提交 e3a8929c 编写于 作者: J JiabinYang

little change

上级 cddecad7
cc_library(benchmark SRCS benchmark.cc DEPS enforce) cc_library(benchmark SRCS benchmark.cc DEPS enforce)
cc_test(test_benchmark SRCS benchmark_tester.cc DEPS benchmark) cc_test(test_benchmark SRCS benchmark_tester.cc DEPS benchmark)
cc_binary(visualizer SRCS visualizer.cc DEPS analysis #cc_binary(visualizer SRCS visualizer.cc DEPS analysis
paddle_pass_builder ir_pass_manager pass graph_viz_pass analysis_passes) # paddle_pass_builder ir_pass_manager pass graph_viz_pass analysis_passes)
...@@ -295,7 +295,7 @@ class EMBEDDING(layers.Layer): ...@@ -295,7 +295,7 @@ class EMBEDDING(layers.Layer):
self._param_attr = param_attr self._param_attr = param_attr
self._dtype = dtype self._dtype = dtype
self._remote_prefetch = self.is_sparse and (not self.is_distributed) self._remote_prefetch = self._is_sparse and (not self._is_distributed)
if self._remote_prefetch: if self._remote_prefetch:
assert self._is_sparse is True and self._is_distributed is False assert self._is_sparse is True and self._is_distributed is False
......
...@@ -18,23 +18,28 @@ import unittest ...@@ -18,23 +18,28 @@ import unittest
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.imperative.nn import EMBEDDING from paddle.fluid.imperative.nn import EMBEDDING
import paddle.fluid.framework as framework import paddle.fluid.framework as framework
import paddle.fluid.optimizer as optimizer from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.imperative.base import to_variable
import numpy as np
from paddle.fluid.backward import append_backward from paddle.fluid.backward import append_backward
class SimpleLSTMRNN(fluid.imperative.Layer): class SimpleLSTMRNN(fluid.imperative.Layer):
def __init__(self, hidden_size, num_layers=2, init_scale=0.1, dropout=None): def __init__(self,
hidden_size,
num_steps,
num_layers=2,
init_scale=0.1,
dropout=None):
super(SimpleLSTMRNN, self).__init__()
self._hidden_size = hidden_size self._hidden_size = hidden_size
self._num_layers = num_layers self._num_layers = num_layers
self._init_scale = init_scale self._init_scale = init_scale
self._dropout = dropout self._dropout = dropout
self.input = None self.input = None
self.num_steps = num_steps
def _build_once(self, def _build_once(self, input_embedding, init_hidden=None, init_cell=None):
input_embedding,
seq_len,
init_hidden=None,
init_cell=None):
self.weight_1_arr = [] self.weight_1_arr = []
self.weight_2_arr = [] self.weight_2_arr = []
self.bias_arr = [] self.bias_arr = []
...@@ -57,7 +62,7 @@ class SimpleLSTMRNN(fluid.imperative.Layer): ...@@ -57,7 +62,7 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
default_initializer=fluid.initializer.Constant(0.0)) default_initializer=fluid.initializer.Constant(0.0))
self.bias_arr.append(bias_1) self.bias_arr.append(bias_1)
pre_hidden = self.layers.slice( pre_hidden = fluid.layers.slice(
init_hidden, axes=[0], starts=[i], ends=[i + 1]) init_hidden, axes=[0], starts=[i], ends=[i + 1])
pre_cell = fluid.layers.slice( pre_cell = fluid.layers.slice(
init_cell, axes=[0], starts=[i], ends=[i + 1]) init_cell, axes=[0], starts=[i], ends=[i + 1])
...@@ -65,22 +70,20 @@ class SimpleLSTMRNN(fluid.imperative.Layer): ...@@ -65,22 +70,20 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
pre_hidden, shape=[-1, self._hidden_size]) pre_hidden, shape=[-1, self._hidden_size])
pre_cell = fluid.layers.reshape( pre_cell = fluid.layers.reshape(
pre_cell, shape=[-1, self._hidden_size]) pre_cell, shape=[-1, self._hidden_size])
fluid.hidden_array.append(pre_hidden) self.hidden_array.append(pre_hidden)
fluid.cell_array.append(pre_cell) self.cell_array.append(pre_cell)
def forward(self, def forward(self, input_embedding, init_hidden=None, init_cell=None):
input_embedding,
seq_len,
init_hidden=None,
init_cell=None):
res = [] res = []
for index in range(seq_len): for index in range(self.num_steps):
self.input = fluid.layers.slice( self.input = fluid.layers.slice(
input_embedding, axes=[1], starts=[index], ends=[index + 1]) input_embedding, axes=[1], starts=[index], ends=[index + 1])
self.input = fluid.layers.reshape( self.input = fluid.layers.reshape(
self.input, shape=[-1, self._hidden_size]) self.input, shape=[-1, self._hidden_size])
for k in range(self._num_layers): for k in range(self._num_layers):
pre_hidden = self.hidden_array[k] pre_hidden = self.hidden_array[k]
print("pre_hidden shape is:{}".format(pre_hidden.shape))
print("input shape is:{}".format(self.input.shape))
pre_cell = self.cell_array[k] pre_cell = self.cell_array[k]
weight_1 = self.weight_1_arr[k] weight_1 = self.weight_1_arr[k]
bias = self.bias_arr[k] bias = self.bias_arr[k]
...@@ -89,38 +92,41 @@ class SimpleLSTMRNN(fluid.imperative.Layer): ...@@ -89,38 +92,41 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
gate_input = fluid.layers.matmul(x=nn, y=weight_1) gate_input = fluid.layers.matmul(x=nn, y=weight_1)
gate_input = fluid.layers.elementwise_add(gate_input, bias) gate_input = fluid.layers.elementwise_add(gate_input, bias)
i, j, f, o = fluid.layers.split( print("gate_input shape is: {}".format(gate_input.shape))
gate_input, num_or_sections=4, dim=-1) print("gate_input value is :{}".format(gate_input._numpy()))
print("gate_input desc is :{}".format(gate_input))
c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid( # i, j, f, o = fluid.layers.split(gate_input, num_or_sections=4, dim=-1)
i) * fluid.layers.tanh(j) # #
m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o) # # c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
# # i) * fluid.layers.tanh(j)
self.hidden_array[k] = m # # m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
self.cell_array[k] = c # #
self.input = m # # self.hidden_array[k] = m
# # self.cell_array[k] = c
if self.dropout is not None and self.dropout > 0.0: # # self.input = m
self.input = fluid.layers.dropout( # #
self.input, # # if self.dropout is not None and self.dropout > 0.0:
dropout_prob=self.dropout, # # self.input = fluid.layers.dropout(
dropout_implementation='upscale_in_train') # # self.input,
# # dropout_prob=self.dropout,
res.append( # # dropout_implementation='upscale_in_train')
fluid.layers.reshape( # #
input, shape=[1, -1, self._hidden_size])) # # res.append(
real_res = fluid.layers.concat(res, 0) # # fluid.layers.reshape(
real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2]) # # input, shape=[1, -1, self._hidden_size]))
last_hidden = fluid.layers.concat(self.hidden_array, 1) # # real_res = fluid.layers.concat(res, 0)
last_hidden = fluid.layers.reshape( # # real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
last_hidden, shape=[-1, self._num_layers, self._hidden_size]) # # last_hidden = fluid.layers.concat(self.hidden_array, 1)
last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2]) # # last_hidden = fluid.layers.reshape(
last_cell = fluid.layers.concat(self.cell_array, 1) # # last_hidden, shape=[-1, self._num_layers, self._hidden_size])
last_cell = fluid.layers.reshape( # # last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
last_cell, shape=[-1, self._num_layers, self._hidden_size]) # # last_cell = fluid.layers.concat(self.cell_array, 1)
last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2]) # # last_cell = fluid.layers.reshape(
# # last_cell, shape=[-1, self._num_layers, self._hidden_size])
return real_res, last_hidden, last_cell # # last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
# #
# return real_res, last_hidden, last_cell
return [1], [2], [3]
class PtbModel(fluid.imperative.Layer): class PtbModel(fluid.imperative.Layer):
...@@ -137,8 +143,10 @@ class PtbModel(fluid.imperative.Layer): ...@@ -137,8 +143,10 @@ class PtbModel(fluid.imperative.Layer):
self.init_scale = init_scale self.init_scale = init_scale
self.num_layers = num_layers self.num_layers = num_layers
self.num_steps = num_steps self.num_steps = num_steps
self.dropout = dropout
self.simple_lstm_rnn = SimpleLSTMRNN( self.simple_lstm_rnn = SimpleLSTMRNN(
hidden_size, hidden_size,
num_steps,
num_layers=num_layers, num_layers=num_layers,
init_scale=init_scale, init_scale=init_scale,
dropout=dropout) dropout=dropout)
...@@ -153,21 +161,23 @@ class PtbModel(fluid.imperative.Layer): ...@@ -153,21 +161,23 @@ class PtbModel(fluid.imperative.Layer):
def _build_once(self, input, label, init_hidden, init_cell): def _build_once(self, input, label, init_hidden, init_cell):
self.softmax_weight = fluid.layers.create_parameter( self.softmax_weight = fluid.layers.create_parameter(
[self._hidden_size, self._vocab_size], [self.hidden_size, self.vocab_size],
dtype="float32", dtype="float32",
name="softmax_weight", name="softmax_weight",
default_initializer=fluid.initializer.UniformInitializer( default_initializer=fluid.initializer.UniformInitializer(
low=-self._init_scale, high=self._init_scale)) low=-self.init_scale, high=self.init_scale))
self.softmax_bias = fluid.layers.create_parameter( self.softmax_bias = fluid.layers.create_parameter(
[self._vocab_size], [self.vocab_size],
dtype="float32", dtype="float32",
name='softmax_bias', name='softmax_bias',
default_initializer=fluid.initializer.UniformInitializer( default_initializer=fluid.initializer.UniformInitializer(
low=-self._init_scale, high=self._init_scale)) low=-self.init_scale, high=self.init_scale))
def forward(self, input, label, init_hidden, init_cell): def forward(self, input, label, init_hidden, init_cell):
init_h = fluid.layers.reshape( init_h = fluid.layers.reshape(
init_hidden, shape=[self.num_layers, -1, self.hidden_size]) init_hidden, shape=[self.num_layers, -1, self.hidden_size])
init_c = fluid.layers.reshape( init_c = fluid.layers.reshape(
init_cell, shape=[self.num_layers, -1, self.hidden_size]) init_cell, shape=[self.num_layers, -1, self.hidden_size])
...@@ -179,6 +189,7 @@ class PtbModel(fluid.imperative.Layer): ...@@ -179,6 +189,7 @@ class PtbModel(fluid.imperative.Layer):
x_emb, x_emb,
dropout_prob=self.drop_out, dropout_prob=self.drop_out,
dropout_implementation='upscale_in_train') dropout_implementation='upscale_in_train')
print("init_c is {}".format(init_c))
rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(x_emb, init_h, rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(x_emb, init_h,
init_c) init_c)
rnn_out = fluid.layers.reshape( rnn_out = fluid.layers.reshape(
...@@ -202,14 +213,53 @@ class PtbModel(fluid.imperative.Layer): ...@@ -202,14 +213,53 @@ class PtbModel(fluid.imperative.Layer):
class TestImperativePtbRnn(unittest.TestCase): class TestImperativePtbRnn(unittest.TestCase):
def test_mnist_cpu_float32(self): def test_mnist_cpu_float32(self):
seed = 90 seed = 90
hidden_size = 10
vocab_size = 1000
num_layers = 1
num_steps = 3
init_scale = 0.1
batch_size = 4
with fluid.imperative.guard(): with fluid.imperative.guard():
fluid.default_startup_program().random_seed = seed fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed fluid.default_main_program().random_seed = seed
# TODO: marsyang1993 Change seed to # TODO: marsyang1993 Change seed to
ptb_model = PtbModel( ptb_model = PtbModel(
hidden_size=10, hidden_size=hidden_size,
vocab_size=1000, vocab_size=vocab_size,
num_layers=1, num_layers=num_layers,
num_steps=3, num_steps=num_steps,
init_scale=0.1) init_scale=init_scale)
sgd = SGDOptimizer(learning_rate=1e-3)
print("q")
for i in range(2):
x_data = np.arange(12).reshape(4, 3).astype('int64')
y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
x_data = x_data.reshape((-1, num_steps, 1))
y_data = y_data.reshape((-1, 1))
init_hidden_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
init_cell_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
x = to_variable(x_data)
y = to_variable(y_data)
init_hidden = to_variable(init_hidden_data)
init_cell = to_variable(init_cell_data)
dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
init_cell)
dy_param_init = dict()
if i == 0:
for param in fluid.default_main_program().global_block(
).all_parameters():
dy_param_init[param.name] = param._numpy()
dy_loss._backward()
sgd.minimize(dy_loss)
dy_param_updated = dict()
for param in fluid.default_main_program().global_block(
).all_parameters():
dy_param_updated[param.name] = param._numpy()
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle.fluid as fluid
from paddle.fluid.imperative.nn import EMBEDDING
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.imperative.base import to_variable
import numpy as np
class Split_test(fluid.imperative.Layer):
def __init__(self):
super(Split_test, self).__init__()
def _build_once(self, input):
pass
def forward(self, input):
out = fluid.layers.split(input, num_or_sections=4, dim=-1)
return out
class TestImperativePtbRnn(unittest.TestCase):
def test_spilt(self):
with fluid.imperative.guard():
inp = to_variable(np.arange(160).reshape(4, 40).astype('float32'))
st = Split_test()
out = st(inp)
print(out)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册