From e377d7597740cd0ea188d4eb155e71ccbda98f5d Mon Sep 17 00:00:00 2001 From: minqiyang Date: Tue, 2 Apr 2019 23:19:48 +0800 Subject: [PATCH] Add UT for most layers without params test=develop --- .../softmax_with_cross_entropy_op.cu | 2 +- python/paddle/fluid/dygraph/nn.py | 22 +- python/paddle/fluid/layers/nn.py | 40 +- .../fluid/tests/unittests/test_layers.py | 1499 ++++++++--------- 4 files changed, 790 insertions(+), 773 deletions(-) diff --git a/paddle/fluid/operators/softmax_with_cross_entropy_op.cu b/paddle/fluid/operators/softmax_with_cross_entropy_op.cu index 89aaac4cb..d00349e94 100644 --- a/paddle/fluid/operators/softmax_with_cross_entropy_op.cu +++ b/paddle/fluid/operators/softmax_with_cross_entropy_op.cu @@ -404,7 +404,7 @@ class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel { int batch_size = logits->dims()[0]; int feature_size = logits->dims()[1]; auto* logits_data = logits->data(); - auto* labels_data = labels->data(); + auto* labels_data = labels->data(); SoftmaxWithCrossEntropyFusedKernel( logits_data, labels_data, softmax_data, loss_data, batch_size, feature_size, context.cuda_device_context().stream()); diff --git a/python/paddle/fluid/dygraph/nn.py b/python/paddle/fluid/dygraph/nn.py index 04da8561a..e1996e4fc 100644 --- a/python/paddle/fluid/dygraph/nn.py +++ b/python/paddle/fluid/dygraph/nn.py @@ -47,7 +47,7 @@ class Conv2D(layers.Layer): bias_attr=None, dtype=core.VarDesc.VarType.FP32): assert param_attr is not False, "param_attr should not be False here." - super(Conv2D, self).__init__(name_scope) + super(Conv2D, self).__init__(name_scope, dtype) self._groups = groups self._stride = utils.convert_to_list(stride, 2, 'stride') self._padding = utils.convert_to_list(padding, 2, 'padding') @@ -205,7 +205,7 @@ class FC(layers.Layer): num_flatten_dims=1, dtype=core.VarDesc.VarType.FP32, act=None): - super(FC, self).__init__(name_scope) + super(FC, self).__init__(name_scope, dtype) self._size = size self._num_flatten_dims = num_flatten_dims @@ -310,7 +310,7 @@ class BatchNorm(layers.Layer): do_model_average_for_mean_and_var=False, fuse_with_relu=False, use_global_stats=False): - super(BatchNorm, self).__init__(name_scope) + super(BatchNorm, self).__init__(name_scope, dtype) self._param_attr = param_attr self._param_attr = bias_attr self._act = act @@ -462,7 +462,7 @@ class Embedding(layers.Layer): param_attr=None, dtype='float32'): - super(Embedding, self).__init__(name_scope) + super(Embedding, self).__init__(name_scope, dtype) self._size = size self._is_sparse = is_sparse self._is_distributed = is_distributed @@ -563,7 +563,7 @@ class LayerNorm(layers.Layer): >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1) """ - super(LayerNorm, self).__init__(name_scope) + super(LayerNorm, self).__init__(name_scope, dtype) self._scale = scale self._shift = shift self._begin_norm_axis = begin_norm_axis @@ -710,7 +710,7 @@ class GRUUnit(layers.Layer): gate_activation='sigmoid', origin_mode=False, dtype='float32'): - super(GRUUnit, self).__init__(name_scope) + super(GRUUnit, self).__init__(name_scope, dtype) activation_dict = dict( identity=0, @@ -840,7 +840,7 @@ class NCE(layers.Layer): custom_dist=None, seed=0, is_sparse=False): - super(NCE, self).__init__(name_scope) + super(NCE, self).__init__(name_scope, dtype) self._param_attr = param_attr self._bias_attr = bias_attr self._num_total_classes = num_total_classes @@ -1013,7 +1013,7 @@ class PRelu(layers.Layer): def __init__(self, name_scope, mode, param_attr=None): - super(PRelu, self).__init__(name_scope) + super(PRelu, self).__init__(name_scope, dtype) self._mode = mode self._param_attr = param_attr if self._mode not in ['all', 'channel', 'element']: @@ -1090,7 +1090,7 @@ class BilinearTensorProduct(layers.Layer): act=None, param_attr=None, bias_attr=None): - super(BilinearTensorProduct, self).__init__(name_scope) + super(BilinearTensorProduct, self).__init__(name_scope, dtype) self._param_attr = param_attr self._bias_attr = bias_attr self._act = act @@ -1260,7 +1260,7 @@ class Conv2DTranspose(layers.Layer): bias_attr=None, use_cudnn=True, act=None): - super(Conv2DTranspose, self).__init__(name_scope) + super(Conv2DTranspose, self).__init__(name_scope, dtype) assert param_attr is not False, "param_attr should not be False in conv2d_transpose." self._param_attr = param_attr self._bias_attr = bias_attr @@ -1388,7 +1388,7 @@ class SequenceConv(layers.Layer): bias_attr=None, param_attr=None, act=None): - super(SequenceConv, self).__init__(name_scope) + super(SequenceConv, self).__init__(name_scope, dtype) self._num_filters = num_filters self._filter_size = filter_size self._filter_stride = filter_stride diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 91414fdeb..66526848c 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -480,6 +480,8 @@ def dynamic_lstm(input, forward, _ = fluid.layers.dynamic_lstm( input=forward_proj, size=hidden_dim * 4, use_peepholes=False) """ + assert _in_dygraph_mode( + ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!" assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp." helper = LayerHelper('lstm', **locals()) size = size // 4 @@ -864,6 +866,9 @@ def dynamic_lstmp(input, proj_activation="tanh") """ + assert _in_dygraph_mode( + ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!" + assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp." helper = LayerHelper('lstmp', **locals()) size = size // 4 @@ -1035,6 +1040,9 @@ def dynamic_gru(input, hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim) """ + assert _in_dygraph_mode( + ) is not True, "please use gru instead of dynamic_gru in dygraph mode!" + helper = LayerHelper('gru', **locals()) dtype = helper.input_dtype() @@ -1751,6 +1759,8 @@ def sequence_conv(input, Variable: output of sequence_conv """ + assert not _in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") helper = LayerHelper('sequence_conv', **locals()) dtype = helper.input_dtype() filter_shape = [filter_size * input.shape[1], num_filters] @@ -1810,6 +1820,8 @@ def sequence_softmax(input, use_cudnn=False, name=None): dtype='float32', lod_level=1) x_sequence_softmax = fluid.layers.sequence_softmax(input=x) """ + assert not _in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") helper = LayerHelper('sequence_softmax', **locals()) dtype = helper.input_dtype() softmax_out = helper.create_variable_for_type_inference(dtype) @@ -2302,6 +2314,8 @@ def sequence_pool(input, pool_type, is_test=False): last_x = fluid.layers.sequence_pool(input=x, pool_type='last') first_x = fluid.layers.sequence_pool(input=x, pool_type='first') """ + assert not _in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") helper = LayerHelper('sequence_pool', **locals()) dtype = helper.input_dtype() pool_out = helper.create_variable_for_type_inference(dtype) @@ -2341,6 +2355,8 @@ def sequence_concat(input, name=None): out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3]) """ + assert not _in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") helper = LayerHelper('sequence_concat', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) helper.append_op( @@ -2468,6 +2484,8 @@ def sequence_slice(input, offset, length, name=None): subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset, length=length) """ + assert not _in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") helper = LayerHelper("sequence_slice", **locals()) dtype = helper.input_dtype() out = helper.create_variable_for_type_inference(dtype) @@ -3927,6 +3945,8 @@ def sequence_expand(x, y, ref_level=-1, name=None): dtype='float32', lod_level=1) out = layers.sequence_expand(x=x, y=y, ref_level=0) """ + assert not _in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") helper = LayerHelper('sequence_expand', input=x, **locals()) dtype = helper.input_dtype() tmp = helper.create_variable_for_type_inference(dtype) @@ -3993,6 +4013,8 @@ def sequence_expand_as(x, y, name=None): dtype='float32', lod_level=1) out = layers.sequence_expand_as(x=x, y=y) """ + assert not _in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") helper = LayerHelper('sequence_expand_as', input=x, **locals()) dtype = helper.input_dtype() tmp = helper.create_variable_for_type_inference(dtype) @@ -4039,6 +4061,8 @@ def sequence_pad(x, pad_value, maxlen=None, name=None): out = fluid.layers.sequence_pad(x=x, pad_value=pad_value) """ + assert not _in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") helper = LayerHelper('sequence_pad', input=x, **locals()) dtype = helper.input_dtype() out = helper.create_variable_for_type_inference(dtype) @@ -4105,6 +4129,8 @@ def sequence_unpad(x, length, name=None): out = fluid.layers.sequence_unpad(x=x, length=len) """ + assert not _in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") helper = LayerHelper('sequence_unpad', input=x, **locals()) dtype = helper.input_dtype() out = helper.create_variable_for_type_inference(dtype) @@ -5278,6 +5304,8 @@ def sequence_reshape(input, new_dim): x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1) x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10) """ + assert not _in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") helper = LayerHelper('sequence_reshape', **locals()) out = helper.create_variable_for_type_inference(helper.input_dtype()) helper.append_op( @@ -5812,6 +5840,8 @@ def im2sequence(input, input=layer, stride=[1, 1], filter_size=[2, 2]) """ + assert not _in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") if isinstance(filter_size, int): filter_size = [filter_size, filter_size] @@ -6228,7 +6258,7 @@ def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None): }, outputs={'Diff': diff, 'Out': loss}, - attrs={'sigma': sigma}) + attrs={'sigma': sigma if sigma is not None else 1.0}) return loss @@ -7589,6 +7619,8 @@ def sequence_scatter(input, index, updates, name=None): output = fluid.layers.sequence_scatter(input, index, updates) """ + assert not _in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") helper = LayerHelper('sequence_scatter', **locals()) dtype = helper.input_dtype() out = helper.create_variable_for_type_inference(dtype) @@ -8677,6 +8709,8 @@ def sequence_enumerate(input, win_size, pad_value=0, name=None): x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1) out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0) """ + assert not _in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") helper = LayerHelper('sequence_enumerate', **locals()) out = helper.create_variable_for_type_inference( helper.input_dtype(), stop_gradient=True) @@ -8716,6 +8750,8 @@ def sequence_mask(x, maxlen=None, dtype='int64', name=None): Variable: The output sequence mask. """ + assert not _in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") helper = LayerHelper('sequence_mask', **locals()) if name is None: @@ -9766,6 +9802,8 @@ def sequence_reverse(x, name=None): Returns: out(${y_type}): ${y_comment} """ + assert not _in_dygraph_mode(), ( + "sequence layer is not supported in dygraph mode yet.") helper = LayerHelper("sequence_reverse", **locals()) if name is None: out = helper.create_variable_for_type_inference(dtype=x.dtype) diff --git a/python/paddle/fluid/tests/unittests/test_layers.py b/python/paddle/fluid/tests/unittests/test_layers.py index 674965882..954e822e6 100644 --- a/python/paddle/fluid/tests/unittests/test_layers.py +++ b/python/paddle/fluid/tests/unittests/test_layers.py @@ -18,6 +18,8 @@ import unittest import contextlib import numpy as np import decorators +import inspect +from six.moves import filter import paddle import paddle.fluid as fluid @@ -58,8 +60,12 @@ class LayerTest(unittest.TestCase): fluid.default_main_program().random_seed = self.seed yield - def get_static_graph_result(self, feed, fetch_list, with_lod=False): - exe = fluid.Executor(self._get_place()) + def get_static_graph_result(self, + feed, + fetch_list, + with_lod=False, + force_to_use_cpu=False): + exe = fluid.Executor(self._get_place(force_to_use_cpu)) exe.run(fluid.default_startup_program()) return exe.run(fluid.default_main_program(), feed=feed, @@ -77,7 +83,6 @@ class LayerTest(unittest.TestCase): class TestLayer(LayerTest): def test_fc(self): - # pdb.set_trace() inp = np.ones([3, 32, 32], dtype='float32') with self.static_graph(): t = layers.data( @@ -596,25 +601,102 @@ class TestLayer(LayerTest): self.assertTrue(np.allclose(nce_loss3._numpy(), static_rlt)) -class TestBook(unittest.TestCase): - def test_fit_a_line(self): - program = Program() - with program_guard(program, startup_program=Program()): - x = layers.data(name='x', shape=[13], dtype='float32') +class TestBook(LayerTest): + def test_all_layers(self): + attrs = (getattr(self, name) for name in dir(self)) + methods = filter(inspect.ismethod, attrs) + for method in methods: + if not method.__name__.startswith('make_'): + continue + print(method) + import sys + sys.stdout.flush() + + self._feed_dict = {} + self._force_to_use_cpu = False + with self.static_graph(): + static_var = method() + if isinstance(static_var, tuple): + static_var = static_var[0] + + if static_var is not None: + fetch_list = [static_var.name] + static_result = self.get_static_graph_result( + feed=self._feed_dict, + fetch_list=fetch_list, + force_to_use_cpu=self._force_to_use_cpu) + else: + assert method.__name__ in ('make_get_places') + continue + + with self.dynamic_graph(self._force_to_use_cpu): + dy_result = method() + if isinstance(dy_result, tuple): + dy_result = dy_result[0] + + self.assertTrue(np.array_equal(static_result[0], dy_result._numpy())) + + def _get_np_data(self, shape, dtype, append_batch_size=True): + np.random.seed(self.seed) + if append_batch_size: + shape = [2] + shape + if dtype == 'float32': + return np.random.random(shape).astype(dtype) + elif dtype == 'float64': + return np.random.random(shape).astype(dtype) + elif dtype == 'int32': + return np.random.randint(0, 2, shape).astype(dtype) + elif dtype == 'int64': + return np.random.randint(0, 2, shape).astype(dtype) + + def _get_data(self, + name, + shape, + dtype, + set_feed_dict=True, + append_batch_size=True): + if base.enabled(): + return base.to_variable( + value=self._get_np_data(shape, dtype, append_batch_size), + name=name) + else: + if set_feed_dict: + self._feed_dict[name] = self._get_np_data(shape, dtype, + append_batch_size) + return layers.data( + name=name, + shape=shape, + dtype=dtype, + append_batch_size=append_batch_size) + + def make_sampled_softmax_with_cross_entropy(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + logits = self._get_data(name='Logits', shape=[256], dtype='float64') + print(logits.dtype) + label = self._get_data(name='Label', shape=[1], dtype='int64') + num_samples = 25 + output = layers.sampled_softmax_with_cross_entropy(logits, label, + num_samples) + return (output) + + def make_fit_a_line(self): + with program_guard( + fluid.default_main_program(), + startup_program=fluid.default_startup_program()): + x = self._get_data(name='x', shape=[13], dtype='float32') y_predict = layers.fc(input=x, size=1, act=None) - y = layers.data(name='y', shape=[1], dtype='float32') + y = self._get_data(name='y', shape=[1], dtype='float32') cost = layers.square_error_cost(input=y_predict, label=y) avg_cost = layers.mean(cost) - self.assertIsNotNone(avg_cost) - - print(str(program)) + return (avg_cost) - def test_recognize_digits_mlp(self): - program = Program() - with program_guard(program, startup_program=Program()): + def make_recognize_digits_mlp(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): # Change g_program, so the rest layers use `g_program` - images = layers.data(name='pixel', shape=[784], dtype='float32') - label = layers.data(name='label', shape=[1], dtype='int32') + images = self._get_data(name='pixel', shape=[784], dtype='float32') + label = self._get_data(name='label', shape=[1], dtype='int64') hidden1 = layers.fc(input=images, size=128, act='relu') hidden2 = layers.fc(input=hidden1, size=64, act='relu') predict = layers.fc(input=[hidden2, hidden1], @@ -623,32 +705,21 @@ class TestBook(unittest.TestCase): param_attr=["sftmax.w1", "sftmax.w2"]) cost = layers.cross_entropy(input=predict, label=label) avg_cost = layers.mean(cost) - self.assertIsNotNone(avg_cost) - - print(str(program)) + return (avg_cost) - def test_simple_conv2d(self): - program = Program() - with program_guard(program, startup_program=Program()): - images = layers.data( - name='pixel', shape=[3, 48, 48], dtype='float32') - layers.conv2d(input=images, num_filters=3, filter_size=[4, 4]) - - print(str(program)) - - def test_conv2d_transpose(self): - program = Program() - with program_guard(program): - img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32') - layers.conv2d_transpose(input=img, num_filters=10, output_size=28) - print(str(program)) + def make_conv2d_transpose(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32') + return layers.conv2d_transpose( + input=img, num_filters=10, output_size=28) - def test_recognize_digits_conv(self): - program = Program() - with program_guard(program, startup_program=Program()): - images = layers.data( + def make_recognize_digits_conv(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + images = self._get_data( name='pixel', shape=[1, 28, 28], dtype='float32') - label = layers.data(name='label', shape=[1], dtype='int32') + label = self._get_data(name='label', shape=[1], dtype='int64') conv_pool_1 = nets.simple_img_conv_pool( input=images, filter_size=5, @@ -667,19 +738,19 @@ class TestBook(unittest.TestCase): predict = layers.fc(input=conv_pool_2, size=10, act="softmax") cost = layers.cross_entropy(input=predict, label=label) avg_cost = layers.mean(cost) + return avg_cost - print(str(program)) - - def test_word_embedding(self): - program = Program() - with program_guard(program, startup_program=Program()): + def make_word_embedding(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): dict_size = 10000 embed_size = 32 - first_word = layers.data(name='firstw', shape=[1], dtype='int64') - second_word = layers.data(name='secondw', shape=[1], dtype='int64') - third_word = layers.data(name='thirdw', shape=[1], dtype='int64') - forth_word = layers.data(name='forthw', shape=[1], dtype='int64') - next_word = layers.data(name='nextw', shape=[1], dtype='int64') + first_word = self._get_data(name='firstw', shape=[1], dtype='int64') + second_word = self._get_data( + name='secondw', shape=[1], dtype='int64') + third_word = self._get_data(name='thirdw', shape=[1], dtype='int64') + forth_word = self._get_data(name='forthw', shape=[1], dtype='int64') + next_word = self._get_data(name='nextw', shape=[1], dtype='int64') embed_first = layers.embedding( input=first_word, @@ -713,257 +784,127 @@ class TestBook(unittest.TestCase): act='softmax') cost = layers.cross_entropy(input=predict_word, label=next_word) avg_cost = layers.mean(cost) - self.assertIsNotNone(avg_cost) + return (avg_cost) - print(str(program)) - - def test_linear_chain_crf(self): - program = Program() - with program_guard(program, startup_program=Program()): - label_dict_len = 10 - images = layers.data(name='pixel', shape=[784], dtype='float32') - label = layers.data(name='label', shape=[1], dtype='int32') - hidden = layers.fc(input=images, size=128) - crf = layers.linear_chain_crf( - input=hidden, label=label, param_attr=ParamAttr(name="crfw")) - crf_decode = layers.crf_decoding( - input=hidden, param_attr=ParamAttr(name="crfw")) - layers.chunk_eval( - input=crf_decode, - label=label, - chunk_scheme="IOB", - num_chunk_types=(label_dict_len - 1) // 2) - self.assertFalse(crf is None) - self.assertFalse(crf_decode is None) - - print(str(program)) - - def test_sigmoid_cross_entropy(self): - program = Program() - with program_guard(program): - dat = layers.data(name='data', shape=[10], dtype='float32') - lbl = layers.data(name='label', shape=[10], dtype='float32') + def make_sigmoid_cross_entropy(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + dat = self._get_data(name='data', shape=[10], dtype='float32') + lbl = self._get_data(name='label', shape=[10], dtype='float32') ignore_index = -1 - self.assertIsNotNone( - layers.sigmoid_cross_entropy_with_logits( - x=dat, label=lbl, ignore_index=ignore_index)) - print(str(program)) - - def test_hsigmoid(self): - program = Program() - with program_guard(program): - x = layers.data(name='x', shape=[2], dtype='float32') - y = layers.data(name='y', shape=[2], dtype='int64') - self.assertIsNotNone( - layers.hsigmoid( - input=x, label=y, num_classes=2)) - print(str(program)) + return (layers.sigmoid_cross_entropy_with_logits( + x=dat, label=lbl, ignore_index=ignore_index)) + + def make_hsigmoid(self): + self._force_to_use_cpu = True + with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()): + x = self._get_data(name='x', shape=[2], dtype='float32') + y = self._get_data(name='y', shape=[2], dtype='int64') + return (layers.hsigmoid(input=x, label=y, num_classes=2)) # test hsigmod with custom tree structure program2 = Program() with program_guard(program2): - x2 = layers.data(name='x2', shape=[4, 8], dtype='float32') - y2 = layers.data(name='y2', shape=[4], dtype='int64') - path_table = layers.data( + x2 = self._get_data(name='x2', shape=[4, 8], dtype='float32') + y2 = self._get_data(name='y2', shape=[4], dtype='int64') + path_table = self._get_data( name='path_table', shape=[4, 6], dtype='int64') - path_code = layers.data( + path_code = self._get_data( name='path_code', shape=[4, 6], dtype='int64') - self.assertIsNotNone( - layers.hsigmoid( - input=x2, - label=y2, - num_classes=6, - path_table=path_table, - path_code=path_code, - is_custom=True)) + return (layers.hsigmoid( + input=x2, + label=y2, + num_classes=6, + path_table=path_table, + path_code=path_code, + is_custom=True)) print(str(program2)) - def test_sequence_expand(self): - program = Program() - with program_guard(program): - x = layers.data(name='x', shape=[10], dtype='float32') - y = layers.data( - name='y', shape=[10, 20], dtype='float32', lod_level=2) - self.assertIsNotNone(layers.sequence_expand(x=x, y=y, ref_level=1)) - print(str(program)) - - def test_sequence_unpad(self): - program = Program() - with program_guard(program): - x = layers.data(name='x', shape=[10, 5], dtype='float32') - length = layers.data(name='length', shape=[1], dtype='int64') - self.assertIsNotNone(layers.sequence_unpad(x=x, length=length)) - print(str(program)) - - def test_pool2d(self): - program = Program() - with program_guard(program): - x = layers.data(name='x', shape=[3, 224, 224], dtype='float32') - self.assertIsNotNone( - layers.pool2d( - x, - pool_size=[5, 3], - pool_stride=[1, 2], - pool_padding=(2, 1))) - - def test_adaptive_pool2d(self): - program = Program() - with program_guard(program): - x = layers.data(name='x', shape=[3, 224, 224], dtype='float32') - self.assertIsNotNone( - layers.adaptive_pool2d( - x, [3, 3], pool_type='avg')) + def make_pool2d(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32') + return (layers.pool2d( + x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1))) + + def make_adaptive_pool2d(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32') + return (layers.adaptive_pool2d(x, [3, 3], pool_type='avg')) pool, mask = layers.adaptive_pool2d(x, [3, 3], require_index=True) - self.assertIsNotNone(pool) - self.assertIsNotNone(mask) - self.assertIsNotNone(layers.adaptive_pool2d(x, 3, pool_type='avg')) + return (pool) + return (mask) + return (layers.adaptive_pool2d(x, 3, pool_type='avg')) pool, mask = layers.adaptive_pool2d(x, 3, require_index=True) - self.assertIsNotNone(pool) - self.assertIsNotNone(mask) - - def test_adaptive_pool3d(self): - program = Program() - with program_guard(program): - x = layers.data(name='x', shape=[3, 244, 224, 224], dtype='float32') - self.assertIsNotNone( - layers.adaptive_pool3d( - x, [3, 3, 3], pool_type='avg')) + return (pool) + return (mask) + + def make_adaptive_pool3d(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + x = self._get_data( + name='x', shape=[3, 244, 224, 224], dtype='float32') + return (layers.adaptive_pool3d(x, [3, 3, 3], pool_type='avg')) pool, mask = layers.adaptive_pool3d( x, [3, 3, 3], require_index=True) - self.assertIsNotNone(pool) - self.assertIsNotNone(mask) - self.assertIsNotNone(layers.adaptive_pool3d(x, 3, pool_type='avg')) + return (pool) + return (mask) + return (layers.adaptive_pool3d(x, 3, pool_type='avg')) pool, mask = layers.adaptive_pool3d(x, 3, require_index=True) - self.assertIsNotNone(pool) - self.assertIsNotNone(mask) + return (pool) + return (mask) - def test_lstm_unit(self): - program = Program() - with program_guard(program): - x_t_data = layers.data( + def make_lstm_unit(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + x_t_data = self._get_data( name='x_t_data', shape=[10, 10], dtype='float32') x_t = layers.fc(input=x_t_data, size=10) - prev_hidden_data = layers.data( + prev_hidden_data = self._get_data( name='prev_hidden_data', shape=[10, 30], dtype='float32') prev_hidden = layers.fc(input=prev_hidden_data, size=30) - prev_cell_data = layers.data( + prev_cell_data = self._get_data( name='prev_cell', shape=[10, 30], dtype='float32') prev_cell = layers.fc(input=prev_cell_data, size=30) - self.assertIsNotNone( - layers.lstm_unit( - x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell)) - print(str(program)) + return (layers.lstm_unit( + x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell)) - def test_dynamic_lstmp(self): - program = Program() - with program_guard(program): - hidden_dim, proj_dim = 16, 8 - seq_data = layers.data( - name='seq_data', shape=[10, 10], dtype='float32', lod_level=1) - fc_out = layers.fc(input=seq_data, size=4 * hidden_dim) - self.assertIsNotNone( - layers.dynamic_lstmp( - input=fc_out, size=4 * hidden_dim, proj_size=proj_dim)) - print(str(program)) - - def test_sequence_softmax(self): - program = Program() - with program_guard(program): - seq_data = layers.data( - name='seq_data', shape=[10, 10], dtype='float32', lod_level=1) - seq = layers.fc(input=seq_data, size=20) - self.assertIsNotNone(layers.sequence_softmax(seq)) - print(str(program)) - - def test_softmax(self): - program = Program() - with program_guard(program): - data = layers.data(name='data', shape=[10], dtype='float32') + def make_softmax(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + data = self._get_data(name='data', shape=[10], dtype='float32') hid = layers.fc(input=data, size=20) - self.assertIsNotNone(layers.softmax(hid, axis=1)) - print(str(program)) + return (layers.softmax(hid, axis=1)) - def test_space_to_depth(self): - program = Program() - with program_guard(program): - data = layers.data( + def make_space_to_depth(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + data = self._get_data( name='data', shape=[32, 9, 6, 6], append_batch_size=False, dtype='float32') - self.assertIsNotNone(layers.space_to_depth(data, 3)) - print(str(program)) - - def test_sequence_unsqueeze(self): - program = Program() - with program_guard(program): - x = layers.data(name='x', shape=[8, 2], dtype='float32') - out = layers.unsqueeze(input=x, axes=[1]) - self.assertIsNotNone(out) - print(str(program)) - - def test_squeeze(self): - program = Program() - with program_guard(program): - x = layers.data(name='x', shape=[1, 1, 4], dtype='float32') - out = layers.squeeze(input=x, axes=[2]) - self.assertIsNotNone(out) - print(str(program)) - - def test_lrn(self): - program = Program() - with program_guard(program): - data = layers.data(name='data', shape=[6, 2, 2], dtype='float32') - self.assertIsNotNone(layers.lrn(data)) - print(str(program)) - - def test_get_places(self): - program = Program() - with program_guard(program): - x = get_places(device_count=4) - self.assertIsNotNone(x) - print(str(program)) + return (layers.space_to_depth(data, 3)) - def test_sequence_reshape(self): - program = Program() - with program_guard(program): - x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1) - out = layers.sequence_reshape(input=x, new_dim=16) - self.assertIsNotNone(out) - print(str(program)) + def make_lrn(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + data = self._get_data(name='data', shape=[6, 2, 2], dtype='float32') + return (layers.lrn(data)) - def test_im2sequence(self): - program = Program() - with program_guard(program): - x = layers.data(name='x', shape=[3, 128, 128], dtype='float32') - y = layers.data(name='y', shape=[], dtype='float32') - output = layers.im2sequence( - input=x, - input_image_size=y, - stride=[1, 1], - filter_size=[2, 2], - out_stride=[1, 1]) - self.assertIsNotNone(output) - print(str(program)) - - def test_sampled_softmax_with_cross_entropy(self): - program = Program() - with program_guard(program): - logits = layers.data(name='Logits', shape=[256], dtype='float64') - label = layers.data(name='Label', shape=[1], dtype='int64') - num_samples = 25 - output = layers.sampled_softmax_with_cross_entropy(logits, label, - num_samples) - self.assertIsNotNone(output) - print(str(program)) + def make_get_places(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + get_places(device_count=1) @decorators.prog_scope() - def test_nce(self): + def make_nce(self): window_size = 5 words = [] for i in range(window_size): words.append( - layers.data( + self._get_data( name='word_{0}'.format(i), shape=[1], dtype='int64')) dict_size = 10000 @@ -989,278 +930,171 @@ class TestBook(unittest.TestCase): param_attr='nce.w', bias_attr='nce.b') avg_loss = layers.mean(loss) - self.assertIsNotNone(avg_loss) + return (avg_loss) print(str(default_main_program())) - def test_row_conv(self): - program = Program() - with program_guard(program): - x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1) - out = layers.row_conv(input=x, future_context_size=2) - self.assertIsNotNone(out) - print(str(program)) - - def test_multiplex(self): - program = Program() - with program_guard(program): - x1 = layers.data(name='x1', shape=[4], dtype='float32') - x2 = layers.data(name='x2', shape=[4], dtype='float32') - index = layers.data(name='index', shape=[1], dtype='int32') + def make_multiplex(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + x1 = self._get_data(name='x1', shape=[4], dtype='float32') + x2 = self._get_data(name='x2', shape=[4], dtype='float32') + index = self._get_data(name='index', shape=[1], dtype='int32') out = layers.multiplex(inputs=[x1, x2], index=index) - self.assertIsNotNone(out) - print(str(program)) - - def test_softmax_with_cross_entropy(self): - program = Program() - with program_guard(program): - x = layers.data(name='x', shape=[16], dtype='float32') - y = layers.data(name='label', shape=[1], dtype='int64') + return (out) + + def make_softmax_with_cross_entropy(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + x = self._get_data(name='x', shape=[16], dtype='float32') + y = self._get_data(name='label', shape=[1], dtype='int64') loss, softmax = layers.softmax_with_cross_entropy( x, y, return_softmax=True) - self.assertIsNotNone(loss) - self.assertIsNotNone(softmax) + return (loss) + return (softmax) loss = layers.softmax_with_cross_entropy(x, y) - self.assertIsNotNone(loss) - print(str(program)) - - def test_smooth_l1(self): - program = Program() - with program_guard(program): - x = layers.data(name='x', shape=[4], dtype='float32') - y = layers.data(name='label', shape=[4], dtype='float32') + return (loss) + + def make_smooth_l1(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + x = self._get_data(name='x', shape=[4], dtype='float32') + y = self._get_data(name='label', shape=[4], dtype='float32') loss = layers.smooth_l1(x, y) - self.assertIsNotNone(loss) - print(str(program)) + return (loss) - def test_scatter(self): - program = Program() - with program_guard(program): - x = layers.data( + def make_scatter(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + x = self._get_data( name='x', shape=[3, 3], append_batch_size=False, dtype='float32') - idx = layers.data( + idx = self._get_data( name='idx', shape=[2], append_batch_size=False, dtype='int32') - updates = layers.data( + updates = self._get_data( name='updates', shape=[2, 3], append_batch_size=False, dtype='float32') out = layers.scatter(input=x, index=idx, updates=updates) - self.assertIsNotNone(out) - print(str(program)) - - def test_sequence_scatter(self): - program = Program() - with program_guard(program): - x = layers.data( - name='x', - shape=[3, 6], - append_batch_size=False, - dtype='float32') - idx = layers.data( - name='idx', - shape=[12, 1], - append_batch_size=False, - dtype='int32', - lod_level=1) - updates = layers.data( - name='updates', - shape=[12, 1], - append_batch_size=False, - dtype='float32', - lod_level=1) - out = layers.sequence_scatter(input=x, index=idx, updates=updates) - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_sequence_slice(self): - program = Program() - with program_guard(program): - import numpy as np - seqs = layers.data( - name='x', shape=[10, 5], dtype='float32', lod_level=1) - offset = layers.assign(input=np.array([[0, 1]]).astype('int32')) - length = layers.assign(input=np.array([[2, 1]]).astype('int32')) - out = layers.sequence_slice( - input=seqs, offset=offset, length=length) - self.assertIsNotNone(out) - print(str(program)) - - def test_lod_reset(self): - program = Program() - with program_guard(program): - x = layers.data(name='x', shape=[10], dtype='float32') - y = layers.data( - name='y', shape=[10, 20], dtype='float32', lod_level=2) - print(layers.lod_reset(x=x, y=y)) - print(str(program)) - - def test_label_smooth(self): - program = Program() - with program_guard(program): - label = layers.data(name="label", shape=[1], dtype="float32") + def make_label_smooth(self): + # TODO(minqiyang): support gpu ut + self._force_to_use_cpu = True + with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()): + label = self._get_data(name="label", shape=[1], dtype="int32") one_hot_label = layers.one_hot(input=label, depth=10) smooth_label = layers.label_smooth( - label=one_hot_label, epsilon=0.1, dtype="float32") - self.assertIsNotNone(smooth_label) - print(str(program)) - - def test_topk(self): - program = Program() - with program_guard(program): - data = layers.data(name="label", shape=[200], dtype="float32") - values, indices = layers.topk(data, k=5) - self.assertIsNotNone(values) - self.assertIsNotNone(indices) - print(str(program)) - - def test_roi_pool(self): - program = Program() - with program_guard(program): - x = layers.data(name="x", shape=[256, 30, 30], dtype="float32") - rois = layers.data( - name="rois", shape=[4], dtype="float32", lod_level=1) - output = layers.roi_pool(x, rois, 7, 7, 0.6) - self.assertIsNotNone(output) - print(str(program)) + label=one_hot_label, epsilon=0.1, dtype="int32") + return (smooth_label) - def test_psroi_pool(self): - program = Program() - with program_guard(program): - x = layers.data(name="x", shape=[245, 30, 30], dtype="float32") - rois = layers.data( - name="rois", shape=[4], dtype="float32", lod_level=1) - output = layers.psroi_pool(x, rois, 5, 0.25, 7, 7) - self.assertIsNotNone(output) - print(str(program)) - - def test_roi_align(self): - program = Program() - with program_guard(program): - x = layers.data(name="x", shape=[256, 30, 30], dtype="float32") - rois = layers.data( - name="rois", shape=[4], dtype="float32", lod_level=1) - output = layers.roi_align(x, rois, 14, 14, 0.5, 2) - self.assertIsNotNone(output) - print(str(program)) + def make_topk(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + data = self._get_data(name="label", shape=[200], dtype="float32") + values, indices = layers.topk(data, k=5) + return (values) + return (indices) - def test_resize_bilinear(self): - program = Program() - with program_guard(program): - x = layers.data(name='x', shape=[3, 9, 6], dtype="float32") + def make_resize_bilinear(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32") output = layers.resize_bilinear(x, out_shape=[12, 12]) - self.assertIsNotNone(output) + return (output) output = layers.resize_bilinear(x, scale=3) - self.assertIsNotNone(output) - print(str(program)) + return (output) - def test_resize_nearest(self): - program = Program() - with program_guard(program): - x = layers.data(name='x', shape=[3, 9, 6], dtype="float32") + def make_resize_nearest(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32") output = layers.resize_nearest(x, out_shape=[12, 12]) - self.assertIsNotNone(output) + return (output) output = layers.resize_nearest(x, scale=3) - self.assertIsNotNone(output) - print(str(program)) + return (output) - def test_polygon_box_transform(self): - program = Program() - with program_guard(program): - x = layers.data(name='x', shape=[8, 4, 4], dtype="float32") + def make_polygon_box_transform(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + x = self._get_data(name='x', shape=[8, 4, 4], dtype="float32") output = layers.polygon_box_transform(input=x) - self.assertIsNotNone(output) - print(str(program)) + return (output) - def test_l2_normalize(self): - program = Program() - with program_guard(program): - x = layers.data(name='x', shape=[8, 7, 10], dtype="float32") + def make_l2_normalize(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32") output = layers.l2_normalize(x, axis=1) + return output - def test_maxout(self): - program = Program() - with program_guard(program): - data = layers.data(name='x', shape=[8, 6, 6], dtype="float32") + def make_maxout(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + data = self._get_data(name='x', shape=[8, 6, 6], dtype="float32") output = layers.maxout(x=data, groups=2) - self.assertIsNotNone(output) - print(str(program)) - - def test_crop(self): - program = Program() - with program_guard(program): - x = layers.data(name='x', shape=[3, 5], dtype="float32") - y = layers.data(name='y', shape=[2, 3], dtype="float32") + return (output) + + def make_crop(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + x = self._get_data(name='x', shape=[3, 5], dtype="float32") + y = self._get_data(name='y', shape=[2, 3], dtype="float32") output = layers.crop(x, shape=y) - self.assertIsNotNone(output) - print(str(program)) - - def test_mean_iou(self): - program = Program() - with program_guard(program): - x = layers.data(name='x', shape=[16], dtype='float32') - y = layers.data(name='label', shape=[1], dtype='int64') + return (output) + + def make_mean_iou(self): + # TODO(minqiyang): support gpu ut + self._force_to_use_cpu = True + with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()): + x = self._get_data(name='x', shape=[16], dtype='int32') + y = self._get_data(name='label', shape=[1], dtype='int32') iou = layers.mean_iou(x, y, 2) - self.assertIsNotNone(iou) - print(str(program)) + return (iou) - def test_argsort(self): - program = Program() - with program_guard(program): - data = layers.data(name='x', shape=[2, 3, 3], dtype="float32") + def make_argsort(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + data = self._get_data(name='x', shape=[2, 3, 3], dtype="float32") out, ids = layers.argsort(input=data, axis=1) - self.assertIsNotNone(out) - self.assertIsNotNone(ids) - print(str(program)) - - def test_rank_loss(self): - program = Program() - with program_guard(program): - label = layers.data( + return (out) + return (ids) + + def make_rank_loss(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + label = self._get_data( name='label', append_batch_size=False, shape=[16, 1], dtype="float32") - left = layers.data( + left = self._get_data( name='left', append_batch_size=False, shape=[16, 1], dtype="float32") - right = layers.data( + right = self._get_data( name='right', append_batch_size=False, shape=[16, 1], dtype="float32") out = layers.rank_loss(label, left, right, name="rank_loss") - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_flatten(self): - program = Program() - with program_guard(program): - x = layers.data( - name='x', - append_batch_size=False, - shape=[4, 4, 3], - dtype="float32") - out = layers.flatten(x, axis=1, name="flatten") - self.assertIsNotNone(out) - - def test_shape(self): - program = Program() - with program_guard(program): - input = layers.data( + def make_shape(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data( name="input", shape=[3, 100, 100], dtype="float32") out = layers.shape(input) - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_pad2d(self): - program = Program() - with program_guard(program): - input = layers.data( + def make_pad2d(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data( name="input", shape=[3, 100, 100], dtype="float32") paddings = layers.fill_constant(shape=[4], dtype='int32', value=1) out = layers.pad2d( @@ -1275,14 +1109,13 @@ class TestBook(unittest.TestCase): mode='reflect', data_format='NCHW', name="shape") - self.assertIsNotNone(out) - self.assertIsNotNone(out_1) - print(str(program)) + return (out) + return (out_1) - def test_prelu(self): - program = Program() - with program_guard(program): - input = layers.data( + def make_prelu(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data( name="input", shape=[5, 200, 100, 100], dtype="float32") mode = 'channel' out = layers.prelu( @@ -1290,291 +1123,365 @@ class TestBook(unittest.TestCase): mode, param_attr=ParamAttr(initializer=Constant(1.0)), name='prelu') - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_brelu(self): - program = Program() - with program_guard(program): - input = layers.data(name="input", shape=[16], dtype="float32") + def make_brelu(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data(name="input", shape=[16], dtype="float32") out = layers.brelu(input, t_min=1.0, t_max=20.0, name='brelu') - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_leaky_relu(self): - program = Program() - with program_guard(program): - input = layers.data(name="input", shape=[16], dtype="float32") + def make_leaky_relu(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data(name="input", shape=[16], dtype="float32") out = layers.leaky_relu(input, alpha=0.1, name='leaky_relu') - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_soft_relu(self): - program = Program() - with program_guard(program): - input = layers.data(name="input", shape=[16], dtype="float32") + def make_soft_relu(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data(name="input", shape=[16], dtype="float32") out = layers.soft_relu(input, threshold=30.0, name='soft_relu') - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_sigmoid(self): - program = Program() - with program_guard(program): - input = layers.data(name="input", shape=[16], dtype="float32") + def make_sigmoid(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data(name="input", shape=[16], dtype="float32") out = layers.sigmoid(input, name='sigmoid') - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_logsigmoid(self): - program = Program() - with program_guard(program): - input = layers.data(name="input", shape=[16], dtype="float32") + def make_logsigmoid(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data(name="input", shape=[16], dtype="float32") out = layers.logsigmoid(input, name='logsigmoid') - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_exp(self): - program = Program() - with program_guard(program): - input = layers.data(name="input", shape=[16], dtype="float32") + def make_exp(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data(name="input", shape=[16], dtype="float32") out = layers.exp(input, name='exp') - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_tanh(self): - program = Program() - with program_guard(program): - input = layers.data(name="input", shape=[16], dtype="float32") + def make_tanh(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data(name="input", shape=[16], dtype="float32") out = layers.tanh(input, name='tanh') - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_tanh_shrink(self): - program = Program() - with program_guard(program): - input = layers.data(name="input", shape=[16], dtype="float32") + def make_tanh_shrink(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data(name="input", shape=[16], dtype="float32") out = layers.tanh_shrink(input, name='tanh_shrink') - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_sqrt(self): - program = Program() - with program_guard(program): - input = layers.data(name="input", shape=[16], dtype="float32") + def make_sqrt(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data(name="input", shape=[16], dtype="float32") out = layers.sqrt(input, name='sqrt') - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_abs(self): - program = Program() - with program_guard(program): - input = layers.data(name="input", shape=[16], dtype="float32") + def make_abs(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data(name="input", shape=[16], dtype="float32") out = layers.abs(input, name='abs') - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_ceil(self): - program = Program() - with program_guard(program): - input = layers.data(name="input", shape=[16], dtype="float32") + def make_ceil(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data(name="input", shape=[16], dtype="float32") out = layers.ceil(input, name='ceil') - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_floor(self): - program = Program() - with program_guard(program): - input = layers.data(name="input", shape=[16], dtype="float32") + def make_floor(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data(name="input", shape=[16], dtype="float32") out = layers.floor(input, name='floor') - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_cos(self): - program = Program() - with program_guard(program): - input = layers.data(name="input", shape=[16], dtype="float32") + def make_cos(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data(name="input", shape=[16], dtype="float32") out = layers.cos(input, name='cos') - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_sin(self): - program = Program() - with program_guard(program): - input = layers.data(name="input", shape=[16], dtype="float32") + def make_sin(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data(name="input", shape=[16], dtype="float32") out = layers.sin(input, name='sin') - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_round(self): - program = Program() - with program_guard(program): - input = layers.data(name="input", shape=[16], dtype="float32") + def make_round(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data(name="input", shape=[16], dtype="float32") out = layers.round(input, name='round') - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_reciprocal(self): - program = Program() - with program_guard(program): - input = layers.data(name="input", shape=[16], dtype="float32") + def make_reciprocal(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data(name="input", shape=[16], dtype="float32") out = layers.reciprocal(input, name='reciprocal') - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_square(self): - program = Program() - with program_guard(program): - input = layers.data(name="input", shape=[16], dtype="float32") + def make_square(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data(name="input", shape=[16], dtype="float32") out = layers.square(input, name='square') - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_softplus(self): - program = Program() - with program_guard(program): - input = layers.data(name="input", shape=[16], dtype="float32") + def make_softplus(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data(name="input", shape=[16], dtype="float32") out = layers.softplus(input, name='softplus') - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_softsign(self): - program = Program() - with program_guard(program): - input = layers.data(name="input", shape=[16], dtype="float32") + def make_softsign(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data(name="input", shape=[16], dtype="float32") out = layers.softsign(input, name='softsign') - self.assertIsNotNone(out) - print(str(program)) - - def test_roi_perspective_transform(self): - program = Program() - with program_guard(program): - x = layers.data(name="x", shape=[256, 30, 30], dtype="float32") - rois = layers.data( - name="rois", shape=[8], dtype="float32", lod_level=1) - output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6) - self.assertIsNotNone(output) - print(str(program)) + return (out) - def test_sequence_enumerate(self): - program = Program() - with program_guard(program): - x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1) - out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0) - print(str(program)) - - def test_cross_entropy(self): - program = Program() - with program_guard(program): - x = layers.data(name="x", shape=[30, 10], dtype="float32") - label = layers.data(name="label", shape=[30, 1], dtype="int32") + def make_cross_entropy(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + x = self._get_data(name="x", shape=[30, 10], dtype="float32") + label = self._get_data(name="label", shape=[30, 1], dtype="int64") mode = 'channel' out = layers.cross_entropy(x, label, False, 4) - self.assertIsNotNone(out) + return (out) - def test_bpr_loss(self): - program = Program() - with program_guard(program): - x = layers.data(name="x", shape=[30, 10], dtype="float32") - label = layers.data(name="label", shape=[30, 1], dtype="int32") + def make_bpr_loss(self): + self._force_to_use_cpu = True + with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()): + x = self._get_data(name="x", shape=[30, 10], dtype="float32") + label = self._get_data(name="label", shape=[30, 1], dtype="int64") out = layers.bpr_loss(x, label) - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_expand(self): - program = Program() - with program_guard(program): - x = layers.data(name="input", shape=[10], dtype='int32') + def make_expand(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + x = self._get_data(name="input", shape=[10], dtype='int32') out = layers.expand(x, [1, 2]) - print(str(program)) + return out - def test_uniform_random_batch_size_like(self): - program = Program() - with program_guard(program): - input = layers.data(name="input", shape=[13, 11], dtype='float32') + def make_uniform_random_batch_size_like(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data( + name="input", shape=[13, 11], dtype='float32') out = layers.uniform_random_batch_size_like(input, [-1, 11]) - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_gaussian_random(self): - program = Program() - with program_guard(program): + def make_gaussian_random(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): out = layers.gaussian_random(shape=[20, 30]) - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_sampling_id(self): - program = Program() - with program_guard(program): - x = layers.data( + def make_sampling_id(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + x = self._get_data( name="X", shape=[13, 11], dtype='float32', append_batch_size=False) out = layers.sampling_id(x) - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_gaussian_random_batch_size_like(self): - program = Program() - with program_guard(program): - input = layers.data(name="input", shape=[13, 11], dtype='float32') + def make_gaussian_random_batch_size_like(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data( + name="input", shape=[13, 11], dtype='float32') out = layers.gaussian_random_batch_size_like( input, shape=[-1, 11], mean=1.0, std=2.0) - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_sum(self): - program = Program() - with program_guard(program): - input = layers.data(name="input", shape=[13, 11], dtype='float32') + def make_sum(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data( + name="input", shape=[13, 11], dtype='float32') out = layers.sum(input) - self.assertIsNotNone(out) - print(str(program)) + return (out) - def test_slice(self): + def make_slice(self): starts = [1, 0, 2] ends = [3, 3, 4] axes = [0, 1, 2] - program = Program() - with program_guard(program): - input = layers.data( + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data( name="input", shape=[3, 4, 5, 6], dtype='float32') out = layers.slice(input, axes=axes, starts=starts, ends=ends) + return out - def test_softshrink(self): - program = Program() - with program_guard(program): - input = layers.data(name="input", shape=[16], dtype="float32") + def make_softshrink(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + input = self._get_data(name="input", shape=[16], dtype="float32") out = layers.softshrink(input, name='softshrink') - self.assertIsNotNone(out) - print(str(program)) + return (out) def iou_similarity(self): - program = Program() - with program_guard(program): - x = layers.data(name="x", shape=[16], dtype="float32") - y = layers.data(name="y", shape=[16], dtype="float32") + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + x = self._get_data(name="x", shape=[16], dtype="float32") + y = self._get_data(name="y", shape=[16], dtype="float32") out = layers.iou_similarity(x, y, name='iou_similarity') - self.assertIsNotNone(out) - print(str(program)) - - def test_grid_sampler(self): - program = Program() - with program_guard(program): - x = layers.data(name='x', shape=[3, 5, 7], dtype='float32') - grid = layers.data(name='grid', shape=[5, 7, 2], dtype='float32') + return (out) + + def make_grid_sampler(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + x = self._get_data(name='x', shape=[3, 5, 7], dtype='float32') + grid = self._get_data(name='grid', shape=[5, 7, 2], dtype='float32') out = layers.grid_sampler(x, grid) - self.assertIsNotNone(out) - print(str(program)) + return (out) + + def make_bilinear_tensor_product_layer(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + data = self._get_data(name='data', shape=[4], dtype="float32") + + theta = self._get_data(name="theta", shape=[5], dtype="float32") + out = layers.bilinear_tensor_product(data, theta, 6) + return (out) + + def make_batch_norm(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + data = self._get_data( + name='data', shape=[32, 128, 128], dtype="float32") + out = layers.batch_norm(data) + return (out) + + def make_range(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + layers.range(0, 10, 2, 'int32') + y = layers.range(0.1, 10.0, 0.2, 'float32') + return y + + def make_spectral_norm(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + weight = self._get_data( + name='weight', + shape=[2, 3, 32, 32], + dtype="float32", + append_batch_size=False) + out = layers.spectral_norm(weight, dim=1, power_iters=1) + return (out) + + def make_kldiv_loss(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + x = self._get_data(name='x', shape=[32, 128, 128], dtype="float32") + target = self._get_data( + name='target', shape=[32, 128, 128], dtype="float32") + loss = layers.kldiv_loss(x=x, target=target, reduction='batchmean') + return (loss) + + def make_temporal_shift(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32") + out = layers.temporal_shift(x, seg_num=2, shift_ratio=0.2) + return (out) + + def make_shuffle_channel(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32") + out = layers.shuffle_channel(x, group=4) + return (out) + + def make_fsp(self): + with program_guard(fluid.default_main_program(), + fluid.default_startup_program()): + x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32") + y = self._get_data(name="Y", shape=[8, 4, 4], dtype="float32") + out = layers.fsp_matrix(x, y) + return (out) + + def test_dynamic_lstmp(self): + # TODO(minqiyang): dygraph do not support lod now + with self.static_graph(): + hidden_dim, proj_dim = 16, 8 + seq_data = layers.data( + name='seq_data', shape=[10, 10], dtype='float32', lod_level=1) + fc_out = layers.fc(input=seq_data, size=4 * hidden_dim) + self.assertIsNotNone( + layers.dynamic_lstmp( + input=fc_out, size=4 * hidden_dim, proj_size=proj_dim)) + + def test_linear_chain_crf(self): + # TODO(minqiyang): dygraph do not support lod now + with self.static_graph(): + label_dict_len = 10 + images = layers.data(name='pixel', shape=[784], dtype='float32') + label = layers.data(name='label', shape=[1], dtype='int32') + hidden = layers.fc(input=images, size=2) + crf = layers.linear_chain_crf( + input=hidden, label=label, param_attr=ParamAttr(name="crfw")) + crf_decode = layers.crf_decoding( + input=hidden, param_attr=ParamAttr(name="crfw")) + self.assertFalse(crf is None) + self.assertFalse(crf_decode is None) + return layers.chunk_eval( + input=crf_decode, + label=label, + chunk_scheme="IOB", + num_chunk_types=(label_dict_len - 1) // 2) + + def test_im2sequence(self): + # TODO(minqiyang): dygraph do not support lod now + with self.static_graph(): + x = layers.data(name='x', shape=[3, 128, 128], dtype='float32') + y = layers.data(name='y', shape=[], dtype='float32') + output = layers.im2sequence( + input=x, + input_image_size=y, + stride=[1, 1], + filter_size=[2, 2], + out_stride=[1, 1]) + return (output) + + def test_lod_reset(self): + # TODO(minqiyang): dygraph do not support lod now + with self.static_graph(): + x = layers.data(name='x', shape=[10], dtype='float32') + y = layers.data( + name='y', shape=[10, 20], dtype='float32', lod_level=2) + return (layers.lod_reset(x=x, y=y)) def test_affine_grid(self): - program = Program() - with program_guard(program): + with self.static_graph(): data = layers.data(name='data', shape=[2, 3, 3], dtype="float32") out, ids = layers.argsort(input=data, axis=1) @@ -1586,81 +1493,153 @@ class TestBook(unittest.TestCase): self.assertIsNotNone(data_0) self.assertIsNotNone(data_1) - print(str(program)) - def test_bilinear_tensor_product_layer(self): - program = Program() - with program_guard(program): - data = layers.data(name='data', shape=[4], dtype="float32") + def test_psroi_pool(self): + # TODO(minqiyang): dygraph do not support lod now + with self.static_graph(): + x = layers.data(name="x", shape=[245, 30, 30], dtype="float32") + rois = layers.data( + name="rois", shape=[4], dtype="float32", lod_level=1) + output = layers.psroi_pool(x, rois, 5, 0.25, 7, 7) + return (output) - theta = layers.data(name="theta", shape=[5], dtype="float32") - out = layers.bilinear_tensor_product(data, theta, 6) + def test_sequence_expand(self): + # TODO(minqiyang): dygraph do not support lod now + with self.static_graph(): + x = layers.data(name='x', shape=[10], dtype='float32') + y = layers.data( + name='y', shape=[10, 20], dtype='float32', lod_level=2) + return (layers.sequence_expand(x=x, y=y, ref_level=1)) - print(str(program)) + def test_sequence_reshape(self): + # TODO(minqiyang): dygraph do not support lod now + with self.static_graph(): + x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1) + out = layers.sequence_reshape(input=x, new_dim=16) + return (out) - def test_batch_norm(self): - program = Program() - with program_guard(program): - data = layers.data( - name='data', shape=[32, 128, 128], dtype="float32") - out = layers.batch_norm(data) + def test_sequence_unpad(self): + # TODO(minqiyang): dygraph do not support lod now + with self.static_graph(): + x = layers.data(name='x', shape=[10, 5], dtype='float32') + length = layers.data(name='length', shape=[1], dtype='int64') + return (layers.sequence_unpad(x=x, length=length)) - print(str(program)) + def test_sequence_softmax(self): + # TODO(minqiyang): dygraph do not support lod now + with self.static_graph(): + seq_data = layers.data( + name='seq_data', shape=[10, 10], dtype='float32', lod_level=1) + seq = layers.fc(input=seq_data, size=20) + return (layers.sequence_softmax(seq)) - def test_range(self): - program = Program() - with program_guard(program): - layers.range(0, 10, 2, 'int32') - layers.range(0.1, 10.0, 0.2, 'float32') + def test_sequence_unsqueeze(self): + # TODO(minqiyang): dygraph do not support lod now + with self.static_graph(): + x = layers.data(name='x', shape=[8, 2], dtype='float32') + out = layers.unsqueeze(input=x, axes=[1]) + return (out) - print(str(program)) + def test_sequence_scatter(self): + # TODO(minqiyang): dygraph do not support lod now + with self.static_graph(): + x = layers.data( + name='x', + shape=[3, 6], + append_batch_size=False, + dtype='float32') + idx = layers.data( + name='idx', + shape=[12, 1], + append_batch_size=False, + dtype='int32', + lod_level=1) + updates = layers.data( + name='updates', + shape=[12, 1], + append_batch_size=False, + dtype='float32', + lod_level=1) + out = layers.sequence_scatter(input=x, index=idx, updates=updates) + return (out) - def test_spectral_norm(self): - program = Program() - with program_guard(program): - weight = layers.data( - name='weight', - shape=[2, 3, 32, 32], - dtype="float32", - append_batch_size=False) - out = layers.spectral_norm(weight, dim=1, power_iters=1) - self.assertIsNotNone(out) + def test_sequence_slice(self): + # TODO(minqiyang): dygraph do not support lod now + with self.static_graph(): + import numpy as np + seqs = layers.data( + name='x', shape=[10, 5], dtype='float32', lod_level=1) + offset = layers.assign(input=np.array([[0, 1]]).astype('int32')) + length = layers.assign(input=np.array([[2, 1]]).astype('int32')) + out = layers.sequence_slice( + input=seqs, offset=offset, length=length) + return (out) - def test_kldiv_loss(self): - program = Program() - with program_guard(program): - x = layers.data(name='x', shape=[32, 128, 128], dtype="float32") - target = layers.data( - name='target', shape=[32, 128, 128], dtype="float32") - loss = layers.kldiv_loss(x=x, target=target, reduction='batchmean') - self.assertIsNotNone(loss) - - print(str(program)) - - def test_temporal_shift(self): - program = Program() - with program_guard(program): - x = layers.data(name="X", shape=[16, 4, 4], dtype="float32") - out = layers.temporal_shift(x, seg_num=4, shift_ratio=0.2) - self.assertIsNotNone(out) - print(str(program)) - - def test_shuffle_channel(self): - program = Program() - with program_guard(program): - x = layers.data(name="X", shape=[16, 4, 4], dtype="float32") - out = layers.shuffle_channel(x, group=4) - self.assertIsNotNone(out) - print(str(program)) - - def test_fsp(self): - program = Program() - with program_guard(program): - x = layers.data(name="X", shape=[16, 4, 4], dtype="float32") - y = layers.data(name="Y", shape=[8, 4, 4], dtype="float32") - out = layers.fsp_matrix(x, y) - self.assertIsNotNone(out) - print(str(program)) + def test_roi_pool(self): + # TODO(minqiyang): dygraph do not support lod now + with self.static_graph(): + x = layers.data(name="x", shape=[256, 30, 30], dtype="float32") + rois = layers.data( + name="rois", shape=[4], dtype="float32", lod_level=1) + output = layers.roi_pool(x, rois, 7, 7, 0.6) + return (output) + + def test_sequence_enumerate(self): + # TODO(minqiyang): dygraph do not support lod now + with self.static_graph(): + x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1) + out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0) + + def test_roi_align(self): + # TODO(minqiyang): dygraph do not support lod now + with self.static_graph(): + x = layers.data(name="x", shape=[256, 30, 30], dtype="float32") + rois = layers.data( + name="rois", shape=[4], dtype="float32", lod_level=1) + output = layers.roi_align(x, rois, 14, 14, 0.5, 2) + return (output) + + def test_roi_perspective_transform(self): + # TODO(minqiyang): dygraph do not support lod now + with self.static_graph(): + x = layers.data(name="x", shape=[256, 30, 30], dtype="float32") + rois = layers.data( + name="rois", shape=[8], dtype="float32", lod_level=1) + output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6) + return (output) + + def test_row_conv(self): + # TODO(minqiyang): dygraph do not support lod now + with self.static_graph(): + x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1) + out = layers.row_conv(input=x, future_context_size=2) + return (out) + + def test_simple_conv2d(self): + # TODO(minqiyang): dygraph do not support layers with param now + with self.static_graph(): + images = layers.data( + name='pixel', shape=[3, 48, 48], dtype='float32') + return layers.conv2d( + input=images, num_filters=3, filter_size=[4, 4]) + + def test_squeeze(self): + # TODO(minqiyang): dygraph do not support layers with param now + with self.static_graph(): + x = layers.data(name='x', shape=[1, 1, 4], dtype='float32') + out = layers.squeeze(input=x, axes=[2]) + return (out) + + def test_flatten(self): + # TODO(minqiyang): dygraph do not support op without kernel now + with self.static_graph(): + x = layers.data( + name='x', + append_batch_size=False, + shape=[4, 4, 3], + dtype="float32") + out = layers.flatten(x, axis=1, name="flatten") + return (out) if __name__ == '__main__': -- GitLab