Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
e1d26e3b
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e1d26e3b
编写于
6月 13, 2022
作者:
W
Wenyu
提交者:
GitHub
6月 13, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add convnext (#6184)
* add convnext * remove invalid args
上级
63e7cfa4
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
217 addition
and
0 deletion
+217
-0
ppdet/modeling/backbones/__init__.py
ppdet/modeling/backbones/__init__.py
+2
-0
ppdet/modeling/backbones/convnext.py
ppdet/modeling/backbones/convnext.py
+215
-0
未找到文件。
ppdet/modeling/backbones/__init__.py
浏览文件 @
e1d26e3b
...
...
@@ -31,6 +31,7 @@ from . import hardnet
from
.
import
esnet
from
.
import
cspresnet
from
.
import
csp_darknet
from
.
import
convnext
from
.vgg
import
*
from
.resnet
import
*
...
...
@@ -51,3 +52,4 @@ from .hardnet import *
from
.esnet
import
*
from
.cspresnet
import
*
from
.csp_darknet
import
*
from
.convnext
import
*
\ No newline at end of file
ppdet/modeling/backbones/convnext.py
0 → 100644
浏览文件 @
e1d26e3b
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''
Modified from https://github.com/facebookresearch/ConvNeXt
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
'''
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddle
import
ParamAttr
from
paddle.nn.initializer
import
Constant
import
numpy
as
np
from
ppdet.core.workspace
import
register
,
serializable
from
..shape_spec
import
ShapeSpec
from
.transformer_utils
import
DropPath
,
trunc_normal_
__all__
=
[
'ConvNeXt'
]
class
Block
(
nn
.
Layer
):
r
""" ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in Pypaddle
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
"""
def
__init__
(
self
,
dim
,
drop_path
=
0.
,
layer_scale_init_value
=
1e-6
):
super
().
__init__
()
self
.
dwconv
=
nn
.
Conv2D
(
dim
,
dim
,
kernel_size
=
7
,
padding
=
3
,
groups
=
dim
)
# depthwise conv
self
.
norm
=
LayerNorm
(
dim
,
eps
=
1e-6
)
self
.
pwconv1
=
nn
.
Linear
(
dim
,
4
*
dim
)
# pointwise/1x1 convs, implemented with linear layers
self
.
act
=
nn
.
GELU
()
self
.
pwconv2
=
nn
.
Linear
(
4
*
dim
,
dim
)
if
layer_scale_init_value
>
0
:
self
.
gamma
=
self
.
create_parameter
(
shape
=
(
dim
,
),
attr
=
ParamAttr
(
initializer
=
Constant
(
layer_scale_init_value
)))
else
:
self
.
gamma
=
None
self
.
drop_path
=
DropPath
(
drop_path
)
if
drop_path
>
0.
else
nn
.
Identity
(
)
def
forward
(
self
,
x
):
input
=
x
x
=
self
.
dwconv
(
x
)
x
=
x
.
transpose
([
0
,
2
,
3
,
1
])
x
=
self
.
norm
(
x
)
x
=
self
.
pwconv1
(
x
)
x
=
self
.
act
(
x
)
x
=
self
.
pwconv2
(
x
)
if
self
.
gamma
is
not
None
:
x
=
self
.
gamma
*
x
x
=
x
.
transpose
([
0
,
3
,
1
,
2
])
x
=
input
+
self
.
drop_path
(
x
)
return
x
class
LayerNorm
(
nn
.
Layer
):
r
""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def
__init__
(
self
,
normalized_shape
,
eps
=
1e-6
,
data_format
=
"channels_last"
):
super
().
__init__
()
self
.
weight
=
self
.
create_parameter
(
shape
=
(
normalized_shape
,
),
attr
=
ParamAttr
(
initializer
=
Constant
(
1.
)))
self
.
bias
=
self
.
create_parameter
(
shape
=
(
normalized_shape
,
),
attr
=
ParamAttr
(
initializer
=
Constant
(
0.
)))
self
.
eps
=
eps
self
.
data_format
=
data_format
if
self
.
data_format
not
in
[
"channels_last"
,
"channels_first"
]:
raise
NotImplementedError
self
.
normalized_shape
=
(
normalized_shape
,
)
def
forward
(
self
,
x
):
if
self
.
data_format
==
"channels_last"
:
return
F
.
layer_norm
(
x
,
self
.
normalized_shape
,
self
.
weight
,
self
.
bias
,
self
.
eps
)
elif
self
.
data_format
==
"channels_first"
:
u
=
x
.
mean
(
1
,
keepdim
=
True
)
s
=
(
x
-
u
).
pow
(
2
).
mean
(
1
,
keepdim
=
True
)
x
=
(
x
-
u
)
/
paddle
.
sqrt
(
s
+
self
.
eps
)
x
=
self
.
weight
[:,
None
,
None
]
*
x
+
self
.
bias
[:,
None
,
None
]
return
x
@
register
@
serializable
class
ConvNeXt
(
nn
.
Layer
):
r
""" ConvNeXt
A Pypaddle impl of : `A ConvNet for the 2020s` -
https://arxiv.org/pdf/2201.03545.pdf
Args:
in_chans (int): Number of input image channels. Default: 3
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
drop_path_rate (float): Stochastic depth rate. Default: 0.
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
"""
def
__init__
(
self
,
in_chans
=
3
,
depths
=
[
3
,
3
,
9
,
3
],
dims
=
[
96
,
192
,
384
,
768
],
drop_path_rate
=
0.
,
layer_scale_init_value
=
1e-6
,
head_init_scale
=
1.
,
return_idx
=
[
1
,
2
,
3
],
pretrained
=
None
,
):
super
().
__init__
()
self
.
downsample_layers
=
nn
.
LayerList
(
)
# stem and 3 intermediate downsampling conv layers
stem
=
nn
.
Sequential
(
nn
.
Conv2D
(
in_chans
,
dims
[
0
],
kernel_size
=
4
,
stride
=
4
),
LayerNorm
(
dims
[
0
],
eps
=
1e-6
,
data_format
=
"channels_first"
))
self
.
downsample_layers
.
append
(
stem
)
for
i
in
range
(
3
):
downsample_layer
=
nn
.
Sequential
(
LayerNorm
(
dims
[
i
],
eps
=
1e-6
,
data_format
=
"channels_first"
),
nn
.
Conv2D
(
dims
[
i
],
dims
[
i
+
1
],
kernel_size
=
2
,
stride
=
2
),
)
self
.
downsample_layers
.
append
(
downsample_layer
)
self
.
stages
=
nn
.
LayerList
(
)
# 4 feature resolution stages, each consisting of multiple residual blocks
dp_rates
=
[
x
for
x
in
np
.
linspace
(
0
,
drop_path_rate
,
sum
(
depths
))]
cur
=
0
for
i
in
range
(
4
):
stage
=
nn
.
Sequential
(
*
[
Block
(
dim
=
dims
[
i
],
drop_path
=
dp_rates
[
cur
+
j
],
layer_scale_init_value
=
layer_scale_init_value
)
for
j
in
range
(
depths
[
i
])
])
self
.
stages
.
append
(
stage
)
cur
+=
depths
[
i
]
self
.
return_idx
=
return_idx
self
.
dims
=
[
dims
[
i
]
for
i
in
return_idx
]
# [::-1]
self
.
apply
(
self
.
_init_weights
)
# self.head.weight.set_value(self.head.weight.numpy() * head_init_scale)
# self.head.bias.set_value(self.head.weight.numpy() * head_init_scale)
if
pretrained
is
not
None
:
if
'http'
in
pretrained
:
#URL
path
=
paddle
.
utils
.
download
.
get_weights_path_from_url
(
pretrained
)
else
:
#model in local path
path
=
pretrained
self
.
set_state_dict
(
paddle
.
load
(
path
))
def
_init_weights
(
self
,
m
):
if
isinstance
(
m
,
(
nn
.
Conv2D
,
nn
.
Linear
)):
trunc_normal_
(
m
.
weight
,
std
=
.
02
)
nn
.
init
.
constant_
(
m
.
bias
,
0
)
def
forward_features
(
self
,
x
):
output
=
[]
for
i
in
range
(
4
):
x
=
self
.
downsample_layers
[
i
](
x
)
x
=
self
.
stages
[
i
](
x
)
output
.
append
(
x
)
output
=
[
output
[
i
]
for
i
in
self
.
return_idx
]
return
output
def
forward
(
self
,
x
):
x
=
self
.
forward_features
(
x
[
'image'
])
return
x
@
property
def
out_shape
(
self
):
return
[
ShapeSpec
(
channels
=
c
)
for
c
in
self
.
dims
]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录