提交 e377d759 编写于 作者: M minqiyang

Add UT for most layers without params

test=develop
上级 2839e227
......@@ -404,7 +404,7 @@ class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel<T> {
int batch_size = logits->dims()[0];
int feature_size = logits->dims()[1];
auto* logits_data = logits->data<T>();
auto* labels_data = labels->data<T>();
auto* labels_data = labels->data<int64_t>();
SoftmaxWithCrossEntropyFusedKernel(
logits_data, labels_data, softmax_data, loss_data, batch_size,
feature_size, context.cuda_device_context().stream());
......
......@@ -47,7 +47,7 @@ class Conv2D(layers.Layer):
bias_attr=None,
dtype=core.VarDesc.VarType.FP32):
assert param_attr is not False, "param_attr should not be False here."
super(Conv2D, self).__init__(name_scope)
super(Conv2D, self).__init__(name_scope, dtype)
self._groups = groups
self._stride = utils.convert_to_list(stride, 2, 'stride')
self._padding = utils.convert_to_list(padding, 2, 'padding')
......@@ -205,7 +205,7 @@ class FC(layers.Layer):
num_flatten_dims=1,
dtype=core.VarDesc.VarType.FP32,
act=None):
super(FC, self).__init__(name_scope)
super(FC, self).__init__(name_scope, dtype)
self._size = size
self._num_flatten_dims = num_flatten_dims
......@@ -310,7 +310,7 @@ class BatchNorm(layers.Layer):
do_model_average_for_mean_and_var=False,
fuse_with_relu=False,
use_global_stats=False):
super(BatchNorm, self).__init__(name_scope)
super(BatchNorm, self).__init__(name_scope, dtype)
self._param_attr = param_attr
self._param_attr = bias_attr
self._act = act
......@@ -462,7 +462,7 @@ class Embedding(layers.Layer):
param_attr=None,
dtype='float32'):
super(Embedding, self).__init__(name_scope)
super(Embedding, self).__init__(name_scope, dtype)
self._size = size
self._is_sparse = is_sparse
self._is_distributed = is_distributed
......@@ -563,7 +563,7 @@ class LayerNorm(layers.Layer):
>>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
"""
super(LayerNorm, self).__init__(name_scope)
super(LayerNorm, self).__init__(name_scope, dtype)
self._scale = scale
self._shift = shift
self._begin_norm_axis = begin_norm_axis
......@@ -710,7 +710,7 @@ class GRUUnit(layers.Layer):
gate_activation='sigmoid',
origin_mode=False,
dtype='float32'):
super(GRUUnit, self).__init__(name_scope)
super(GRUUnit, self).__init__(name_scope, dtype)
activation_dict = dict(
identity=0,
......@@ -840,7 +840,7 @@ class NCE(layers.Layer):
custom_dist=None,
seed=0,
is_sparse=False):
super(NCE, self).__init__(name_scope)
super(NCE, self).__init__(name_scope, dtype)
self._param_attr = param_attr
self._bias_attr = bias_attr
self._num_total_classes = num_total_classes
......@@ -1013,7 +1013,7 @@ class PRelu(layers.Layer):
def __init__(self, name_scope, mode, param_attr=None):
super(PRelu, self).__init__(name_scope)
super(PRelu, self).__init__(name_scope, dtype)
self._mode = mode
self._param_attr = param_attr
if self._mode not in ['all', 'channel', 'element']:
......@@ -1090,7 +1090,7 @@ class BilinearTensorProduct(layers.Layer):
act=None,
param_attr=None,
bias_attr=None):
super(BilinearTensorProduct, self).__init__(name_scope)
super(BilinearTensorProduct, self).__init__(name_scope, dtype)
self._param_attr = param_attr
self._bias_attr = bias_attr
self._act = act
......@@ -1260,7 +1260,7 @@ class Conv2DTranspose(layers.Layer):
bias_attr=None,
use_cudnn=True,
act=None):
super(Conv2DTranspose, self).__init__(name_scope)
super(Conv2DTranspose, self).__init__(name_scope, dtype)
assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
self._param_attr = param_attr
self._bias_attr = bias_attr
......@@ -1388,7 +1388,7 @@ class SequenceConv(layers.Layer):
bias_attr=None,
param_attr=None,
act=None):
super(SequenceConv, self).__init__(name_scope)
super(SequenceConv, self).__init__(name_scope, dtype)
self._num_filters = num_filters
self._filter_size = filter_size
self._filter_stride = filter_stride
......
......@@ -480,6 +480,8 @@ def dynamic_lstm(input,
forward, _ = fluid.layers.dynamic_lstm(
input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
"""
assert _in_dygraph_mode(
) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
helper = LayerHelper('lstm', **locals())
size = size // 4
......@@ -864,6 +866,9 @@ def dynamic_lstmp(input,
proj_activation="tanh")
"""
assert _in_dygraph_mode(
) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"
assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
helper = LayerHelper('lstmp', **locals())
size = size // 4
......@@ -1035,6 +1040,9 @@ def dynamic_gru(input,
hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
"""
assert _in_dygraph_mode(
) is not True, "please use gru instead of dynamic_gru in dygraph mode!"
helper = LayerHelper('gru', **locals())
dtype = helper.input_dtype()
......@@ -1751,6 +1759,8 @@ def sequence_conv(input,
Variable: output of sequence_conv
"""
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_conv', **locals())
dtype = helper.input_dtype()
filter_shape = [filter_size * input.shape[1], num_filters]
......@@ -1810,6 +1820,8 @@ def sequence_softmax(input, use_cudnn=False, name=None):
dtype='float32', lod_level=1)
x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
"""
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_softmax', **locals())
dtype = helper.input_dtype()
softmax_out = helper.create_variable_for_type_inference(dtype)
......@@ -2302,6 +2314,8 @@ def sequence_pool(input, pool_type, is_test=False):
last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
"""
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_pool', **locals())
dtype = helper.input_dtype()
pool_out = helper.create_variable_for_type_inference(dtype)
......@@ -2341,6 +2355,8 @@ def sequence_concat(input, name=None):
out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
"""
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_concat', **locals())
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
helper.append_op(
......@@ -2468,6 +2484,8 @@ def sequence_slice(input, offset, length, name=None):
subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
length=length)
"""
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper("sequence_slice", **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
......@@ -3927,6 +3945,8 @@ def sequence_expand(x, y, ref_level=-1, name=None):
dtype='float32', lod_level=1)
out = layers.sequence_expand(x=x, y=y, ref_level=0)
"""
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_expand', input=x, **locals())
dtype = helper.input_dtype()
tmp = helper.create_variable_for_type_inference(dtype)
......@@ -3993,6 +4013,8 @@ def sequence_expand_as(x, y, name=None):
dtype='float32', lod_level=1)
out = layers.sequence_expand_as(x=x, y=y)
"""
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_expand_as', input=x, **locals())
dtype = helper.input_dtype()
tmp = helper.create_variable_for_type_inference(dtype)
......@@ -4039,6 +4061,8 @@ def sequence_pad(x, pad_value, maxlen=None, name=None):
out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
"""
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_pad', input=x, **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
......@@ -4105,6 +4129,8 @@ def sequence_unpad(x, length, name=None):
out = fluid.layers.sequence_unpad(x=x, length=len)
"""
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_unpad', input=x, **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
......@@ -5278,6 +5304,8 @@ def sequence_reshape(input, new_dim):
x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
"""
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_reshape', **locals())
out = helper.create_variable_for_type_inference(helper.input_dtype())
helper.append_op(
......@@ -5812,6 +5840,8 @@ def im2sequence(input,
input=layer, stride=[1, 1], filter_size=[2, 2])
"""
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
if isinstance(filter_size, int):
filter_size = [filter_size, filter_size]
......@@ -6228,7 +6258,7 @@ def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
},
outputs={'Diff': diff,
'Out': loss},
attrs={'sigma': sigma})
attrs={'sigma': sigma if sigma is not None else 1.0})
return loss
......@@ -7589,6 +7619,8 @@ def sequence_scatter(input, index, updates, name=None):
output = fluid.layers.sequence_scatter(input, index, updates)
"""
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_scatter', **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
......@@ -8677,6 +8709,8 @@ def sequence_enumerate(input, win_size, pad_value=0, name=None):
x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
"""
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_enumerate', **locals())
out = helper.create_variable_for_type_inference(
helper.input_dtype(), stop_gradient=True)
......@@ -8716,6 +8750,8 @@ def sequence_mask(x, maxlen=None, dtype='int64', name=None):
Variable: The output sequence mask.
"""
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_mask', **locals())
if name is None:
......@@ -9766,6 +9802,8 @@ def sequence_reverse(x, name=None):
Returns:
out(${y_type}): ${y_comment}
"""
assert not _in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper("sequence_reverse", **locals())
if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
......
......@@ -18,6 +18,8 @@ import unittest
import contextlib
import numpy as np
import decorators
import inspect
from six.moves import filter
import paddle
import paddle.fluid as fluid
......@@ -58,8 +60,12 @@ class LayerTest(unittest.TestCase):
fluid.default_main_program().random_seed = self.seed
yield
def get_static_graph_result(self, feed, fetch_list, with_lod=False):
exe = fluid.Executor(self._get_place())
def get_static_graph_result(self,
feed,
fetch_list,
with_lod=False,
force_to_use_cpu=False):
exe = fluid.Executor(self._get_place(force_to_use_cpu))
exe.run(fluid.default_startup_program())
return exe.run(fluid.default_main_program(),
feed=feed,
......@@ -77,7 +83,6 @@ class LayerTest(unittest.TestCase):
class TestLayer(LayerTest):
def test_fc(self):
# pdb.set_trace()
inp = np.ones([3, 32, 32], dtype='float32')
with self.static_graph():
t = layers.data(
......@@ -596,25 +601,102 @@ class TestLayer(LayerTest):
self.assertTrue(np.allclose(nce_loss3._numpy(), static_rlt))
class TestBook(unittest.TestCase):
def test_fit_a_line(self):
program = Program()
with program_guard(program, startup_program=Program()):
x = layers.data(name='x', shape=[13], dtype='float32')
class TestBook(LayerTest):
def test_all_layers(self):
attrs = (getattr(self, name) for name in dir(self))
methods = filter(inspect.ismethod, attrs)
for method in methods:
if not method.__name__.startswith('make_'):
continue
print(method)
import sys
sys.stdout.flush()
self._feed_dict = {}
self._force_to_use_cpu = False
with self.static_graph():
static_var = method()
if isinstance(static_var, tuple):
static_var = static_var[0]
if static_var is not None:
fetch_list = [static_var.name]
static_result = self.get_static_graph_result(
feed=self._feed_dict,
fetch_list=fetch_list,
force_to_use_cpu=self._force_to_use_cpu)
else:
assert method.__name__ in ('make_get_places')
continue
with self.dynamic_graph(self._force_to_use_cpu):
dy_result = method()
if isinstance(dy_result, tuple):
dy_result = dy_result[0]
self.assertTrue(np.array_equal(static_result[0], dy_result._numpy()))
def _get_np_data(self, shape, dtype, append_batch_size=True):
np.random.seed(self.seed)
if append_batch_size:
shape = [2] + shape
if dtype == 'float32':
return np.random.random(shape).astype(dtype)
elif dtype == 'float64':
return np.random.random(shape).astype(dtype)
elif dtype == 'int32':
return np.random.randint(0, 2, shape).astype(dtype)
elif dtype == 'int64':
return np.random.randint(0, 2, shape).astype(dtype)
def _get_data(self,
name,
shape,
dtype,
set_feed_dict=True,
append_batch_size=True):
if base.enabled():
return base.to_variable(
value=self._get_np_data(shape, dtype, append_batch_size),
name=name)
else:
if set_feed_dict:
self._feed_dict[name] = self._get_np_data(shape, dtype,
append_batch_size)
return layers.data(
name=name,
shape=shape,
dtype=dtype,
append_batch_size=append_batch_size)
def make_sampled_softmax_with_cross_entropy(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
logits = self._get_data(name='Logits', shape=[256], dtype='float64')
print(logits.dtype)
label = self._get_data(name='Label', shape=[1], dtype='int64')
num_samples = 25
output = layers.sampled_softmax_with_cross_entropy(logits, label,
num_samples)
return (output)
def make_fit_a_line(self):
with program_guard(
fluid.default_main_program(),
startup_program=fluid.default_startup_program()):
x = self._get_data(name='x', shape=[13], dtype='float32')
y_predict = layers.fc(input=x, size=1, act=None)
y = layers.data(name='y', shape=[1], dtype='float32')
y = self._get_data(name='y', shape=[1], dtype='float32')
cost = layers.square_error_cost(input=y_predict, label=y)
avg_cost = layers.mean(cost)
self.assertIsNotNone(avg_cost)
return (avg_cost)
print(str(program))
def test_recognize_digits_mlp(self):
program = Program()
with program_guard(program, startup_program=Program()):
def make_recognize_digits_mlp(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
# Change g_program, so the rest layers use `g_program`
images = layers.data(name='pixel', shape=[784], dtype='float32')
label = layers.data(name='label', shape=[1], dtype='int32')
images = self._get_data(name='pixel', shape=[784], dtype='float32')
label = self._get_data(name='label', shape=[1], dtype='int64')
hidden1 = layers.fc(input=images, size=128, act='relu')
hidden2 = layers.fc(input=hidden1, size=64, act='relu')
predict = layers.fc(input=[hidden2, hidden1],
......@@ -623,32 +705,21 @@ class TestBook(unittest.TestCase):
param_attr=["sftmax.w1", "sftmax.w2"])
cost = layers.cross_entropy(input=predict, label=label)
avg_cost = layers.mean(cost)
self.assertIsNotNone(avg_cost)
return (avg_cost)
print(str(program))
def test_simple_conv2d(self):
program = Program()
with program_guard(program, startup_program=Program()):
images = layers.data(
name='pixel', shape=[3, 48, 48], dtype='float32')
layers.conv2d(input=images, num_filters=3, filter_size=[4, 4])
print(str(program))
def test_conv2d_transpose(self):
program = Program()
with program_guard(program):
img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
layers.conv2d_transpose(input=img, num_filters=10, output_size=28)
print(str(program))
def make_conv2d_transpose(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
return layers.conv2d_transpose(
input=img, num_filters=10, output_size=28)
def test_recognize_digits_conv(self):
program = Program()
with program_guard(program, startup_program=Program()):
images = layers.data(
def make_recognize_digits_conv(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
images = self._get_data(
name='pixel', shape=[1, 28, 28], dtype='float32')
label = layers.data(name='label', shape=[1], dtype='int32')
label = self._get_data(name='label', shape=[1], dtype='int64')
conv_pool_1 = nets.simple_img_conv_pool(
input=images,
filter_size=5,
......@@ -667,19 +738,19 @@ class TestBook(unittest.TestCase):
predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
cost = layers.cross_entropy(input=predict, label=label)
avg_cost = layers.mean(cost)
return avg_cost
print(str(program))
def test_word_embedding(self):
program = Program()
with program_guard(program, startup_program=Program()):
def make_word_embedding(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
dict_size = 10000
embed_size = 32
first_word = layers.data(name='firstw', shape=[1], dtype='int64')
second_word = layers.data(name='secondw', shape=[1], dtype='int64')
third_word = layers.data(name='thirdw', shape=[1], dtype='int64')
forth_word = layers.data(name='forthw', shape=[1], dtype='int64')
next_word = layers.data(name='nextw', shape=[1], dtype='int64')
first_word = self._get_data(name='firstw', shape=[1], dtype='int64')
second_word = self._get_data(
name='secondw', shape=[1], dtype='int64')
third_word = self._get_data(name='thirdw', shape=[1], dtype='int64')
forth_word = self._get_data(name='forthw', shape=[1], dtype='int64')
next_word = self._get_data(name='nextw', shape=[1], dtype='int64')
embed_first = layers.embedding(
input=first_word,
......@@ -713,63 +784,34 @@ class TestBook(unittest.TestCase):
act='softmax')
cost = layers.cross_entropy(input=predict_word, label=next_word)
avg_cost = layers.mean(cost)
self.assertIsNotNone(avg_cost)
print(str(program))
return (avg_cost)
def test_linear_chain_crf(self):
program = Program()
with program_guard(program, startup_program=Program()):
label_dict_len = 10
images = layers.data(name='pixel', shape=[784], dtype='float32')
label = layers.data(name='label', shape=[1], dtype='int32')
hidden = layers.fc(input=images, size=128)
crf = layers.linear_chain_crf(
input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
crf_decode = layers.crf_decoding(
input=hidden, param_attr=ParamAttr(name="crfw"))
layers.chunk_eval(
input=crf_decode,
label=label,
chunk_scheme="IOB",
num_chunk_types=(label_dict_len - 1) // 2)
self.assertFalse(crf is None)
self.assertFalse(crf_decode is None)
print(str(program))
def test_sigmoid_cross_entropy(self):
program = Program()
with program_guard(program):
dat = layers.data(name='data', shape=[10], dtype='float32')
lbl = layers.data(name='label', shape=[10], dtype='float32')
def make_sigmoid_cross_entropy(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
dat = self._get_data(name='data', shape=[10], dtype='float32')
lbl = self._get_data(name='label', shape=[10], dtype='float32')
ignore_index = -1
self.assertIsNotNone(
layers.sigmoid_cross_entropy_with_logits(
return (layers.sigmoid_cross_entropy_with_logits(
x=dat, label=lbl, ignore_index=ignore_index))
print(str(program))
def test_hsigmoid(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[2], dtype='float32')
y = layers.data(name='y', shape=[2], dtype='int64')
self.assertIsNotNone(
layers.hsigmoid(
input=x, label=y, num_classes=2))
print(str(program))
def make_hsigmoid(self):
self._force_to_use_cpu = True
with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
x = self._get_data(name='x', shape=[2], dtype='float32')
y = self._get_data(name='y', shape=[2], dtype='int64')
return (layers.hsigmoid(input=x, label=y, num_classes=2))
# test hsigmod with custom tree structure
program2 = Program()
with program_guard(program2):
x2 = layers.data(name='x2', shape=[4, 8], dtype='float32')
y2 = layers.data(name='y2', shape=[4], dtype='int64')
path_table = layers.data(
x2 = self._get_data(name='x2', shape=[4, 8], dtype='float32')
y2 = self._get_data(name='y2', shape=[4], dtype='int64')
path_table = self._get_data(
name='path_table', shape=[4, 6], dtype='int64')
path_code = layers.data(
path_code = self._get_data(
name='path_code', shape=[4, 6], dtype='int64')
self.assertIsNotNone(
layers.hsigmoid(
return (layers.hsigmoid(
input=x2,
label=y2,
num_classes=6,
......@@ -778,192 +820,91 @@ class TestBook(unittest.TestCase):
is_custom=True))
print(str(program2))
def test_sequence_expand(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[10], dtype='float32')
y = layers.data(
name='y', shape=[10, 20], dtype='float32', lod_level=2)
self.assertIsNotNone(layers.sequence_expand(x=x, y=y, ref_level=1))
print(str(program))
def test_sequence_unpad(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[10, 5], dtype='float32')
length = layers.data(name='length', shape=[1], dtype='int64')
self.assertIsNotNone(layers.sequence_unpad(x=x, length=length))
print(str(program))
def test_pool2d(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[3, 224, 224], dtype='float32')
self.assertIsNotNone(
layers.pool2d(
x,
pool_size=[5, 3],
pool_stride=[1, 2],
pool_padding=(2, 1)))
def test_adaptive_pool2d(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[3, 224, 224], dtype='float32')
self.assertIsNotNone(
layers.adaptive_pool2d(
x, [3, 3], pool_type='avg'))
def make_pool2d(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
return (layers.pool2d(
x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)))
def make_adaptive_pool2d(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
return (layers.adaptive_pool2d(x, [3, 3], pool_type='avg'))
pool, mask = layers.adaptive_pool2d(x, [3, 3], require_index=True)
self.assertIsNotNone(pool)
self.assertIsNotNone(mask)
self.assertIsNotNone(layers.adaptive_pool2d(x, 3, pool_type='avg'))
return (pool)
return (mask)
return (layers.adaptive_pool2d(x, 3, pool_type='avg'))
pool, mask = layers.adaptive_pool2d(x, 3, require_index=True)
self.assertIsNotNone(pool)
self.assertIsNotNone(mask)
def test_adaptive_pool3d(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[3, 244, 224, 224], dtype='float32')
self.assertIsNotNone(
layers.adaptive_pool3d(
x, [3, 3, 3], pool_type='avg'))
return (pool)
return (mask)
def make_adaptive_pool3d(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
x = self._get_data(
name='x', shape=[3, 244, 224, 224], dtype='float32')
return (layers.adaptive_pool3d(x, [3, 3, 3], pool_type='avg'))
pool, mask = layers.adaptive_pool3d(
x, [3, 3, 3], require_index=True)
self.assertIsNotNone(pool)
self.assertIsNotNone(mask)
self.assertIsNotNone(layers.adaptive_pool3d(x, 3, pool_type='avg'))
return (pool)
return (mask)
return (layers.adaptive_pool3d(x, 3, pool_type='avg'))
pool, mask = layers.adaptive_pool3d(x, 3, require_index=True)
self.assertIsNotNone(pool)
self.assertIsNotNone(mask)
return (pool)
return (mask)
def test_lstm_unit(self):
program = Program()
with program_guard(program):
x_t_data = layers.data(
def make_lstm_unit(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
x_t_data = self._get_data(
name='x_t_data', shape=[10, 10], dtype='float32')
x_t = layers.fc(input=x_t_data, size=10)
prev_hidden_data = layers.data(
prev_hidden_data = self._get_data(
name='prev_hidden_data', shape=[10, 30], dtype='float32')
prev_hidden = layers.fc(input=prev_hidden_data, size=30)
prev_cell_data = layers.data(
prev_cell_data = self._get_data(
name='prev_cell', shape=[10, 30], dtype='float32')
prev_cell = layers.fc(input=prev_cell_data, size=30)
self.assertIsNotNone(
layers.lstm_unit(
return (layers.lstm_unit(
x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell))
print(str(program))
def test_dynamic_lstmp(self):
program = Program()
with program_guard(program):
hidden_dim, proj_dim = 16, 8
seq_data = layers.data(
name='seq_data', shape=[10, 10], dtype='float32', lod_level=1)
fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
self.assertIsNotNone(
layers.dynamic_lstmp(
input=fc_out, size=4 * hidden_dim, proj_size=proj_dim))
print(str(program))
def test_sequence_softmax(self):
program = Program()
with program_guard(program):
seq_data = layers.data(
name='seq_data', shape=[10, 10], dtype='float32', lod_level=1)
seq = layers.fc(input=seq_data, size=20)
self.assertIsNotNone(layers.sequence_softmax(seq))
print(str(program))
def test_softmax(self):
program = Program()
with program_guard(program):
data = layers.data(name='data', shape=[10], dtype='float32')
def make_softmax(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
data = self._get_data(name='data', shape=[10], dtype='float32')
hid = layers.fc(input=data, size=20)
self.assertIsNotNone(layers.softmax(hid, axis=1))
print(str(program))
return (layers.softmax(hid, axis=1))
def test_space_to_depth(self):
program = Program()
with program_guard(program):
data = layers.data(
def make_space_to_depth(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
data = self._get_data(
name='data',
shape=[32, 9, 6, 6],
append_batch_size=False,
dtype='float32')
self.assertIsNotNone(layers.space_to_depth(data, 3))
print(str(program))
return (layers.space_to_depth(data, 3))
def test_sequence_unsqueeze(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[8, 2], dtype='float32')
out = layers.unsqueeze(input=x, axes=[1])
self.assertIsNotNone(out)
print(str(program))
def make_lrn(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
data = self._get_data(name='data', shape=[6, 2, 2], dtype='float32')
return (layers.lrn(data))
def test_squeeze(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
out = layers.squeeze(input=x, axes=[2])
self.assertIsNotNone(out)
print(str(program))
def test_lrn(self):
program = Program()
with program_guard(program):
data = layers.data(name='data', shape=[6, 2, 2], dtype='float32')
self.assertIsNotNone(layers.lrn(data))
print(str(program))
def test_get_places(self):
program = Program()
with program_guard(program):
x = get_places(device_count=4)
self.assertIsNotNone(x)
print(str(program))
def test_sequence_reshape(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
out = layers.sequence_reshape(input=x, new_dim=16)
self.assertIsNotNone(out)
print(str(program))
def test_im2sequence(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
y = layers.data(name='y', shape=[], dtype='float32')
output = layers.im2sequence(
input=x,
input_image_size=y,
stride=[1, 1],
filter_size=[2, 2],
out_stride=[1, 1])
self.assertIsNotNone(output)
print(str(program))
def test_sampled_softmax_with_cross_entropy(self):
program = Program()
with program_guard(program):
logits = layers.data(name='Logits', shape=[256], dtype='float64')
label = layers.data(name='Label', shape=[1], dtype='int64')
num_samples = 25
output = layers.sampled_softmax_with_cross_entropy(logits, label,
num_samples)
self.assertIsNotNone(output)
print(str(program))
def make_get_places(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
get_places(device_count=1)
@decorators.prog_scope()
def test_nce(self):
def make_nce(self):
window_size = 5
words = []
for i in range(window_size):
words.append(
layers.data(
self._get_data(
name='word_{0}'.format(i), shape=[1], dtype='int64'))
dict_size = 10000
......@@ -989,278 +930,171 @@ class TestBook(unittest.TestCase):
param_attr='nce.w',
bias_attr='nce.b')
avg_loss = layers.mean(loss)
self.assertIsNotNone(avg_loss)
return (avg_loss)
print(str(default_main_program()))
def test_row_conv(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
out = layers.row_conv(input=x, future_context_size=2)
self.assertIsNotNone(out)
print(str(program))
def test_multiplex(self):
program = Program()
with program_guard(program):
x1 = layers.data(name='x1', shape=[4], dtype='float32')
x2 = layers.data(name='x2', shape=[4], dtype='float32')
index = layers.data(name='index', shape=[1], dtype='int32')
def make_multiplex(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
x1 = self._get_data(name='x1', shape=[4], dtype='float32')
x2 = self._get_data(name='x2', shape=[4], dtype='float32')
index = self._get_data(name='index', shape=[1], dtype='int32')
out = layers.multiplex(inputs=[x1, x2], index=index)
self.assertIsNotNone(out)
print(str(program))
def test_softmax_with_cross_entropy(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[16], dtype='float32')
y = layers.data(name='label', shape=[1], dtype='int64')
return (out)
def make_softmax_with_cross_entropy(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
x = self._get_data(name='x', shape=[16], dtype='float32')
y = self._get_data(name='label', shape=[1], dtype='int64')
loss, softmax = layers.softmax_with_cross_entropy(
x, y, return_softmax=True)
self.assertIsNotNone(loss)
self.assertIsNotNone(softmax)
return (loss)
return (softmax)
loss = layers.softmax_with_cross_entropy(x, y)
self.assertIsNotNone(loss)
print(str(program))
def test_smooth_l1(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[4], dtype='float32')
y = layers.data(name='label', shape=[4], dtype='float32')
return (loss)
def make_smooth_l1(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
x = self._get_data(name='x', shape=[4], dtype='float32')
y = self._get_data(name='label', shape=[4], dtype='float32')
loss = layers.smooth_l1(x, y)
self.assertIsNotNone(loss)
print(str(program))
return (loss)
def test_scatter(self):
program = Program()
with program_guard(program):
x = layers.data(
def make_scatter(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
x = self._get_data(
name='x',
shape=[3, 3],
append_batch_size=False,
dtype='float32')
idx = layers.data(
idx = self._get_data(
name='idx', shape=[2], append_batch_size=False, dtype='int32')
updates = layers.data(
updates = self._get_data(
name='updates',
shape=[2, 3],
append_batch_size=False,
dtype='float32')
out = layers.scatter(input=x, index=idx, updates=updates)
self.assertIsNotNone(out)
print(str(program))
def test_sequence_scatter(self):
program = Program()
with program_guard(program):
x = layers.data(
name='x',
shape=[3, 6],
append_batch_size=False,
dtype='float32')
idx = layers.data(
name='idx',
shape=[12, 1],
append_batch_size=False,
dtype='int32',
lod_level=1)
updates = layers.data(
name='updates',
shape=[12, 1],
append_batch_size=False,
dtype='float32',
lod_level=1)
out = layers.sequence_scatter(input=x, index=idx, updates=updates)
self.assertIsNotNone(out)
print(str(program))
def test_sequence_slice(self):
program = Program()
with program_guard(program):
import numpy as np
seqs = layers.data(
name='x', shape=[10, 5], dtype='float32', lod_level=1)
offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
out = layers.sequence_slice(
input=seqs, offset=offset, length=length)
self.assertIsNotNone(out)
print(str(program))
def test_lod_reset(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[10], dtype='float32')
y = layers.data(
name='y', shape=[10, 20], dtype='float32', lod_level=2)
print(layers.lod_reset(x=x, y=y))
print(str(program))
return (out)
def test_label_smooth(self):
program = Program()
with program_guard(program):
label = layers.data(name="label", shape=[1], dtype="float32")
def make_label_smooth(self):
# TODO(minqiyang): support gpu ut
self._force_to_use_cpu = True
with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
label = self._get_data(name="label", shape=[1], dtype="int32")
one_hot_label = layers.one_hot(input=label, depth=10)
smooth_label = layers.label_smooth(
label=one_hot_label, epsilon=0.1, dtype="float32")
self.assertIsNotNone(smooth_label)
print(str(program))
def test_topk(self):
program = Program()
with program_guard(program):
data = layers.data(name="label", shape=[200], dtype="float32")
values, indices = layers.topk(data, k=5)
self.assertIsNotNone(values)
self.assertIsNotNone(indices)
print(str(program))
def test_roi_pool(self):
program = Program()
with program_guard(program):
x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
rois = layers.data(
name="rois", shape=[4], dtype="float32", lod_level=1)
output = layers.roi_pool(x, rois, 7, 7, 0.6)
self.assertIsNotNone(output)
print(str(program))
label=one_hot_label, epsilon=0.1, dtype="int32")
return (smooth_label)
def test_psroi_pool(self):
program = Program()
with program_guard(program):
x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
rois = layers.data(
name="rois", shape=[4], dtype="float32", lod_level=1)
output = layers.psroi_pool(x, rois, 5, 0.25, 7, 7)
self.assertIsNotNone(output)
print(str(program))
def test_roi_align(self):
program = Program()
with program_guard(program):
x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
rois = layers.data(
name="rois", shape=[4], dtype="float32", lod_level=1)
output = layers.roi_align(x, rois, 14, 14, 0.5, 2)
self.assertIsNotNone(output)
print(str(program))
def make_topk(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
data = self._get_data(name="label", shape=[200], dtype="float32")
values, indices = layers.topk(data, k=5)
return (values)
return (indices)
def test_resize_bilinear(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[3, 9, 6], dtype="float32")
def make_resize_bilinear(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
output = layers.resize_bilinear(x, out_shape=[12, 12])
self.assertIsNotNone(output)
return (output)
output = layers.resize_bilinear(x, scale=3)
self.assertIsNotNone(output)
print(str(program))
return (output)
def test_resize_nearest(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[3, 9, 6], dtype="float32")
def make_resize_nearest(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
output = layers.resize_nearest(x, out_shape=[12, 12])
self.assertIsNotNone(output)
return (output)
output = layers.resize_nearest(x, scale=3)
self.assertIsNotNone(output)
print(str(program))
return (output)
def test_polygon_box_transform(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[8, 4, 4], dtype="float32")
def make_polygon_box_transform(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
x = self._get_data(name='x', shape=[8, 4, 4], dtype="float32")
output = layers.polygon_box_transform(input=x)
self.assertIsNotNone(output)
print(str(program))
return (output)
def test_l2_normalize(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[8, 7, 10], dtype="float32")
def make_l2_normalize(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32")
output = layers.l2_normalize(x, axis=1)
return output
def test_maxout(self):
program = Program()
with program_guard(program):
data = layers.data(name='x', shape=[8, 6, 6], dtype="float32")
def make_maxout(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
data = self._get_data(name='x', shape=[8, 6, 6], dtype="float32")
output = layers.maxout(x=data, groups=2)
self.assertIsNotNone(output)
print(str(program))
def test_crop(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[3, 5], dtype="float32")
y = layers.data(name='y', shape=[2, 3], dtype="float32")
return (output)
def make_crop(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
x = self._get_data(name='x', shape=[3, 5], dtype="float32")
y = self._get_data(name='y', shape=[2, 3], dtype="float32")
output = layers.crop(x, shape=y)
self.assertIsNotNone(output)
print(str(program))
def test_mean_iou(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[16], dtype='float32')
y = layers.data(name='label', shape=[1], dtype='int64')
return (output)
def make_mean_iou(self):
# TODO(minqiyang): support gpu ut
self._force_to_use_cpu = True
with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
x = self._get_data(name='x', shape=[16], dtype='int32')
y = self._get_data(name='label', shape=[1], dtype='int32')
iou = layers.mean_iou(x, y, 2)
self.assertIsNotNone(iou)
print(str(program))
return (iou)
def test_argsort(self):
program = Program()
with program_guard(program):
data = layers.data(name='x', shape=[2, 3, 3], dtype="float32")
def make_argsort(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
data = self._get_data(name='x', shape=[2, 3, 3], dtype="float32")
out, ids = layers.argsort(input=data, axis=1)
self.assertIsNotNone(out)
self.assertIsNotNone(ids)
print(str(program))
def test_rank_loss(self):
program = Program()
with program_guard(program):
label = layers.data(
return (out)
return (ids)
def make_rank_loss(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
label = self._get_data(
name='label',
append_batch_size=False,
shape=[16, 1],
dtype="float32")
left = layers.data(
left = self._get_data(
name='left',
append_batch_size=False,
shape=[16, 1],
dtype="float32")
right = layers.data(
right = self._get_data(
name='right',
append_batch_size=False,
shape=[16, 1],
dtype="float32")
out = layers.rank_loss(label, left, right, name="rank_loss")
self.assertIsNotNone(out)
print(str(program))
def test_flatten(self):
program = Program()
with program_guard(program):
x = layers.data(
name='x',
append_batch_size=False,
shape=[4, 4, 3],
dtype="float32")
out = layers.flatten(x, axis=1, name="flatten")
self.assertIsNotNone(out)
return (out)
def test_shape(self):
program = Program()
with program_guard(program):
input = layers.data(
def make_shape(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(
name="input", shape=[3, 100, 100], dtype="float32")
out = layers.shape(input)
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_pad2d(self):
program = Program()
with program_guard(program):
input = layers.data(
def make_pad2d(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(
name="input", shape=[3, 100, 100], dtype="float32")
paddings = layers.fill_constant(shape=[4], dtype='int32', value=1)
out = layers.pad2d(
......@@ -1275,14 +1109,13 @@ class TestBook(unittest.TestCase):
mode='reflect',
data_format='NCHW',
name="shape")
self.assertIsNotNone(out)
self.assertIsNotNone(out_1)
print(str(program))
return (out)
return (out_1)
def test_prelu(self):
program = Program()
with program_guard(program):
input = layers.data(
def make_prelu(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(
name="input", shape=[5, 200, 100, 100], dtype="float32")
mode = 'channel'
out = layers.prelu(
......@@ -1290,291 +1123,365 @@ class TestBook(unittest.TestCase):
mode,
param_attr=ParamAttr(initializer=Constant(1.0)),
name='prelu')
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_brelu(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[16], dtype="float32")
def make_brelu(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(name="input", shape=[16], dtype="float32")
out = layers.brelu(input, t_min=1.0, t_max=20.0, name='brelu')
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_leaky_relu(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[16], dtype="float32")
def make_leaky_relu(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(name="input", shape=[16], dtype="float32")
out = layers.leaky_relu(input, alpha=0.1, name='leaky_relu')
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_soft_relu(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[16], dtype="float32")
def make_soft_relu(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(name="input", shape=[16], dtype="float32")
out = layers.soft_relu(input, threshold=30.0, name='soft_relu')
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_sigmoid(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[16], dtype="float32")
def make_sigmoid(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(name="input", shape=[16], dtype="float32")
out = layers.sigmoid(input, name='sigmoid')
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_logsigmoid(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[16], dtype="float32")
def make_logsigmoid(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(name="input", shape=[16], dtype="float32")
out = layers.logsigmoid(input, name='logsigmoid')
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_exp(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[16], dtype="float32")
def make_exp(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(name="input", shape=[16], dtype="float32")
out = layers.exp(input, name='exp')
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_tanh(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[16], dtype="float32")
def make_tanh(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(name="input", shape=[16], dtype="float32")
out = layers.tanh(input, name='tanh')
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_tanh_shrink(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[16], dtype="float32")
def make_tanh_shrink(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(name="input", shape=[16], dtype="float32")
out = layers.tanh_shrink(input, name='tanh_shrink')
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_sqrt(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[16], dtype="float32")
def make_sqrt(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(name="input", shape=[16], dtype="float32")
out = layers.sqrt(input, name='sqrt')
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_abs(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[16], dtype="float32")
def make_abs(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(name="input", shape=[16], dtype="float32")
out = layers.abs(input, name='abs')
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_ceil(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[16], dtype="float32")
def make_ceil(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(name="input", shape=[16], dtype="float32")
out = layers.ceil(input, name='ceil')
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_floor(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[16], dtype="float32")
def make_floor(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(name="input", shape=[16], dtype="float32")
out = layers.floor(input, name='floor')
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_cos(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[16], dtype="float32")
def make_cos(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(name="input", shape=[16], dtype="float32")
out = layers.cos(input, name='cos')
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_sin(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[16], dtype="float32")
def make_sin(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(name="input", shape=[16], dtype="float32")
out = layers.sin(input, name='sin')
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_round(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[16], dtype="float32")
def make_round(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(name="input", shape=[16], dtype="float32")
out = layers.round(input, name='round')
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_reciprocal(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[16], dtype="float32")
def make_reciprocal(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(name="input", shape=[16], dtype="float32")
out = layers.reciprocal(input, name='reciprocal')
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_square(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[16], dtype="float32")
def make_square(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(name="input", shape=[16], dtype="float32")
out = layers.square(input, name='square')
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_softplus(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[16], dtype="float32")
def make_softplus(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(name="input", shape=[16], dtype="float32")
out = layers.softplus(input, name='softplus')
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_softsign(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[16], dtype="float32")
def make_softsign(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(name="input", shape=[16], dtype="float32")
out = layers.softsign(input, name='softsign')
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_roi_perspective_transform(self):
program = Program()
with program_guard(program):
x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
rois = layers.data(
name="rois", shape=[8], dtype="float32", lod_level=1)
output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6)
self.assertIsNotNone(output)
print(str(program))
def test_sequence_enumerate(self):
program = Program()
with program_guard(program):
x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)
print(str(program))
def test_cross_entropy(self):
program = Program()
with program_guard(program):
x = layers.data(name="x", shape=[30, 10], dtype="float32")
label = layers.data(name="label", shape=[30, 1], dtype="int32")
def make_cross_entropy(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
x = self._get_data(name="x", shape=[30, 10], dtype="float32")
label = self._get_data(name="label", shape=[30, 1], dtype="int64")
mode = 'channel'
out = layers.cross_entropy(x, label, False, 4)
self.assertIsNotNone(out)
return (out)
def test_bpr_loss(self):
program = Program()
with program_guard(program):
x = layers.data(name="x", shape=[30, 10], dtype="float32")
label = layers.data(name="label", shape=[30, 1], dtype="int32")
def make_bpr_loss(self):
self._force_to_use_cpu = True
with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
x = self._get_data(name="x", shape=[30, 10], dtype="float32")
label = self._get_data(name="label", shape=[30, 1], dtype="int64")
out = layers.bpr_loss(x, label)
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_expand(self):
program = Program()
with program_guard(program):
x = layers.data(name="input", shape=[10], dtype='int32')
def make_expand(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
x = self._get_data(name="input", shape=[10], dtype='int32')
out = layers.expand(x, [1, 2])
print(str(program))
return out
def test_uniform_random_batch_size_like(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[13, 11], dtype='float32')
def make_uniform_random_batch_size_like(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(
name="input", shape=[13, 11], dtype='float32')
out = layers.uniform_random_batch_size_like(input, [-1, 11])
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_gaussian_random(self):
program = Program()
with program_guard(program):
def make_gaussian_random(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
out = layers.gaussian_random(shape=[20, 30])
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_sampling_id(self):
program = Program()
with program_guard(program):
x = layers.data(
def make_sampling_id(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
x = self._get_data(
name="X",
shape=[13, 11],
dtype='float32',
append_batch_size=False)
out = layers.sampling_id(x)
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_gaussian_random_batch_size_like(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[13, 11], dtype='float32')
def make_gaussian_random_batch_size_like(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(
name="input", shape=[13, 11], dtype='float32')
out = layers.gaussian_random_batch_size_like(
input, shape=[-1, 11], mean=1.0, std=2.0)
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_sum(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[13, 11], dtype='float32')
def make_sum(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(
name="input", shape=[13, 11], dtype='float32')
out = layers.sum(input)
self.assertIsNotNone(out)
print(str(program))
return (out)
def test_slice(self):
def make_slice(self):
starts = [1, 0, 2]
ends = [3, 3, 4]
axes = [0, 1, 2]
program = Program()
with program_guard(program):
input = layers.data(
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(
name="input", shape=[3, 4, 5, 6], dtype='float32')
out = layers.slice(input, axes=axes, starts=starts, ends=ends)
return out
def test_softshrink(self):
program = Program()
with program_guard(program):
input = layers.data(name="input", shape=[16], dtype="float32")
def make_softshrink(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
input = self._get_data(name="input", shape=[16], dtype="float32")
out = layers.softshrink(input, name='softshrink')
self.assertIsNotNone(out)
print(str(program))
return (out)
def iou_similarity(self):
program = Program()
with program_guard(program):
x = layers.data(name="x", shape=[16], dtype="float32")
y = layers.data(name="y", shape=[16], dtype="float32")
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
x = self._get_data(name="x", shape=[16], dtype="float32")
y = self._get_data(name="y", shape=[16], dtype="float32")
out = layers.iou_similarity(x, y, name='iou_similarity')
self.assertIsNotNone(out)
print(str(program))
def test_grid_sampler(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[3, 5, 7], dtype='float32')
grid = layers.data(name='grid', shape=[5, 7, 2], dtype='float32')
return (out)
def make_grid_sampler(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
x = self._get_data(name='x', shape=[3, 5, 7], dtype='float32')
grid = self._get_data(name='grid', shape=[5, 7, 2], dtype='float32')
out = layers.grid_sampler(x, grid)
self.assertIsNotNone(out)
print(str(program))
return (out)
def make_bilinear_tensor_product_layer(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
data = self._get_data(name='data', shape=[4], dtype="float32")
theta = self._get_data(name="theta", shape=[5], dtype="float32")
out = layers.bilinear_tensor_product(data, theta, 6)
return (out)
def make_batch_norm(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
data = self._get_data(
name='data', shape=[32, 128, 128], dtype="float32")
out = layers.batch_norm(data)
return (out)
def make_range(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
layers.range(0, 10, 2, 'int32')
y = layers.range(0.1, 10.0, 0.2, 'float32')
return y
def make_spectral_norm(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
weight = self._get_data(
name='weight',
shape=[2, 3, 32, 32],
dtype="float32",
append_batch_size=False)
out = layers.spectral_norm(weight, dim=1, power_iters=1)
return (out)
def make_kldiv_loss(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
x = self._get_data(name='x', shape=[32, 128, 128], dtype="float32")
target = self._get_data(
name='target', shape=[32, 128, 128], dtype="float32")
loss = layers.kldiv_loss(x=x, target=target, reduction='batchmean')
return (loss)
def make_temporal_shift(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
out = layers.temporal_shift(x, seg_num=2, shift_ratio=0.2)
return (out)
def make_shuffle_channel(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
out = layers.shuffle_channel(x, group=4)
return (out)
def make_fsp(self):
with program_guard(fluid.default_main_program(),
fluid.default_startup_program()):
x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
y = self._get_data(name="Y", shape=[8, 4, 4], dtype="float32")
out = layers.fsp_matrix(x, y)
return (out)
def test_dynamic_lstmp(self):
# TODO(minqiyang): dygraph do not support lod now
with self.static_graph():
hidden_dim, proj_dim = 16, 8
seq_data = layers.data(
name='seq_data', shape=[10, 10], dtype='float32', lod_level=1)
fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
self.assertIsNotNone(
layers.dynamic_lstmp(
input=fc_out, size=4 * hidden_dim, proj_size=proj_dim))
def test_linear_chain_crf(self):
# TODO(minqiyang): dygraph do not support lod now
with self.static_graph():
label_dict_len = 10
images = layers.data(name='pixel', shape=[784], dtype='float32')
label = layers.data(name='label', shape=[1], dtype='int32')
hidden = layers.fc(input=images, size=2)
crf = layers.linear_chain_crf(
input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
crf_decode = layers.crf_decoding(
input=hidden, param_attr=ParamAttr(name="crfw"))
self.assertFalse(crf is None)
self.assertFalse(crf_decode is None)
return layers.chunk_eval(
input=crf_decode,
label=label,
chunk_scheme="IOB",
num_chunk_types=(label_dict_len - 1) // 2)
def test_im2sequence(self):
# TODO(minqiyang): dygraph do not support lod now
with self.static_graph():
x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
y = layers.data(name='y', shape=[], dtype='float32')
output = layers.im2sequence(
input=x,
input_image_size=y,
stride=[1, 1],
filter_size=[2, 2],
out_stride=[1, 1])
return (output)
def test_lod_reset(self):
# TODO(minqiyang): dygraph do not support lod now
with self.static_graph():
x = layers.data(name='x', shape=[10], dtype='float32')
y = layers.data(
name='y', shape=[10, 20], dtype='float32', lod_level=2)
return (layers.lod_reset(x=x, y=y))
def test_affine_grid(self):
program = Program()
with program_guard(program):
with self.static_graph():
data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
out, ids = layers.argsort(input=data, axis=1)
......@@ -1586,81 +1493,153 @@ class TestBook(unittest.TestCase):
self.assertIsNotNone(data_0)
self.assertIsNotNone(data_1)
print(str(program))
def test_bilinear_tensor_product_layer(self):
program = Program()
with program_guard(program):
data = layers.data(name='data', shape=[4], dtype="float32")
def test_psroi_pool(self):
# TODO(minqiyang): dygraph do not support lod now
with self.static_graph():
x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
rois = layers.data(
name="rois", shape=[4], dtype="float32", lod_level=1)
output = layers.psroi_pool(x, rois, 5, 0.25, 7, 7)
return (output)
theta = layers.data(name="theta", shape=[5], dtype="float32")
out = layers.bilinear_tensor_product(data, theta, 6)
def test_sequence_expand(self):
# TODO(minqiyang): dygraph do not support lod now
with self.static_graph():
x = layers.data(name='x', shape=[10], dtype='float32')
y = layers.data(
name='y', shape=[10, 20], dtype='float32', lod_level=2)
return (layers.sequence_expand(x=x, y=y, ref_level=1))
print(str(program))
def test_sequence_reshape(self):
# TODO(minqiyang): dygraph do not support lod now
with self.static_graph():
x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
out = layers.sequence_reshape(input=x, new_dim=16)
return (out)
def test_batch_norm(self):
program = Program()
with program_guard(program):
data = layers.data(
name='data', shape=[32, 128, 128], dtype="float32")
out = layers.batch_norm(data)
def test_sequence_unpad(self):
# TODO(minqiyang): dygraph do not support lod now
with self.static_graph():
x = layers.data(name='x', shape=[10, 5], dtype='float32')
length = layers.data(name='length', shape=[1], dtype='int64')
return (layers.sequence_unpad(x=x, length=length))
print(str(program))
def test_sequence_softmax(self):
# TODO(minqiyang): dygraph do not support lod now
with self.static_graph():
seq_data = layers.data(
name='seq_data', shape=[10, 10], dtype='float32', lod_level=1)
seq = layers.fc(input=seq_data, size=20)
return (layers.sequence_softmax(seq))
def test_range(self):
program = Program()
with program_guard(program):
layers.range(0, 10, 2, 'int32')
layers.range(0.1, 10.0, 0.2, 'float32')
def test_sequence_unsqueeze(self):
# TODO(minqiyang): dygraph do not support lod now
with self.static_graph():
x = layers.data(name='x', shape=[8, 2], dtype='float32')
out = layers.unsqueeze(input=x, axes=[1])
return (out)
print(str(program))
def test_sequence_scatter(self):
# TODO(minqiyang): dygraph do not support lod now
with self.static_graph():
x = layers.data(
name='x',
shape=[3, 6],
append_batch_size=False,
dtype='float32')
idx = layers.data(
name='idx',
shape=[12, 1],
append_batch_size=False,
dtype='int32',
lod_level=1)
updates = layers.data(
name='updates',
shape=[12, 1],
append_batch_size=False,
dtype='float32',
lod_level=1)
out = layers.sequence_scatter(input=x, index=idx, updates=updates)
return (out)
def test_spectral_norm(self):
program = Program()
with program_guard(program):
weight = layers.data(
name='weight',
shape=[2, 3, 32, 32],
dtype="float32",
append_batch_size=False)
out = layers.spectral_norm(weight, dim=1, power_iters=1)
self.assertIsNotNone(out)
def test_sequence_slice(self):
# TODO(minqiyang): dygraph do not support lod now
with self.static_graph():
import numpy as np
seqs = layers.data(
name='x', shape=[10, 5], dtype='float32', lod_level=1)
offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
out = layers.sequence_slice(
input=seqs, offset=offset, length=length)
return (out)
def test_kldiv_loss(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[32, 128, 128], dtype="float32")
target = layers.data(
name='target', shape=[32, 128, 128], dtype="float32")
loss = layers.kldiv_loss(x=x, target=target, reduction='batchmean')
self.assertIsNotNone(loss)
print(str(program))
def test_temporal_shift(self):
program = Program()
with program_guard(program):
x = layers.data(name="X", shape=[16, 4, 4], dtype="float32")
out = layers.temporal_shift(x, seg_num=4, shift_ratio=0.2)
self.assertIsNotNone(out)
print(str(program))
def test_shuffle_channel(self):
program = Program()
with program_guard(program):
x = layers.data(name="X", shape=[16, 4, 4], dtype="float32")
out = layers.shuffle_channel(x, group=4)
self.assertIsNotNone(out)
print(str(program))
def test_fsp(self):
program = Program()
with program_guard(program):
x = layers.data(name="X", shape=[16, 4, 4], dtype="float32")
y = layers.data(name="Y", shape=[8, 4, 4], dtype="float32")
out = layers.fsp_matrix(x, y)
self.assertIsNotNone(out)
print(str(program))
def test_roi_pool(self):
# TODO(minqiyang): dygraph do not support lod now
with self.static_graph():
x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
rois = layers.data(
name="rois", shape=[4], dtype="float32", lod_level=1)
output = layers.roi_pool(x, rois, 7, 7, 0.6)
return (output)
def test_sequence_enumerate(self):
# TODO(minqiyang): dygraph do not support lod now
with self.static_graph():
x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)
def test_roi_align(self):
# TODO(minqiyang): dygraph do not support lod now
with self.static_graph():
x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
rois = layers.data(
name="rois", shape=[4], dtype="float32", lod_level=1)
output = layers.roi_align(x, rois, 14, 14, 0.5, 2)
return (output)
def test_roi_perspective_transform(self):
# TODO(minqiyang): dygraph do not support lod now
with self.static_graph():
x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
rois = layers.data(
name="rois", shape=[8], dtype="float32", lod_level=1)
output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6)
return (output)
def test_row_conv(self):
# TODO(minqiyang): dygraph do not support lod now
with self.static_graph():
x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
out = layers.row_conv(input=x, future_context_size=2)
return (out)
def test_simple_conv2d(self):
# TODO(minqiyang): dygraph do not support layers with param now
with self.static_graph():
images = layers.data(
name='pixel', shape=[3, 48, 48], dtype='float32')
return layers.conv2d(
input=images, num_filters=3, filter_size=[4, 4])
def test_squeeze(self):
# TODO(minqiyang): dygraph do not support layers with param now
with self.static_graph():
x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
out = layers.squeeze(input=x, axes=[2])
return (out)
def test_flatten(self):
# TODO(minqiyang): dygraph do not support op without kernel now
with self.static_graph():
x = layers.data(
name='x',
append_batch_size=False,
shape=[4, 4, 3],
dtype="float32")
out = layers.flatten(x, axis=1, name="flatten")
return (out)
if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册