or_sections=4, dim=-1)
i
)
*
fluid
.
layers
.
tanh
(
j
)
# #
m
=
fluid
.
layers
.
tanh
(
c
)
*
fluid
.
layers
.
sigmoid
(
o
)
# # c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
# # i) * fluid.layers.tanh(j)
self
.
hidden_array
[
k
]
=
m
# # m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
self
.
cell_array
[
k
]
=
c
# #
self
.
input
=
m
# # self.hidden_array[k] = m
# # self.cell_array[k] = c
if
self
.
dropout
is
not
None
and
self
.
dropout
>
0.0
:
# # self.input = m
self
.
input
=
fluid
.
layers
.
dropout
(
# #
self
.
input
,
# # if self.dropout is not None and self.dropout > 0.0:
dropout_prob
=
self
.
dropout
,
# # self.input = fluid.layers.dropout(
dropout_implementation
=
'upscale_in_train'
)
# # self.input,
# # dropout_prob=self.dropout,
res
.
append
(
# # dropout_implementation='upscale_in_train')
fluid
.
layers
.
reshape
(
# #
input
,
shape
=
[
1
,
-
1
,
self
.
_hidden_size
]))
# # res.append(
real_res
=
fluid
.
layers
.
concat
(
res
,
0
)
# # fluid.layers.reshape(
real_res
=
fluid
.
layers
.
transpose
(
x
=
real_res
,
perm
=
[
1
,
0
,
2
])
# # input, shape=[1, -1, self._hidden_size]))
last_hidden
=
fluid
.
layers
.
concat
(
self
.
hidden_array
,
1
)
# # real_res = fluid.layers.concat(res, 0)
last_hidden
=
fluid
.
layers
.
reshape
(
# # real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
last_hidden
,
shape
=
[
-
1
,
self
.
_num_layers
,
self
.
_hidden_size
])
# # last_hidden = fluid.layers.concat(self.hidden_array, 1)
last_hidden
=
fluid
.
layers
.
transpose
(
x
=
last_hidden
,
perm
=
[
1
,
0
,
2
])
# # last_hidden = fluid.layers.reshape(
last_cell
=
fluid
.
layers
.
concat
(
self
.
cell_array
,
1
)
# # last_hidden, shape=[-1, self._num_layers, self._hidden_size])
last_cell
=
fluid
.
layers
.
reshape
(
# # last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
last_cell
,
shape
=
[
-
1
,
self
.
_num_layers
,
self
.
_hidden_size
])
# # last_cell = fluid.layers.concat(self.cell_array, 1)
last_cell
=
fluid
.
layers
.
transpose
(
x
=
last_cell
,
perm
=
[
1
,
0
,
2
])
# # last_cell = fluid.layers.reshape(
# # last_cell, shape=[-1, self._num_layers, self._hidden_size])
return
real_res
,
last_hidden
,
last_cell
# # last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
# #
# return real_res, last_hidden, last_cell
return
[
1
],
[
2
],
[
3
]
class
PtbModel
(
fluid
.
imperative
.
Layer
):
class
PtbModel
(
fluid
.
imperative
.
Layer
):
...
@@ -137,8 +143,10 @@ class PtbModel(fluid.imperative.Layer):
...
@@ -137,8 +143,10 @@ class PtbModel(fluid.imperative.Layer):
self
.
init_scale
=
init_scale
self
.
init_scale
=
init_scale
self
.
num_layers
=
num_layers
self
.
num_layers
=
num_layers
self
.
num_steps
=
num_steps
self
.
num_steps
=
num_steps
self
.
dropout
=
dropout
self
.
simple_lstm_rnn
=
SimpleLSTMRNN
(
self
.
simple_lstm_rnn
=
SimpleLSTMRNN
(
hidden_size
,
hidden_size
,
num_steps
,
num_layers
=
num_layers
,
num_layers
=
num_layers
,
init_scale
=
init_scale
,
init_scale
=
init_scale
,
dropout
=
dropout
)
dropout
=
dropout
)
...
@@ -153,21 +161,23 @@ class PtbModel(fluid.imperative.Layer):
...
@@ -153,21 +161,23 @@ class PtbModel(fluid.imperative.Layer):
def
_build_once
(
self
,
input
,
label
,
init_hidden
,
init_cell
):
def
_build_once
(
self
,
input
,
label
,
init_hidden
,
init_cell
):
self
.
softmax_weight
=
fluid
.
layers
.
create_parameter
(
self
.
softmax_weight
=
fluid
.
layers
.
create_parameter
(
[
self
.
_hidden_size
,
self
.
_
vocab_size
],
[
self
.
hidden_size
,
self
.
vocab_size
],
dtype
=
"float32"
,
dtype
=
"float32"
,
name
=
"softmax_weight"
,
name
=
"softmax_weight"
,
default_initializer
=
fluid
.
initializer
.
UniformInitializer
(
default_initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
_init_scale
,
high
=
self
.
_
init_scale
))
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
self
.
softmax_bias
=
fluid
.
layers
.
create_parameter
(
self
.
softmax_bias
=
fluid
.
layers
.
create_parameter
(
[
self
.
_
vocab_size
],
[
self
.
vocab_size
],
dtype
=
"float32"
,
dtype
=
"float32"
,
name
=
'softmax_bias'
,
name
=
'softmax_bias'
,
default_initializer
=
fluid
.
initializer
.
UniformInitializer
(
default_initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
_init_scale
,
high
=
self
.
_
init_scale
))
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
def
forward
(
self
,
input
,
label
,
init_hidden
,
init_cell
):
def
forward
(
self
,
input
,
label
,
init_hidden
,
init_cell
):
init_h
=
fluid
.
layers
.
reshape
(
init_h
=
fluid
.
layers
.
reshape
(
init_hidden
,
shape
=
[
self
.
num_layers
,
-
1
,
self
.
hidden_size
])
init_hidden
,
shape
=
[
self
.
num_layers
,
-
1
,
self
.
hidden_size
])
init_c
=
fluid
.
layers
.
reshape
(
init_c
=
fluid
.
layers
.
reshape
(
init_cell
,
shape
=
[
self
.
num_layers
,
-
1
,
self
.
hidden_size
])
init_cell
,
shape
=
[
self
.
num_layers
,
-
1
,
self
.
hidden_size
])
...
@@ -179,6 +189,7 @@ class PtbModel(fluid.imperative.Layer):
...
@@ -179,6 +189,7 @@ class PtbModel(fluid.imperative.Layer):
x_emb
,
x_emb
,
dropout_prob
=
self
.
drop_out
,
dropout_prob
=
self
.
drop_out
,
dropout_implementation
=
'upscale_in_train'
)
dropout_implementation
=
'upscale_in_train'
)
print
(
"init_c is {}"
.
format
(
init_c
))
rnn_out
,
last_hidden
,
last_cell
=
self
.
simple_lstm_rnn
(
x_emb
,
init_h
,
rnn_out
,
last_hidden
,
last_cell
=
self
.
simple_lstm_rnn
(
x_emb
,
init_h
,
init_c
)
init_c
)
rnn_out
=
fluid
.
layers
.
reshape
(
rnn_out
=
fluid
.
layers
.
reshape
(
...
@@ -202,14 +213,53 @@ class PtbModel(fluid.imperative.Layer):
...
@@ -202,14 +213,53 @@ class PtbModel(fluid.imperative.Layer):
class
TestImperativePtbRnn
(
unittest
.
TestCase
):
class
TestImperativePtbRnn
(
unittest
.
TestCase
):
def
test_mnist_cpu_float32
(
self
):
def
test_mnist_cpu_float32
(
self
):
seed
=
90
seed
=
90
hidden_size
=
10
vocab_size
=
1000
num_layers
=
1
num_steps
=
3
init_scale
=
0.1
batch_size
=
4
with
fluid
.
imperative
.
guard
():
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
# TODO: marsyang1993 Change seed to
# TODO: marsyang1993 Change seed to
ptb_model
=
PtbModel
(
ptb_model
=
PtbModel
(
hidden_size
=
10
,
hidden_size
=
hidden_size
,
vocab_size
=
1000
,
vocab_size
=
vocab_size
,
num_layers
=
1
,
num_layers
=
num_layers
,
num_steps
=
3
,
num_steps
=
num_steps
,
init_scale
=
0.1
)
init_scale
=
init_scale
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
print
(
"q"
)
for
i
in
range
(
2
):
x_data
=
np
.
arange
(
12
).
reshape
(
4
,
3
).
astype
(
'int64'
)
y_data
=
np
.
arange
(
1
,
13
).
reshape
(
4
,
3
).
astype
(
'int64'
)
x_data
=
x_data
.
reshape
((
-
1
,
num_steps
,
1
))
y_data
=
y_data
.
reshape
((
-
1
,
1
))
init_hidden_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
init_cell_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
x
=
to_variable
(
x_data
)
y
=
to_variable
(
y_data
)
init_hidden
=
to_variable
(
init_hidden_data
)
init_cell
=
to_variable
(
init_cell_data
)
dy_loss
,
last_hidden
,
last_cell
=
ptb_model
(
x
,
y
,
init_hidden
,
init_cell
)
dy_param_init
=
dict
()
if
i
==
0
:
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_init
[
param
.
name
]
=
param
.
_numpy
()
dy_loss
.
_backward
()
sgd
.
minimize
(
dy_loss
)
dy_param_updated
=
dict
()
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_updated
[
param
.
name
]
=
param
.
_numpy
()
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_imperative_split.py
0 → 100644
浏览文件 @
e3a8929c
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
paddle.fluid
as
fluid
from
paddle.fluid.imperative.nn
import
EMBEDDING
import
paddle.fluid.framework
as
framework
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.imperative.base
import
to_variable
import
numpy
as
np
class
Split_test
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
super
(
Split_test
,
self
).
__init__
()
def
_build_once
(
self
,
input
):
pass
def
forward
(
self
,
input
):
out
=
fluid
.
layers
.
split
(
input
,
num_or_sections
=
4
,
dim
=-
1
)
return
out
class
TestImperativePtbRnn
(
unittest
.
TestCase
):
def
test_spilt
(
self
):
with
fluid
.
imperative
.
guard
():
inp
=
to_variable
(
np
.
arange
(
160
).
reshape
(
4
,
40
).
astype
(
'float32'
))
st
=
Split_test
()
out
=
st
(
inp
)
print
(
out
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录