Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
dd343a49
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
dd343a49
编写于
11月 06, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'ups/develop' into fea/jit/vadd
上级
b68ececb
fcbe84cb
变更
30
隐藏空白更改
内联
并排
Showing
30 changed file
with
734 addition
and
206 deletion
+734
-206
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+9
-5
paddle/fluid/framework/details/build_strategy.cc
paddle/fluid/framework/details/build_strategy.cc
+5
-0
paddle/fluid/framework/details/build_strategy.h
paddle/fluid/framework/details/build_strategy.h
+2
-0
paddle/fluid/framework/details/computation_op_handle.cc
paddle/fluid/framework/details/computation_op_handle.cc
+8
-2
paddle/fluid/framework/details/computation_op_handle.h
paddle/fluid/framework/details/computation_op_handle.h
+3
-0
paddle/fluid/framework/details/modify_op_lock_and_record_event_pass.cc
...framework/details/modify_op_lock_and_record_event_pass.cc
+59
-0
paddle/fluid/framework/details/modify_op_lock_and_record_event_pass.h
.../framework/details/modify_op_lock_and_record_event_pass.h
+32
-0
paddle/fluid/framework/details/op_graph_view.cc
paddle/fluid/framework/details/op_graph_view.cc
+77
-0
paddle/fluid/framework/details/op_graph_view.h
paddle/fluid/framework/details/op_graph_view.h
+54
-0
paddle/fluid/framework/details/reference_count_op_handle.h
paddle/fluid/framework/details/reference_count_op_handle.h
+2
-2
paddle/fluid/framework/details/reference_count_pass.cc
paddle/fluid/framework/details/reference_count_pass.cc
+19
-12
paddle/fluid/inference/tests/api/CMakeLists.txt
paddle/fluid/inference/tests/api/CMakeLists.txt
+9
-0
paddle/fluid/inference/tests/api/analyzer_dam_tester.cc
paddle/fluid/inference/tests/api/analyzer_dam_tester.cc
+224
-0
paddle/fluid/inference/tests/api/analyzer_ner_tester.cc
paddle/fluid/inference/tests/api/analyzer_ner_tester.cc
+2
-5
paddle/fluid/operators/affine_grid_op.cc
paddle/fluid/operators/affine_grid_op.cc
+3
-5
paddle/fluid/operators/affine_grid_op.h
paddle/fluid/operators/affine_grid_op.h
+53
-69
paddle/fluid/operators/conv_cudnn_op.cu.cc
paddle/fluid/operators/conv_cudnn_op.cu.cc
+5
-3
paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc
paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc
+5
-3
paddle/fluid/operators/math/CMakeLists.txt
paddle/fluid/operators/math/CMakeLists.txt
+8
-3
paddle/fluid/operators/math/jit_kernel_blas.cc
paddle/fluid/operators/math/jit_kernel_blas.cc
+13
-1
paddle/fluid/operators/ref_by_trainer_id_op.h
paddle/fluid/operators/ref_by_trainer_id_op.h
+1
-2
paddle/fluid/operators/rmsprop_op.h
paddle/fluid/operators/rmsprop_op.h
+6
-6
paddle/fluid/platform/device_context.cc
paddle/fluid/platform/device_context.cc
+28
-53
paddle/fluid/platform/device_context.h
paddle/fluid/platform/device_context.h
+62
-5
paddle/fluid/platform/stream_callback_manager.h
paddle/fluid/platform/stream_callback_manager.h
+22
-18
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+18
-7
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+2
-0
python/paddle/fluid/tests/unittests/parallel_executor_test_base.py
...ddle/fluid/tests/unittests/parallel_executor_test_base.py
+3
-0
python/paddle/fluid/tests/unittests/test_parallel_executor_crf.py
...addle/fluid/tests/unittests/test_parallel_executor_crf.py
+0
-4
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+0
-1
未找到文件。
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
dd343a49
cc_library
(
var_handle SRCS var_handle.cc DEPS place framework_proto node
)
cc_library
(
var_handle SRCS var_handle.cc DEPS place framework_proto node
)
cc_library
(
op_handle_base SRCS op_handle_base.cc DEPS var_handle device_context lod_tensor
)
cc_library
(
op_handle_base SRCS op_handle_base.cc DEPS var_handle device_context lod_tensor
)
cc_library
(
op_graph_view SRCS op_graph_view.cc DEPS op_handle_base
)
cc_library
(
scale_loss_grad_op_handle SRCS scale_loss_grad_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
)
cc_library
(
scale_loss_grad_op_handle SRCS scale_loss_grad_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
)
cc_library
(
fetch_op_handle SRCS fetch_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
)
cc_library
(
fetch_op_handle SRCS fetch_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
)
cc_library
(
computation_op_handle SRCS computation_op_handle.cc DEPS framework_proto scope place operator op_registry
)
cc_library
(
computation_op_handle SRCS computation_op_handle.cc DEPS framework_proto scope place operator op_registry
)
...
@@ -30,7 +31,9 @@ cc_library(data_balance_op_handle SRCS data_balance_op_handle.cc DEPS op_handle_
...
@@ -30,7 +31,9 @@ cc_library(data_balance_op_handle SRCS data_balance_op_handle.cc DEPS op_handle_
cc_library
(
gather_op_handle SRCS gather_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor
)
cc_library
(
gather_op_handle SRCS gather_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor
)
cc_library
(
fuse_vars_op_handle SRCS fuse_vars_op_handle.cc DEPS op_handle_base scope
)
cc_library
(
fuse_vars_op_handle SRCS fuse_vars_op_handle.cc DEPS op_handle_base scope
)
if
(
WITH_GPU
)
cc_library
(
modify_op_lock_and_record_event_pass SRCS modify_op_lock_and_record_event_pass.cc DEPS computation_op_handle op_graph_view multi_devices_helper
)
if
(
WITH_GPU
)
cc_library
(
reference_count_pass SRCS reference_count_pass.cc DEPS computation_op_handle scale_loss_grad_op_handle rpc_op_handle
cc_library
(
reference_count_pass SRCS reference_count_pass.cc DEPS computation_op_handle scale_loss_grad_op_handle rpc_op_handle
all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle graph graph_helper pass
)
all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle graph graph_helper pass
)
endif
()
endif
()
...
@@ -40,12 +43,13 @@ cc_library(sequential_execution_pass SRCS sequential_execution_pass.cc DEPS grap
...
@@ -40,12 +43,13 @@ cc_library(sequential_execution_pass SRCS sequential_execution_pass.cc DEPS grap
cc_library
(
multi_devices_graph_pass SRCS multi_devices_graph_pass.cc DEPS multi_devices_helper computation_op_handle
cc_library
(
multi_devices_graph_pass SRCS multi_devices_graph_pass.cc DEPS multi_devices_helper computation_op_handle
scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle fused_broadcast_op_handle
)
scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle fused_broadcast_op_handle
)
if
(
WITH_GPU
)
set
(
SSA_GRAPH_EXECUTOR_DEPS graph framework_proto sequential_execution_pass modify_op_lock_and_record_event_pass
)
cc_library
(
ssa_graph_executor SRCS ssa_graph_executor.cc DEPS graph framework_proto reference_count_pass sequential_execution_pass
)
if
(
WITH_GPU
)
else
()
list
(
APPEND SSA_GRAPH_EXECUTOR_DEPS reference_count_pass
)
cc_library
(
ssa_graph_executor SRCS ssa_graph_executor.cc DEPS graph framework_proto sequential_execution_pass
)
endif
()
endif
()
cc_library
(
ssa_graph_executor SRCS ssa_graph_executor.cc DEPS
${
SSA_GRAPH_EXECUTOR_DEPS
}
)
cc_library
(
threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope
cc_library
(
threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope
simple_threadpool device_context
)
simple_threadpool device_context
)
...
...
paddle/fluid/framework/details/build_strategy.cc
浏览文件 @
dd343a49
...
@@ -69,6 +69,10 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
...
@@ -69,6 +69,10 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
// Verify that the graph is correct for multi-device executor.
// Verify that the graph is correct for multi-device executor.
AppendPass
(
"multi_devices_check_pass"
);
AppendPass
(
"multi_devices_check_pass"
);
if
(
strategy_
.
remove_unnecessary_lock_
)
{
AppendPass
(
"modify_op_lock_and_record_event_pass"
);
}
}
}
private:
private:
...
@@ -136,3 +140,4 @@ USE_PASS(multi_devices_pass);
...
@@ -136,3 +140,4 @@ USE_PASS(multi_devices_pass);
USE_PASS
(
multi_devices_check_pass
);
USE_PASS
(
multi_devices_check_pass
);
USE_PASS
(
multi_devices_print_pass
);
USE_PASS
(
multi_devices_print_pass
);
USE_PASS
(
sequential_execution_pass
);
USE_PASS
(
sequential_execution_pass
);
USE_PASS
(
modify_op_lock_and_record_event_pass
);
paddle/fluid/framework/details/build_strategy.h
浏览文件 @
dd343a49
...
@@ -73,6 +73,8 @@ struct BuildStrategy {
...
@@ -73,6 +73,8 @@ struct BuildStrategy {
bool
fuse_broadcast_op_
{
false
};
bool
fuse_broadcast_op_
{
false
};
bool
remove_unnecessary_lock_
{
false
};
// User normally doesn't need to call this API.
// User normally doesn't need to call this API.
// The PassBuilder allows for more customized insert, remove of passes
// The PassBuilder allows for more customized insert, remove of passes
// from python side.
// from python side.
...
...
paddle/fluid/framework/details/computation_op_handle.cc
浏览文件 @
dd343a49
...
@@ -29,9 +29,15 @@ ComputationOpHandle::ComputationOpHandle(ir::Node *node, Scope *scope,
...
@@ -29,9 +29,15 @@ ComputationOpHandle::ComputationOpHandle(ir::Node *node, Scope *scope,
void
ComputationOpHandle
::
RunImpl
()
{
void
ComputationOpHandle
::
RunImpl
()
{
WaitInputVarGenerated
(
place_
);
WaitInputVarGenerated
(
place_
);
this
->
RunAndRecordEvent
([
this
]
{
auto
run_func
=
[
this
]()
{
op_
->
Run
(
*
scope_
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
(),
place_
);
op_
->
Run
(
*
scope_
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
(),
place_
);
});
};
if
(
is_lock_and_record_event_free_
)
{
run_func
();
}
else
{
this
->
RunAndRecordEvent
(
run_func
);
}
}
}
bool
ComputationOpHandle
::
NeedWait
(
VarHandleBase
*
in_var
)
{
bool
ComputationOpHandle
::
NeedWait
(
VarHandleBase
*
in_var
)
{
...
...
paddle/fluid/framework/details/computation_op_handle.h
浏览文件 @
dd343a49
...
@@ -36,6 +36,8 @@ struct ComputationOpHandle : public OpHandleBase {
...
@@ -36,6 +36,8 @@ struct ComputationOpHandle : public OpHandleBase {
const
platform
::
Place
&
GetPlace
()
const
{
return
place_
;
}
const
platform
::
Place
&
GetPlace
()
const
{
return
place_
;
}
void
SetLockAndRecordEventFree
(
bool
b
)
{
is_lock_and_record_event_free_
=
b
;
}
protected:
protected:
void
RunImpl
()
override
;
void
RunImpl
()
override
;
...
@@ -45,6 +47,7 @@ struct ComputationOpHandle : public OpHandleBase {
...
@@ -45,6 +47,7 @@ struct ComputationOpHandle : public OpHandleBase {
std
::
unique_ptr
<
OperatorBase
>
op_
;
std
::
unique_ptr
<
OperatorBase
>
op_
;
Scope
*
scope_
;
Scope
*
scope_
;
platform
::
Place
place_
;
platform
::
Place
place_
;
bool
is_lock_and_record_event_free_
{
false
};
};
};
}
// namespace details
}
// namespace details
}
// namespace framework
}
// namespace framework
...
...
paddle/fluid/framework/details/modify_op_lock_and_record_event_pass.cc
0 → 100644
浏览文件 @
dd343a49
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/modify_op_lock_and_record_event_pass.h"
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/op_graph_view.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
static
bool
IsLockAndRecordEventFreeComputationOpHandle
(
ComputationOpHandle
*
op
,
const
OpGraphView
&
graph_view
)
{
if
(
!
platform
::
is_gpu_place
(
op
->
GetPlace
()))
return
false
;
for
(
auto
&
pending_op
:
graph_view
.
PendingOps
(
op
))
{
auto
*
tmp
=
dynamic_cast
<
ComputationOpHandle
*>
(
pending_op
);
if
(
tmp
==
nullptr
||
!
(
tmp
->
GetPlace
()
==
op
->
GetPlace
()))
{
return
false
;
}
}
return
true
;
}
std
::
unique_ptr
<
ir
::
Graph
>
ModifyOpLockAndRecordEventPass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
ir_graph
)
const
{
auto
&
all_ops
=
ir_graph
->
Get
<
GraphOps
>
(
kGraphOps
);
OpGraphView
graph_view
(
all_ops
);
for
(
auto
&
op
:
all_ops
)
{
auto
*
compute_op
=
dynamic_cast
<
ComputationOpHandle
*>
(
op
.
get
());
if
(
compute_op
==
nullptr
)
continue
;
bool
is_lock_and_record_event_free
=
IsLockAndRecordEventFreeComputationOpHandle
(
compute_op
,
graph_view
);
compute_op
->
SetLockAndRecordEventFree
(
is_lock_and_record_event_free
);
if
(
is_lock_and_record_event_free
)
{
VLOG
(
10
)
<<
"Set is_lock_and_record_event_free be true in op "
<<
compute_op
->
DebugString
();
}
}
return
ir_graph
;
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
modify_op_lock_and_record_event_pass
,
paddle
::
framework
::
details
::
ModifyOpLockAndRecordEventPass
);
paddle/fluid/framework/details/modify_op_lock_and_record_event_pass.h
0 → 100644
浏览文件 @
dd343a49
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
class
ModifyOpLockAndRecordEventPass
:
public
ir
::
Pass
{
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
override
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/op_graph_view.cc
0 → 100644
浏览文件 @
dd343a49
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/op_graph_view.h"
#include <queue>
#include <utility>
namespace
paddle
{
namespace
framework
{
namespace
details
{
OpGraphView
::
OpGraphView
(
const
std
::
vector
<
std
::
unique_ptr
<
OpHandleBase
>>
&
ops
)
{
Build
(
ops
);
}
void
OpGraphView
::
Build
(
const
std
::
vector
<
std
::
unique_ptr
<
OpHandleBase
>>
&
ops
)
{
for
(
auto
&
op
:
ops
)
{
preceding_ops_
[
op
.
get
()];
pending_ops_
[
op
.
get
()];
for
(
auto
&
var
:
op
->
Outputs
())
{
for
(
auto
&
pending_op
:
var
->
PendingOps
())
{
preceding_ops_
[
pending_op
].
insert
(
op
.
get
());
pending_ops_
[
op
.
get
()].
insert
(
pending_op
);
}
}
}
PADDLE_ENFORCE
(
preceding_ops_
.
size
()
==
ops
.
size
()
&&
pending_ops_
.
size
()
==
ops
.
size
(),
"There are duplicate ops in graph."
);
}
size_t
OpGraphView
::
OpNumber
()
const
{
return
preceding_ops_
.
size
();
}
std
::
unordered_set
<
OpHandleBase
*>
OpGraphView
::
AllOps
()
const
{
std
::
unordered_set
<
OpHandleBase
*>
ret
;
for
(
auto
&
pair
:
preceding_ops_
)
{
ret
.
insert
(
pair
.
first
);
}
return
ret
;
}
bool
OpGraphView
::
HasOp
(
OpHandleBase
*
op
)
const
{
return
preceding_ops_
.
count
(
op
)
!=
0
;
}
void
OpGraphView
::
EnforceHasOp
(
OpHandleBase
*
op
)
const
{
PADDLE_ENFORCE
(
HasOp
(
op
),
"Cannot find op %s in OpGraphView"
,
op
==
nullptr
?
"nullptr"
:
op
->
DebugString
());
}
const
std
::
unordered_set
<
OpHandleBase
*>
&
OpGraphView
::
PrecedingOps
(
OpHandleBase
*
op
)
const
{
EnforceHasOp
(
op
);
return
preceding_ops_
.
at
(
op
);
}
const
std
::
unordered_set
<
OpHandleBase
*>
&
OpGraphView
::
PendingOps
(
OpHandleBase
*
op
)
const
{
EnforceHasOp
(
op
);
return
pending_ops_
.
at
(
op
);
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/op_graph_view.h
0 → 100644
浏览文件 @
dd343a49
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/details/op_handle_base.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
class
OpGraphView
{
public:
explicit
OpGraphView
(
const
std
::
vector
<
std
::
unique_ptr
<
OpHandleBase
>>
&
ops
);
size_t
OpNumber
()
const
;
std
::
unordered_set
<
OpHandleBase
*>
AllOps
()
const
;
const
std
::
unordered_set
<
OpHandleBase
*>
&
PrecedingOps
(
OpHandleBase
*
op
)
const
;
const
std
::
unordered_set
<
OpHandleBase
*>
&
PendingOps
(
OpHandleBase
*
op
)
const
;
bool
HasOp
(
OpHandleBase
*
op
)
const
;
private:
void
Build
(
const
std
::
vector
<
std
::
unique_ptr
<
OpHandleBase
>>
&
ops
);
void
EnforceHasOp
(
OpHandleBase
*
op
)
const
;
std
::
unordered_map
<
OpHandleBase
*
,
std
::
unordered_set
<
OpHandleBase
*>>
preceding_ops_
;
std
::
unordered_map
<
OpHandleBase
*
,
std
::
unordered_set
<
OpHandleBase
*>>
pending_ops_
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/reference_count_op_handle.h
浏览文件 @
dd343a49
...
@@ -51,7 +51,7 @@ class ReferenceCountOpHandle : public OpHandleBase {
...
@@ -51,7 +51,7 @@ class ReferenceCountOpHandle : public OpHandleBase {
dev_ctx_
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
dev_ctx_
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
));
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
));
if
(
IsStreamGarabageCollector
())
{
if
(
IsStreamGarabageCollector
())
{
PADDLE_ENFORCE
(
cudaSetDevice
(
place
.
device
)
);
platform
::
SetDeviceId
(
place
.
device
);
PADDLE_ENFORCE
(
cudaEventCreateWithFlags
(
&
event_
,
cudaEventDisableTiming
));
PADDLE_ENFORCE
(
cudaEventCreateWithFlags
(
&
event_
,
cudaEventDisableTiming
));
}
}
...
@@ -61,7 +61,7 @@ class ReferenceCountOpHandle : public OpHandleBase {
...
@@ -61,7 +61,7 @@ class ReferenceCountOpHandle : public OpHandleBase {
~
ReferenceCountOpHandle
()
{
~
ReferenceCountOpHandle
()
{
if
(
IsStreamGarabageCollector
())
{
if
(
IsStreamGarabageCollector
())
{
auto
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
dev_ctx_
->
GetPlace
());
auto
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
dev_ctx_
->
GetPlace
());
PADDLE_ENFORCE
(
cudaSetDevice
(
gpu_place
.
device
)
);
platform
::
SetDeviceId
(
gpu_place
.
device
);
PADDLE_ENFORCE
(
cudaEventDestroy
(
event_
));
PADDLE_ENFORCE
(
cudaEventDestroy
(
event_
));
}
}
}
}
...
...
paddle/fluid/framework/details/reference_count_pass.cc
浏览文件 @
dd343a49
...
@@ -43,6 +43,23 @@ static ComputationOpHandle *FindNextComputationOpHandle(VarHandle *var_in) {
...
@@ -43,6 +43,23 @@ static ComputationOpHandle *FindNextComputationOpHandle(VarHandle *var_in) {
return
nullptr
;
return
nullptr
;
}
}
static
void
AddDependencyBetween
(
OpHandleBase
*
in
,
OpHandleBase
*
out
,
ir
::
Graph
*
graph
)
{
auto
it
=
std
::
find_if
(
in
->
Outputs
().
begin
(),
in
->
Outputs
().
end
(),
[](
VarHandleBase
*
var
)
{
return
dynamic_cast
<
DummyVarHandle
*>
(
var
)
!=
nullptr
;
});
if
(
it
!=
in
->
Outputs
().
end
())
{
out
->
AddInput
(
*
it
);
}
else
{
auto
*
dep_var
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dep_var
);
in
->
AddOutput
(
dep_var
);
out
->
AddInput
(
dep_var
);
}
}
std
::
unique_ptr
<
ir
::
Graph
>
ReferenceCountPass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
ReferenceCountPass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
auto
&
ref_cnts
=
Get
<
DeviceReferenceCountMap
>
(
kGlobalReferenceCount
);
auto
&
ref_cnts
=
Get
<
DeviceReferenceCountMap
>
(
kGlobalReferenceCount
);
...
@@ -133,12 +150,7 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
...
@@ -133,12 +150,7 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
auto
*
ref_cnt_handle
=
new
ReferenceCountOpHandle
(
auto
*
ref_cnt_handle
=
new
ReferenceCountOpHandle
(
ref_cnt_node
,
next_compute_op
->
GetScope
(),
place
,
{
var_name
},
ref_cnt_node
,
next_compute_op
->
GetScope
(),
place
,
{
var_name
},
gcs
[
place
.
device
].
get
(),
cur_ref_cnts
[
place
.
device
].
get
());
gcs
[
place
.
device
].
get
(),
cur_ref_cnts
[
place
.
device
].
get
());
if
(
next_compute_op
->
Outputs
().
empty
())
{
AddDependencyBetween
(
next_compute_op
,
ref_cnt_handle
,
graph
.
get
());
auto
*
dep_var
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
next_compute_op
->
AddOutput
(
dep_var
);
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dep_var
);
}
ref_cnt_handle
->
AddInput
(
next_compute_op
->
Outputs
().
front
());
compute_ref_cnt_map
[
next_compute_op
].
reset
(
ref_cnt_handle
);
compute_ref_cnt_map
[
next_compute_op
].
reset
(
ref_cnt_handle
);
}
}
}
}
...
@@ -160,12 +172,7 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
...
@@ -160,12 +172,7 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
auto
*
ref_cnt_handle
=
new
ReferenceCountOpHandle
(
auto
*
ref_cnt_handle
=
new
ReferenceCountOpHandle
(
ref_cnt_node
,
compute_op
->
GetScope
(),
place
,
in_var_names
,
ref_cnt_node
,
compute_op
->
GetScope
(),
place
,
in_var_names
,
gcs
[
place
.
device
].
get
(),
cur_ref_cnts
[
place
.
device
].
get
());
gcs
[
place
.
device
].
get
(),
cur_ref_cnts
[
place
.
device
].
get
());
if
(
compute_op
->
Outputs
().
empty
())
{
AddDependencyBetween
(
compute_op
,
ref_cnt_handle
,
graph
.
get
());
auto
*
dep_var
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
compute_op
->
AddOutput
(
dep_var
);
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dep_var
);
}
ref_cnt_handle
->
AddInput
(
compute_op
->
Outputs
().
front
());
compute_ref_cnt_map
[
compute_op
].
reset
(
ref_cnt_handle
);
compute_ref_cnt_map
[
compute_op
].
reset
(
ref_cnt_handle
);
}
}
...
...
paddle/fluid/inference/tests/api/CMakeLists.txt
浏览文件 @
dd343a49
...
@@ -29,6 +29,15 @@ set(RNN2_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/rnn2")
...
@@ -29,6 +29,15 @@ set(RNN2_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/rnn2")
download_model_and_data
(
${
RNN2_INSTALL_DIR
}
"rnn2_model.tar.gz"
"rnn2_data.txt.tar.gz"
)
download_model_and_data
(
${
RNN2_INSTALL_DIR
}
"rnn2_model.tar.gz"
"rnn2_data.txt.tar.gz"
)
inference_analysis_api_test
(
test_analyzer_rnn2
${
RNN2_INSTALL_DIR
}
analyzer_rnn2_tester.cc
)
inference_analysis_api_test
(
test_analyzer_rnn2
${
RNN2_INSTALL_DIR
}
analyzer_rnn2_tester.cc
)
# DAM
set
(
DAM_INSTALL_DIR
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/dam"
)
download_model_and_data
(
${
DAM_INSTALL_DIR
}
"DAM_model.tar.gz"
"DAM_data.txt.tar.gz"
)
inference_analysis_test
(
test_analyzer_dam SRCS analyzer_dam_tester.cc
EXTRA_DEPS
${
INFERENCE_EXTRA_DEPS
}
ARGS
--infer_model=
${
DAM_INSTALL_DIR
}
/model
--infer_data=
${
DAM_INSTALL_DIR
}
/data.txt
--use_analysis=0
)
# chinese_ner
# chinese_ner
set
(
CHINESE_NER_INSTALL_DIR
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/chinese_ner"
)
set
(
CHINESE_NER_INSTALL_DIR
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/chinese_ner"
)
download_model_and_data
(
${
CHINESE_NER_INSTALL_DIR
}
"chinese_ner_model.tar.gz"
"chinese_ner-data.txt.tar.gz"
)
download_model_and_data
(
${
CHINESE_NER_INSTALL_DIR
}
"chinese_ner_model.tar.gz"
"chinese_ner-data.txt.tar.gz"
)
...
...
paddle/fluid/inference/tests/api/analyzer_dam_tester.cc
0 → 100644
浏览文件 @
dd343a49
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace
paddle
{
namespace
inference
{
using
contrib
::
AnalysisConfig
;
#define MAX_TURN_NUM 9
#define MAX_TURN_LEN 50
static
std
::
vector
<
float
>
result_data
;
struct
DataRecord
{
std
::
vector
<
std
::
vector
<
int64_t
>>
turns
[
MAX_TURN_NUM
];
// turns data : MAX_TURN_NUM
std
::
vector
<
std
::
vector
<
float
>>
turns_mask
[
MAX_TURN_NUM
];
// turns mask data : MAX_TURN_NUM
std
::
vector
<
std
::
vector
<
int64_t
>>
response
;
// response data : 1
std
::
vector
<
std
::
vector
<
float
>>
response_mask
;
// response mask data : 1
size_t
batch_iter
{
0
};
size_t
batch_size
{
1
};
size_t
num_samples
;
// total number of samples
DataRecord
()
=
default
;
explicit
DataRecord
(
const
std
::
string
&
path
,
int
batch_size
=
1
)
:
batch_size
(
batch_size
)
{
Load
(
path
);
}
DataRecord
NextBatch
()
{
DataRecord
data
;
size_t
batch_end
=
batch_iter
+
batch_size
;
// NOTE skip the final batch, if no enough data is provided.
if
(
batch_end
<=
response
.
size
())
{
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
data
.
turns
[
i
].
assign
(
turns
[
i
].
begin
()
+
batch_iter
,
turns
[
i
].
begin
()
+
batch_end
);
}
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
data
.
turns_mask
[
i
].
assign
(
turns_mask
[
i
].
begin
()
+
batch_iter
,
turns_mask
[
i
].
begin
()
+
batch_end
);
}
data
.
response
.
assign
(
response
.
begin
()
+
batch_iter
,
response
.
begin
()
+
batch_end
);
data
.
response_mask
.
assign
(
response_mask
.
begin
()
+
batch_iter
,
response_mask
.
begin
()
+
batch_end
);
CHECK
(
!
data
.
response
.
empty
());
CHECK
(
!
data
.
response_mask
.
empty
());
CHECK_EQ
(
data
.
response
.
size
(),
data
.
response_mask
.
size
());
}
batch_iter
+=
batch_size
;
return
data
;
}
void
Load
(
const
std
::
string
&
path
)
{
std
::
ifstream
file
(
path
);
std
::
string
line
;
size_t
num_lines
=
0
;
result_data
.
clear
();
while
(
std
::
getline
(
file
,
line
))
{
num_lines
++
;
std
::
vector
<
std
::
string
>
data
;
split
(
line
,
','
,
&
data
);
CHECK_EQ
(
data
.
size
(),
2
*
MAX_TURN_NUM
+
3
);
// load turn data
std
::
vector
<
int64_t
>
turns_tmp
[
MAX_TURN_NUM
];
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
split_to_int64
(
data
[
i
],
' '
,
&
turns_tmp
[
i
]);
turns
[
i
].
push_back
(
std
::
move
(
turns_tmp
[
i
]));
}
// load turn_mask data
std
::
vector
<
float
>
turns_mask_tmp
[
MAX_TURN_NUM
];
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
split_to_float
(
data
[
MAX_TURN_NUM
+
i
],
' '
,
&
turns_mask_tmp
[
i
]);
turns_mask
[
i
].
push_back
(
std
::
move
(
turns_mask_tmp
[
i
]));
}
// load response data
std
::
vector
<
int64_t
>
response_tmp
;
split_to_int64
(
data
[
2
*
MAX_TURN_NUM
],
' '
,
&
response_tmp
);
response
.
push_back
(
std
::
move
(
response_tmp
));
// load response_mask data
std
::
vector
<
float
>
response_mask_tmp
;
split_to_float
(
data
[
2
*
MAX_TURN_NUM
+
1
],
' '
,
&
response_mask_tmp
);
response_mask
.
push_back
(
std
::
move
(
response_mask_tmp
));
// load result data
float
result_tmp
;
result_tmp
=
std
::
stof
(
data
[
2
*
MAX_TURN_NUM
+
2
]);
result_data
.
push_back
(
result_tmp
);
}
num_samples
=
num_lines
;
}
};
void
PrepareInputs
(
std
::
vector
<
PaddleTensor
>
*
input_slots
,
DataRecord
*
data
,
int
batch_size
)
{
PaddleTensor
turns_tensor
[
MAX_TURN_NUM
];
PaddleTensor
turns_mask_tensor
[
MAX_TURN_NUM
];
PaddleTensor
response_tensor
;
PaddleTensor
response_mask_tensor
;
std
::
string
turn_pre
=
"turn_"
;
std
::
string
turn_mask_pre
=
"turn_mask_"
;
auto
one_batch
=
data
->
NextBatch
();
int
size
=
one_batch
.
response
[
0
].
size
();
CHECK_EQ
(
size
,
MAX_TURN_LEN
);
// turn tensor assignment
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
turns_tensor
[
i
].
name
=
turn_pre
+
std
::
to_string
(
i
);
turns_tensor
[
i
].
shape
.
assign
({
batch_size
,
size
,
1
});
turns_tensor
[
i
].
dtype
=
PaddleDType
::
INT64
;
TensorAssignData
<
int64_t
>
(
&
turns_tensor
[
i
],
one_batch
.
turns
[
i
]);
}
// turn mask tensor assignment
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
turns_mask_tensor
[
i
].
name
=
turn_mask_pre
+
std
::
to_string
(
i
);
turns_mask_tensor
[
i
].
shape
.
assign
({
batch_size
,
size
,
1
});
turns_mask_tensor
[
i
].
dtype
=
PaddleDType
::
FLOAT32
;
TensorAssignData
<
float
>
(
&
turns_mask_tensor
[
i
],
one_batch
.
turns_mask
[
i
]);
}
// response tensor assignment
response_tensor
.
name
=
"response"
;
response_tensor
.
shape
.
assign
({
batch_size
,
size
,
1
});
response_tensor
.
dtype
=
PaddleDType
::
INT64
;
TensorAssignData
<
int64_t
>
(
&
response_tensor
,
one_batch
.
response
);
// response mask tensor assignment
response_mask_tensor
.
name
=
"response_mask"
;
response_mask_tensor
.
shape
.
assign
({
batch_size
,
size
,
1
});
response_mask_tensor
.
dtype
=
PaddleDType
::
FLOAT32
;
TensorAssignData
<
float
>
(
&
response_mask_tensor
,
one_batch
.
response_mask
);
// Set inputs.
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
input_slots
->
push_back
(
std
::
move
(
turns_tensor
[
i
]));
}
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
input_slots
->
push_back
(
std
::
move
(
turns_mask_tensor
[
i
]));
}
input_slots
->
push_back
(
std
::
move
(
response_tensor
));
input_slots
->
push_back
(
std
::
move
(
response_mask_tensor
));
}
void
SetConfig
(
contrib
::
AnalysisConfig
*
cfg
)
{
cfg
->
prog_file
=
FLAGS_infer_model
+
"/__model__"
;
cfg
->
param_file
=
FLAGS_infer_model
+
"/param"
;
cfg
->
use_gpu
=
false
;
cfg
->
device
=
0
;
cfg
->
specify_input_name
=
true
;
cfg
->
enable_ir_optim
=
true
;
}
void
SetInput
(
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
*
inputs
)
{
DataRecord
data
(
FLAGS_infer_data
,
FLAGS_batch_size
);
std
::
vector
<
PaddleTensor
>
input_slots
;
int
test_batch_num
=
FLAGS_test_all_data
?
data
.
num_samples
/
FLAGS_batch_size
:
1
;
LOG
(
INFO
)
<<
"The number of samples to be test: "
<<
test_batch_num
*
FLAGS_batch_size
;
for
(
int
bid
=
0
;
bid
<
test_batch_num
;
++
bid
)
{
input_slots
.
clear
();
PrepareInputs
(
&
input_slots
,
&
data
,
FLAGS_batch_size
);
(
*
inputs
).
emplace_back
(
input_slots
);
}
}
// Easy for profiling independently.
TEST
(
Analyzer_dam
,
profile
)
{
contrib
::
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
std
::
vector
<
PaddleTensor
>
outputs
;
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
SetInput
(
&
input_slots_all
);
TestPrediction
(
cfg
,
input_slots_all
,
&
outputs
,
FLAGS_num_threads
);
if
(
FLAGS_num_threads
==
1
&&
!
FLAGS_test_all_data
)
{
PADDLE_ENFORCE_GT
(
outputs
.
size
(),
0
);
size_t
size
=
GetSize
(
outputs
[
0
]);
PADDLE_ENFORCE_GT
(
size
,
0
);
float
*
result
=
static_cast
<
float
*>
(
outputs
[
0
].
data
.
data
());
for
(
size_t
i
=
0
;
i
<
size
;
i
++
)
{
EXPECT_NEAR
(
result
[
i
],
result_data
[
i
],
1e-3
);
}
}
}
// Check the fuse status
TEST
(
Analyzer_dam
,
fuse_statis
)
{
contrib
::
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
if
(
FLAGS_use_analysis
)
{
int
num_ops
;
auto
predictor
=
CreatePaddlePredictor
<
AnalysisConfig
>
(
cfg
);
auto
fuse_statis
=
GetFuseStatis
(
static_cast
<
AnalysisPredictor
*>
(
predictor
.
get
()),
&
num_ops
);
ASSERT_TRUE
(
fuse_statis
.
count
(
"fc_fuse"
));
EXPECT_EQ
(
fuse_statis
.
at
(
"fc_fuse"
),
317
);
EXPECT_EQ
(
num_ops
,
2020
);
}
}
// Compare result of NativeConfig and AnalysisConfig
TEST
(
Analyzer_dam
,
compare
)
{
contrib
::
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
SetInput
(
&
input_slots_all
);
if
(
FLAGS_use_analysis
)
{
CompareNativeAndAnalysis
(
cfg
,
input_slots_all
);
}
}
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tests/api/analyzer_ner_tester.cc
浏览文件 @
dd343a49
...
@@ -20,7 +20,6 @@ using contrib::AnalysisConfig;
...
@@ -20,7 +20,6 @@ using contrib::AnalysisConfig;
struct
DataRecord
{
struct
DataRecord
{
std
::
vector
<
std
::
vector
<
int64_t
>>
word_data_all
,
mention_data_all
;
std
::
vector
<
std
::
vector
<
int64_t
>>
word_data_all
,
mention_data_all
;
std
::
vector
<
std
::
vector
<
int64_t
>>
rnn_word_datas
,
rnn_mention_datas
;
std
::
vector
<
size_t
>
lod
;
// two inputs have the same lod info.
std
::
vector
<
size_t
>
lod
;
// two inputs have the same lod info.
size_t
batch_iter
{
0
};
size_t
batch_iter
{
0
};
size_t
batch_size
{
1
};
size_t
batch_size
{
1
};
...
@@ -45,8 +44,6 @@ struct DataRecord {
...
@@ -45,8 +44,6 @@ struct DataRecord {
CHECK
(
!
data
.
mention_data_all
.
empty
());
CHECK
(
!
data
.
mention_data_all
.
empty
());
CHECK_EQ
(
data
.
word_data_all
.
size
(),
data
.
mention_data_all
.
size
());
CHECK_EQ
(
data
.
word_data_all
.
size
(),
data
.
mention_data_all
.
size
());
for
(
size_t
j
=
0
;
j
<
data
.
word_data_all
.
size
();
j
++
)
{
for
(
size_t
j
=
0
;
j
<
data
.
word_data_all
.
size
();
j
++
)
{
data
.
rnn_word_datas
.
push_back
(
data
.
word_data_all
[
j
]);
data
.
rnn_mention_datas
.
push_back
(
data
.
mention_data_all
[
j
]);
// calculate lod
// calculate lod
data
.
lod
.
push_back
(
data
.
lod
.
back
()
+
data
.
word_data_all
[
j
].
size
());
data
.
lod
.
push_back
(
data
.
lod
.
back
()
+
data
.
word_data_all
[
j
].
size
());
}
}
...
@@ -87,8 +84,8 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
...
@@ -87,8 +84,8 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
lod_mention_tensor
.
shape
.
assign
({
size
,
1
});
lod_mention_tensor
.
shape
.
assign
({
size
,
1
});
lod_mention_tensor
.
lod
.
assign
({
one_batch
.
lod
});
lod_mention_tensor
.
lod
.
assign
({
one_batch
.
lod
});
// assign data
// assign data
TensorAssignData
<
int64_t
>
(
&
lod_word_tensor
,
one_batch
.
rnn_word_datas
);
TensorAssignData
<
int64_t
>
(
&
lod_word_tensor
,
one_batch
.
word_data_all
);
TensorAssignData
<
int64_t
>
(
&
lod_mention_tensor
,
one_batch
.
rnn_mention_datas
);
TensorAssignData
<
int64_t
>
(
&
lod_mention_tensor
,
one_batch
.
mention_data_all
);
// Set inputs.
// Set inputs.
input_slots
->
assign
({
lod_word_tensor
,
lod_mention_tensor
});
input_slots
->
assign
({
lod_word_tensor
,
lod_mention_tensor
});
for
(
auto
&
tensor
:
*
input_slots
)
{
for
(
auto
&
tensor
:
*
input_slots
)
{
...
...
paddle/fluid/operators/affine_grid_op.cc
浏览文件 @
dd343a49
...
@@ -26,15 +26,13 @@ using Tensor = framework::Tensor;
...
@@ -26,15 +26,13 @@ using Tensor = framework::Tensor;
template
<
typename
T
>
template
<
typename
T
>
struct
Linspace
<
paddle
::
platform
::
CPUDeviceContext
,
T
>
{
struct
Linspace
<
paddle
::
platform
::
CPUDeviceContext
,
T
>
{
framework
::
Tensor
operator
()(
T
start
,
T
end
,
int
count
,
void
operator
()(
T
start
,
T
end
,
int
count
,
framework
::
Tensor
*
numbers
,
const
framework
::
ExecutionContext
&
ctx
)
{
const
framework
::
ExecutionContext
&
ctx
)
{
Tensor
numbers
;
T
*
number_data
=
numbers
->
mutable_data
<
T
>
({
count
},
platform
::
CPUPlace
());
T
*
number_data
=
numbers
.
mutable_data
<
T
>
({
count
},
platform
::
CPUPlace
());
T
slice
=
(
end
-
start
)
/
(
T
)(
count
-
1
);
T
slice
=
(
end
-
start
)
/
(
T
)(
count
-
1
);
for
(
int
i
=
0
;
i
<
count
;
++
i
)
{
for
(
int
i
=
0
;
i
<
count
;
++
i
)
{
number_data
[
i
]
=
start
+
(
T
)
i
*
slice
;
number_data
[
i
]
=
start
+
(
T
)
i
*
slice
;
}
}
return
numbers
;
}
}
};
};
...
...
paddle/fluid/operators/affine_grid_op.h
浏览文件 @
dd343a49
...
@@ -37,18 +37,65 @@ using Array4 = Eigen::DSizes<int64_t, 4>;
...
@@ -37,18 +37,65 @@ using Array4 = Eigen::DSizes<int64_t, 4>;
*/
*/
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
struct
Linspace
{
struct
Linspace
{
framework
::
Tensor
operator
()(
T
start
,
T
end
,
int
count
,
void
operator
()(
T
start
,
T
end
,
int
count
,
framework
::
Tensor
*
numbers
,
const
framework
::
ExecutionContext
&
ctx
);
const
framework
::
ExecutionContext
&
ctx
);
};
};
template
<
typename
DeviceContext
,
typename
T
>
inline
void
GetIdxMap
(
int
n
,
int
h
,
int
w
,
Tensor
*
grid
,
const
framework
::
ExecutionContext
&
ctx
)
{
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
grid
->
mutable_data
<
T
>
({
n
,
h
,
w
,
3
},
ctx
.
GetPlace
());
auto
grid_t
=
EigenTensor
<
T
,
4
>::
From
(
*
grid
);
// Get indexes of height with shape [height, width, 1]
Tensor
h_idx
;
Linspace
<
DeviceContext
,
T
>
linspace
;
linspace
((
T
)
-
1
,
(
T
)
1
,
h
,
&
h_idx
,
ctx
);
auto
h_idx_t
=
EigenTensor
<
T
,
1
>::
From
(
h_idx
);
// Get indexes of width with shape [height, width, 1]
Tensor
w_idx
;
linspace
((
T
)
-
1
,
(
T
)
1
,
w
,
&
w_idx
,
ctx
);
auto
w_idx_t
=
EigenTensor
<
T
,
1
>::
From
(
w_idx
);
// Get constant ones tensor with shape [height, width, 1]
Tensor
ones
;
ones
.
mutable_data
<
T
>
({
h
,
w
,
1
},
ctx
.
GetPlace
());
auto
ones_t
=
EigenTensor
<
T
,
3
>::
From
(
ones
).
setConstant
((
T
)
1
);
// Get grid tensor with shape [n, h, w, 3] by concatenating h_idx, w_idx and
// ones
Tensor
w_idx_map
;
w_idx_map
.
mutable_data
<
T
>
({
h
,
w
,
1
},
ctx
.
GetPlace
());
auto
w_idx_map_t
=
EigenTensor
<
T
,
3
>::
From
(
w_idx_map
);
Tensor
h_idx_map
;
h_idx_map
.
mutable_data
<
T
>
({
h
,
w
,
1
},
ctx
.
GetPlace
());
auto
h_idx_map_t
=
EigenTensor
<
T
,
3
>::
From
(
h_idx_map
);
Tensor
w_h_idx_map
;
w_h_idx_map
.
mutable_data
<
T
>
({
h
,
w
,
2
},
ctx
.
GetPlace
());
auto
w_h_idx_map_t
=
EigenTensor
<
T
,
3
>::
From
(
w_h_idx_map
);
Tensor
w_h_one_idx_map
;
w_h_one_idx_map
.
mutable_data
<
T
>
({
h
,
w
,
3
},
ctx
.
GetPlace
());
auto
w_h_one_idx_map_t
=
EigenTensor
<
T
,
3
>::
From
(
w_h_one_idx_map
);
w_idx_map_t
.
device
(
place
)
=
w_idx_t
.
reshape
(
Array2
(
1
,
w
))
.
broadcast
(
Array2
(
h
,
1
))
.
reshape
(
Array3
(
h
,
w
,
1
));
h_idx_map_t
.
device
(
place
)
=
h_idx_t
.
reshape
(
Array2
(
1
,
h
))
.
broadcast
(
Array2
(
w
,
1
))
.
shuffle
(
Array2
(
1
,
0
))
.
reshape
(
Array3
(
h
,
w
,
1
));
w_h_idx_map_t
.
device
(
place
)
=
w_idx_map_t
.
concatenate
(
h_idx_map_t
,
2
);
w_h_one_idx_map_t
.
device
(
place
)
=
w_h_idx_map_t
.
concatenate
(
ones_t
,
2
);
grid_t
.
device
(
place
)
=
w_h_one_idx_map_t
.
reshape
(
Array4
(
1
,
h
,
w
,
3
))
.
broadcast
(
Array4
(
n
,
1
,
1
,
1
));
}
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
AffineGridOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
AffineGridOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
*
theta
=
ctx
.
Input
<
Tensor
>
(
"Theta"
);
auto
*
theta
=
ctx
.
Input
<
Tensor
>
(
"Theta"
);
int
n
=
theta
->
dims
()[
0
];
int
n
=
theta
->
dims
()[
0
];
auto
size_attr
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"output_shape"
);
auto
size_attr
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"output_shape"
);
int
h
=
0
;
int
h
=
0
;
int
w
=
0
;
int
w
=
0
;
...
@@ -63,44 +110,13 @@ class AffineGridOpKernel : public framework::OpKernel<T> {
...
@@ -63,44 +110,13 @@ class AffineGridOpKernel : public framework::OpKernel<T> {
h
=
size_attr
[
2
];
h
=
size_attr
[
2
];
w
=
size_attr
[
3
];
w
=
size_attr
[
3
];
}
}
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
output
->
mutable_data
<
T
>
({
n
,
h
,
w
,
2
},
ctx
.
GetPlace
());
output
->
mutable_data
<
T
>
({
n
,
h
,
w
,
2
},
ctx
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
()(
math
::
SetConstant
<
DeviceContext
,
T
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
output
,
ctx
.
template
device_context
<
DeviceContext
>(),
output
,
static_cast
<
T
>
(
0
));
static_cast
<
T
>
(
0
));
Linspace
<
DeviceContext
,
T
>
linspace
;
// Get indexes of height with shape [height, width, 1]
auto
h_idx
=
linspace
((
T
)
-
1
,
(
T
)
1
,
h
,
ctx
);
auto
h_idx_t
=
EigenTensor
<
T
,
1
>::
From
(
h_idx
);
// Get indexes of width with shape [height, width, 1]
auto
w_idx
=
linspace
((
T
)
-
1
,
(
T
)
1
,
w
,
ctx
);
auto
w_idx_t
=
EigenTensor
<
T
,
1
>::
From
(
w_idx
);
// Get constant ones tensor with shape [height, width, 1]
Tensor
ones
;
ones
.
mutable_data
<
T
>
({
h
,
w
,
1
},
ctx
.
GetPlace
());
auto
ones_t
=
EigenTensor
<
T
,
3
>::
From
(
ones
).
setConstant
((
T
)
1
);
// Get grid tensor with shape [n, h, w, 3] by concatenating h_idx, w_idx and
// ones
Tensor
grid
;
Tensor
grid
;
grid
.
mutable_data
<
T
>
({
n
,
h
,
w
,
3
},
ctx
.
GetPlace
());
GetIdxMap
<
DeviceContext
,
T
>
(
n
,
h
,
w
,
&
grid
,
ctx
);
auto
grid_t
=
EigenTensor
<
T
,
4
>::
From
(
grid
);
grid_t
.
device
(
place
)
=
w_idx_t
.
reshape
(
Array2
(
1
,
w
))
.
broadcast
(
Array2
(
h
,
1
))
.
reshape
(
Array3
(
h
,
w
,
1
))
.
concatenate
(
h_idx_t
.
reshape
(
Array2
(
1
,
h
))
.
broadcast
(
Array2
(
w
,
1
))
.
shuffle
(
Array2
(
1
,
0
))
.
reshape
(
Array3
(
h
,
w
,
1
)),
2
)
.
eval
()
.
concatenate
(
ones_t
,
2
)
.
reshape
(
Array4
(
1
,
h
,
w
,
3
))
.
broadcast
(
Array4
(
n
,
1
,
1
,
1
));
// output = grid * theta.T
// output = grid * theta.T
// TODO(wanghaoshuang): Refine batched matrix multiply
// TODO(wanghaoshuang): Refine batched matrix multiply
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
ctx
);
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
ctx
);
...
@@ -118,10 +134,8 @@ template <typename DeviceContext, typename T>
...
@@ -118,10 +134,8 @@ template <typename DeviceContext, typename T>
class
AffineGridGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
AffineGridGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
auto
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
auto
theta_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Theta"
));
auto
theta_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Theta"
));
int
n
=
output_grad
->
dims
()[
0
];
int
n
=
output_grad
->
dims
()[
0
];
auto
size_attr
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"output_shape"
);
auto
size_attr
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"output_shape"
);
int
h
=
0
;
int
h
=
0
;
...
@@ -137,42 +151,12 @@ class AffineGridGradOpKernel : public framework::OpKernel<T> {
...
@@ -137,42 +151,12 @@ class AffineGridGradOpKernel : public framework::OpKernel<T> {
h
=
size_attr
[
2
];
h
=
size_attr
[
2
];
w
=
size_attr
[
3
];
w
=
size_attr
[
3
];
}
}
theta_grad
->
mutable_data
<
T
>
({
n
,
2
,
3
},
ctx
.
GetPlace
());
theta_grad
->
mutable_data
<
T
>
({
n
,
2
,
3
},
ctx
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
()(
math
::
SetConstant
<
DeviceContext
,
T
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
theta_grad
,
ctx
.
template
device_context
<
DeviceContext
>(),
theta_grad
,
static_cast
<
T
>
(
0
));
static_cast
<
T
>
(
0
));
Linspace
<
DeviceContext
,
T
>
linspace
;
// Get indexes of height with shape [height, width, 1]
auto
h_idx
=
linspace
((
T
)
-
1
,
(
T
)
1
,
h
,
ctx
);
auto
h_idx_t
=
EigenTensor
<
T
,
1
>::
From
(
h_idx
);
// Get indexes of width with shape [height, width, 1]
auto
w_idx
=
linspace
((
T
)
-
1
,
(
T
)
1
,
w
,
ctx
);
auto
w_idx_t
=
EigenTensor
<
T
,
1
>::
From
(
w_idx
);
// Get constant ones tensor with shape [height, width, 1]
Tensor
ones
;
ones
.
mutable_data
<
T
>
({
h
,
w
,
1
},
ctx
.
GetPlace
());
auto
ones_t
=
EigenTensor
<
T
,
3
>::
From
(
ones
).
setConstant
((
T
)
1
);
// Get grid tensor with shape [n, h, w, 3] by concatenating h_idx, w_idx and
// ones
Tensor
grid
;
Tensor
grid
;
grid
.
mutable_data
<
T
>
({
n
,
h
,
w
,
3
},
ctx
.
GetPlace
());
GetIdxMap
<
DeviceContext
,
T
>
(
n
,
h
,
w
,
&
grid
,
ctx
);
auto
grid_t
=
EigenTensor
<
T
,
4
>::
From
(
grid
);
grid_t
.
device
(
place
)
=
w_idx_t
.
reshape
(
Array2
(
1
,
w
))
.
broadcast
(
Array2
(
h
,
1
))
.
reshape
(
Array3
(
h
,
w
,
1
))
.
concatenate
(
h_idx_t
.
reshape
(
Array2
(
1
,
h
))
.
broadcast
(
Array2
(
w
,
1
))
.
shuffle
(
Array2
(
1
,
0
))
.
reshape
(
Array3
(
h
,
w
,
1
)),
2
)
.
eval
()
.
concatenate
(
ones_t
,
2
)
.
reshape
(
Array4
(
1
,
h
,
w
,
3
))
.
broadcast
(
Array4
(
n
,
1
,
1
,
1
));
// output = grid * theta.T
// output = grid * theta.T
// TODO(wanghaoshuang): Refine batched matrix multiply
// TODO(wanghaoshuang): Refine batched matrix multiply
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
ctx
);
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
ctx
);
...
...
paddle/fluid/operators/conv_cudnn_op.cu.cc
浏览文件 @
dd343a49
...
@@ -160,6 +160,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
...
@@ -160,6 +160,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
// ------------------- cudnn conv forward ---------------------
// ------------------- cudnn conv forward ---------------------
ScalingParamType
<
T
>
alpha
=
1.0
f
,
beta
=
0.0
f
;
ScalingParamType
<
T
>
alpha
=
1.0
f
,
beta
=
0.0
f
;
auto
workspace_handle
=
dev_ctx
.
cudnn_workspace_handle
();
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
auto
cudnn_func
=
[
&
](
void
*
cudnn_workspace
)
{
auto
cudnn_func
=
[
&
](
void
*
cudnn_workspace
)
{
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionForward
(
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionForward
(
...
@@ -168,7 +169,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
...
@@ -168,7 +169,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
cudnn_conv_desc
,
algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
cudnn_conv_desc
,
algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_output_desc
,
output_data
+
i
*
group_offset_out
));
&
beta
,
cudnn_output_desc
,
output_data
+
i
*
group_offset_out
));
};
};
dev_ctx
.
RunCudnnFuncWithWorkspace
(
cudnn_func
,
workspace_size_in_bytes
);
workspace_handle
.
RunFunc
(
cudnn_func
,
workspace_size_in_bytes
);
}
}
}
}
};
};
...
@@ -314,6 +315,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
...
@@ -314,6 +315,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
// ------------------- cudnn conv backward data ---------------------
// ------------------- cudnn conv backward data ---------------------
ScalingParamType
<
T
>
alpha
=
1.0
f
,
beta
=
0.0
f
;
ScalingParamType
<
T
>
alpha
=
1.0
f
,
beta
=
0.0
f
;
auto
workspace_handle
=
dev_ctx
.
cudnn_workspace_handle
();
if
(
input_grad
)
{
if
(
input_grad
)
{
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Because beta is zero, it is unnecessary to reset input_grad.
// Because beta is zero, it is unnecessary to reset input_grad.
...
@@ -327,7 +329,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
...
@@ -327,7 +329,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
data_algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
data_algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_input_desc
,
input_grad_data
+
i
*
group_offset_in
));
cudnn_input_desc
,
input_grad_data
+
i
*
group_offset_in
));
};
};
dev_ctx
.
RunCudnnFuncWithWorkspace
(
cudnn_func
,
workspace_size_in_bytes
);
workspace_handle
.
RunFunc
(
cudnn_func
,
workspace_size_in_bytes
);
}
}
}
}
// ------------------- cudnn conv backward filter ---------------------
// ------------------- cudnn conv backward filter ---------------------
...
@@ -343,7 +345,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
...
@@ -343,7 +345,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
filter_algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
filter_algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_filter_desc
,
filter_grad_data
+
i
*
group_offset_filter
));
cudnn_filter_desc
,
filter_grad_data
+
i
*
group_offset_filter
));
};
};
dev_ctx
.
RunCudnnFuncWithWorkspace
(
cudnn_func
,
workspace_size_in_bytes
);
workspace_handle
.
RunFunc
(
cudnn_func
,
workspace_size_in_bytes
);
}
}
}
}
}
}
...
...
paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc
浏览文件 @
dd343a49
...
@@ -104,6 +104,7 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
...
@@ -104,6 +104,7 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
int
output_offset
=
output
->
numel
()
/
output
->
dims
()[
0
]
/
groups
;
int
output_offset
=
output
->
numel
()
/
output
->
dims
()[
0
]
/
groups
;
int
filter_offset
=
filter
->
numel
()
/
groups
;
int
filter_offset
=
filter
->
numel
()
/
groups
;
T
alpha
=
1.0
f
,
beta
=
0.0
f
;
T
alpha
=
1.0
f
,
beta
=
0.0
f
;
auto
workspace_handle
=
dev_ctx
.
cudnn_workspace_handle
();
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
auto
cudnn_func
=
[
&
](
void
*
cudnn_workspace
)
{
auto
cudnn_func
=
[
&
](
void
*
cudnn_workspace
)
{
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardData
(
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardData
(
...
@@ -112,7 +113,7 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
...
@@ -112,7 +113,7 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_output_desc
,
output_data
+
output_offset
*
g
));
cudnn_output_desc
,
output_data
+
output_offset
*
g
));
};
};
dev_ctx
.
RunCudnnFuncWithWorkspace
(
cudnn_func
,
workspace_size_in_bytes
);
workspace_handle
.
RunFunc
(
cudnn_func
,
workspace_size_in_bytes
);
}
}
}
}
};
};
...
@@ -208,6 +209,7 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
...
@@ -208,6 +209,7 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
output_grad
->
numel
()
/
output_grad
->
dims
()[
0
]
/
groups
;
output_grad
->
numel
()
/
output_grad
->
dims
()[
0
]
/
groups
;
int
filter_offset
=
filter
->
numel
()
/
groups
;
int
filter_offset
=
filter
->
numel
()
/
groups
;
T
alpha
=
1.0
f
,
beta
=
0.0
f
;
T
alpha
=
1.0
f
,
beta
=
0.0
f
;
auto
workspace_handle
=
dev_ctx
.
cudnn_workspace_handle
();
if
(
input_grad
)
{
if
(
input_grad
)
{
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Because beta is zero, it is unnecessary to reset input_grad.
// Because beta is zero, it is unnecessary to reset input_grad.
...
@@ -220,7 +222,7 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
...
@@ -220,7 +222,7 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_input_desc
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_input_desc
,
input_grad_data
+
input_offset
*
g
));
input_grad_data
+
input_offset
*
g
));
};
};
dev_ctx
.
RunCudnnFuncWithWorkspace
(
cudnn_func
,
workspace_size_in_bytes
);
workspace_handle
.
RunFunc
(
cudnn_func
,
workspace_size_in_bytes
);
}
}
}
}
...
@@ -238,7 +240,7 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
...
@@ -238,7 +240,7 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_filter_desc
,
filter_grad_data
+
filter_offset
*
g
));
cudnn_filter_desc
,
filter_grad_data
+
filter_offset
*
g
));
};
};
dev_ctx
.
RunCudnnFuncWithWorkspace
(
cudnn_func
,
workspace_size_in_bytes
);
workspace_handle
.
RunFunc
(
cudnn_func
,
workspace_size_in_bytes
);
}
}
}
}
}
}
...
...
paddle/fluid/operators/math/CMakeLists.txt
浏览文件 @
dd343a49
...
@@ -75,7 +75,12 @@ if(WITH_GPU)
...
@@ -75,7 +75,12 @@ if(WITH_GPU)
endif
()
endif
()
cc_test
(
concat_test SRCS concat_test.cc DEPS concat_and_split
)
cc_test
(
concat_test SRCS concat_test.cc DEPS concat_and_split
)
cc_test
(
cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info
)
cc_test
(
cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info
)
cc_library
(
jit_kernel
SRCS jit_kernel.cc jit_gen.cc jit_code.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_rnn.cc jit_kernel_crf_decode.cc
set
(
JIT_KERNEL_SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_rnn.cc jit_kernel_crf_decode.cc
)
DEPS cpu_info cblas gflags enforce
)
set
(
JIT_KERNEL_DEPS cpu_info cblas gflags enforce
)
if
(
WITH_XBYAK
)
list
(
APPEND JIT_KERNEL_SRCS jit_gen.cc jit_code.cc
)
list
(
APPEND JIT_KERNEL_DEPS xbyak
)
endif
()
cc_library
(
jit_kernel SRCS
${
JIT_KERNEL_SRCS
}
DEPS
${
JIT_KERNEL_DEPS
}
)
cc_test
(
jit_kernel_test SRCS jit_kernel_test.cc DEPS jit_kernel
)
cc_test
(
jit_kernel_test SRCS jit_kernel_test.cc DEPS jit_kernel
)
paddle/fluid/operators/math/jit_kernel_blas.cc
浏览文件 @
dd343a49
...
@@ -14,10 +14,13 @@ limitations under the License. */
...
@@ -14,10 +14,13 @@ limitations under the License. */
#include "paddle/fluid/operators/math/jit_kernel.h"
#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
#include <string>
#include "paddle/fluid/operators/math/jit_code.h"
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/enforce.h"
#ifdef PADDLE_WITH_XBYAK
#include "paddle/fluid/operators/math/jit_code.h"
#endif
#ifdef PADDLE_WITH_MKLML
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#include "paddle/fluid/platform/dynload/mklml.h"
#endif
#endif
...
@@ -95,6 +98,7 @@ class VMulKernelImpl : public VMulKernel<T> {
...
@@ -95,6 +98,7 @@ class VMulKernelImpl : public VMulKernel<T> {
public:
public:
DECLARE_STATIC_FUNC
;
DECLARE_STATIC_FUNC
;
explicit
VMulKernelImpl
(
int
d
)
:
VMulKernel
<
T
>
()
{
explicit
VMulKernelImpl
(
int
d
)
:
VMulKernel
<
T
>
()
{
#ifdef PADDLE_WITH_XBYAK
if
(
useJIT
(
d
))
{
if
(
useJIT
(
d
))
{
// roughly estimate the size of code
// roughly estimate the size of code
size_t
sz
=
96
+
d
/
AVX_FLOAT_BLOCK
*
4
*
8
;
size_t
sz
=
96
+
d
/
AVX_FLOAT_BLOCK
*
4
*
8
;
...
@@ -103,6 +107,7 @@ class VMulKernelImpl : public VMulKernel<T> {
...
@@ -103,6 +107,7 @@ class VMulKernelImpl : public VMulKernel<T> {
jitcode_
->
getCode
<
void
(
*
)(
const
T
*
,
const
T
*
,
T
*
,
int
)
>
();
jitcode_
->
getCode
<
void
(
*
)(
const
T
*
,
const
T
*
,
T
*
,
int
)
>
();
return
;
return
;
}
}
#endif
#ifdef PADDLE_WITH_MKLML
#ifdef PADDLE_WITH_MKLML
if
(
useMKL
(
d
))
{
if
(
useMKL
(
d
))
{
this
->
Compute
=
VMulMKL
<
T
>
;
this
->
Compute
=
VMulMKL
<
T
>
;
...
@@ -112,15 +117,21 @@ class VMulKernelImpl : public VMulKernel<T> {
...
@@ -112,15 +117,21 @@ class VMulKernelImpl : public VMulKernel<T> {
this
->
Compute
=
VMulRefer
<
T
>
;
this
->
Compute
=
VMulRefer
<
T
>
;
}
}
#ifdef PADDLE_WITH_XBYAK
private:
private:
std
::
unique_ptr
<
gen
::
VMulJitCode
>
jitcode_
{
nullptr
};
std
::
unique_ptr
<
gen
::
VMulJitCode
>
jitcode_
{
nullptr
};
#endif
};
};
#ifdef PADDLE_WITH_XBYAK
template
<
>
template
<
>
bool
VMulKernelImpl
<
float
>::
useJIT
(
int
d
)
{
bool
VMulKernelImpl
<
float
>::
useJIT
(
int
d
)
{
return
gen
::
VMulJitCode
::
init
(
d
);
return
gen
::
VMulJitCode
::
init
(
d
);
}
}
#endif
#ifdef PADDLE_WITH_MKLML
template
<
>
template
<
>
bool
VMulKernelImpl
<
float
>::
useMKL
(
int
d
)
{
bool
VMulKernelImpl
<
float
>::
useMKL
(
int
d
)
{
return
jit
::
MayIUse
(
jit
::
avx512f
)
&&
d
>
512
;
return
jit
::
MayIUse
(
jit
::
avx512f
)
&&
d
>
512
;
...
@@ -130,6 +141,7 @@ template <>
...
@@ -130,6 +141,7 @@ template <>
bool
VMulKernelImpl
<
double
>::
useMKL
(
int
d
)
{
bool
VMulKernelImpl
<
double
>::
useMKL
(
int
d
)
{
return
true
;
return
true
;
}
}
#endif
/* VAdd JitKernel */
/* VAdd JitKernel */
template
<
typename
T
>
template
<
typename
T
>
...
...
paddle/fluid/operators/ref_by_trainer_id_op.h
浏览文件 @
dd343a49
...
@@ -26,7 +26,7 @@ class RefByTrainerIdKernel : public framework::OpKernel<T> {
...
@@ -26,7 +26,7 @@ class RefByTrainerIdKernel : public framework::OpKernel<T> {
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
in_list
=
context
.
MultiInput
<
framework
::
Tensor
>
(
"X"
);
auto
in_list
=
context
.
MultiInput
<
framework
::
Tensor
>
(
"X"
);
auto
*
trainer_id_t
=
context
.
Input
<
framework
::
Tensor
>
(
"TrainerId"
);
auto
*
trainer_id_t
=
context
.
Input
<
framework
::
Tensor
>
(
"TrainerId"
);
int64_t
trainer_id
;
int64_t
trainer_id
=
0
;
auto
*
trainer_id_data
=
trainer_id_t
->
data
<
int64_t
>
();
auto
*
trainer_id_data
=
trainer_id_t
->
data
<
int64_t
>
();
if
(
platform
::
is_gpu_place
(
context
.
GetPlace
()))
{
if
(
platform
::
is_gpu_place
(
context
.
GetPlace
()))
{
#ifdef PADDLE_WITH_CUDA
#ifdef PADDLE_WITH_CUDA
...
@@ -38,7 +38,6 @@ class RefByTrainerIdKernel : public framework::OpKernel<T> {
...
@@ -38,7 +38,6 @@ class RefByTrainerIdKernel : public framework::OpKernel<T> {
}
else
{
}
else
{
trainer_id
=
*
trainer_id_data
;
trainer_id
=
*
trainer_id_data
;
}
}
printf
(
"after get trainer_id %lu
\n
"
,
trainer_id
);
PADDLE_ENFORCE_LT
(
trainer_id
,
in_list
.
size
());
PADDLE_ENFORCE_LT
(
trainer_id
,
in_list
.
size
());
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
out
->
ShareDataWith
(
*
(
in_list
[
trainer_id
]));
out
->
ShareDataWith
(
*
(
in_list
[
trainer_id
]));
...
...
paddle/fluid/operators/rmsprop_op.h
浏览文件 @
dd343a49
...
@@ -179,8 +179,8 @@ class RmspropOpKernel : public framework::OpKernel<T> {
...
@@ -179,8 +179,8 @@ class RmspropOpKernel : public framework::OpKernel<T> {
auto
&
mg_tensor
=
*
ctx
.
Input
<
LoDTensor
>
(
"MeanGrad"
);
auto
&
mg_tensor
=
*
ctx
.
Input
<
LoDTensor
>
(
"MeanGrad"
);
auto
mg
=
EigenVector
<
T
>::
Flatten
(
mg_tensor
);
auto
mg
=
EigenVector
<
T
>::
Flatten
(
mg_tensor
);
auto
*
mean_grad_out
=
ctx
.
Output
<
LoDTensor
>
(
"MeanGradOut"
);
auto
*
mean_grad_out
=
ctx
.
Output
<
LoDTensor
>
(
"MeanGradOut"
);
PADDLE_ENFORCE
(
&
mg_tensor
,
mean_grad_out
,
PADDLE_ENFORCE
_EQ
(
&
mg_tensor
,
mean_grad_out
,
"MeanGrad and MeanGradOut must be the same Tensor"
);
"MeanGrad and MeanGradOut must be the same Tensor"
);
auto
mg_out
=
EigenVector
<
T
>::
Flatten
(
*
mean_grad_out
);
auto
mg_out
=
EigenVector
<
T
>::
Flatten
(
*
mean_grad_out
);
mg_out
.
device
(
place
)
=
rho
*
mg
+
(
1
-
rho
)
*
g
;
mg_out
.
device
(
place
)
=
rho
*
mg
+
(
1
-
rho
)
*
g
;
...
@@ -198,8 +198,8 @@ class RmspropOpKernel : public framework::OpKernel<T> {
...
@@ -198,8 +198,8 @@ class RmspropOpKernel : public framework::OpKernel<T> {
if
(
centered
)
{
if
(
centered
)
{
auto
&
mg_tensor
=
*
ctx
.
Input
<
LoDTensor
>
(
"MeanGrad"
);
auto
&
mg_tensor
=
*
ctx
.
Input
<
LoDTensor
>
(
"MeanGrad"
);
auto
*
mean_grad_out
=
ctx
.
Output
<
LoDTensor
>
(
"MeanGradOut"
);
auto
*
mean_grad_out
=
ctx
.
Output
<
LoDTensor
>
(
"MeanGradOut"
);
PADDLE_ENFORCE
(
&
mg_tensor
,
mean_grad_out
,
PADDLE_ENFORCE
_EQ
(
&
mg_tensor
,
mean_grad_out
,
"MeanGrad and MeanGradOut must be the same Tensor"
);
"MeanGrad and MeanGradOut must be the same Tensor"
);
for_range
(
CenteredRmspropFunctor
<
T
,
DenseRmspropGradFunctor
<
T
>>
(
for_range
(
CenteredRmspropFunctor
<
T
,
DenseRmspropGradFunctor
<
T
>>
(
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
mean_square_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
mean_square_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
...
@@ -243,8 +243,8 @@ class RmspropOpKernel : public framework::OpKernel<T> {
...
@@ -243,8 +243,8 @@ class RmspropOpKernel : public framework::OpKernel<T> {
if
(
centered
)
{
if
(
centered
)
{
auto
&
mg_tensor
=
*
ctx
.
Input
<
LoDTensor
>
(
"MeanGrad"
);
auto
&
mg_tensor
=
*
ctx
.
Input
<
LoDTensor
>
(
"MeanGrad"
);
auto
*
mean_grad_out
=
ctx
.
Output
<
LoDTensor
>
(
"MeanGradOut"
);
auto
*
mean_grad_out
=
ctx
.
Output
<
LoDTensor
>
(
"MeanGradOut"
);
PADDLE_ENFORCE
(
&
mg_tensor
,
mean_grad_out
,
PADDLE_ENFORCE
_EQ
(
&
mg_tensor
,
mean_grad_out
,
"MeanGrad and MeanGradOut must be the same Tensor"
);
"MeanGrad and MeanGradOut must be the same Tensor"
);
for_range
(
CenteredRmspropFunctor
<
T
,
SparseRmspropGradFunctor
<
T
>>
(
for_range
(
CenteredRmspropFunctor
<
T
,
SparseRmspropGradFunctor
<
T
>>
(
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
mean_square_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
mean_square_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
...
...
paddle/fluid/platform/device_context.cc
浏览文件 @
dd343a49
...
@@ -153,55 +153,31 @@ class EigenCudaStreamDevice : public Eigen::StreamInterface {
...
@@ -153,55 +153,31 @@ class EigenCudaStreamDevice : public Eigen::StreamInterface {
mutable
unsigned
int
*
semaphore_
;
mutable
unsigned
int
*
semaphore_
;
};
};
class
CudnnHolder
{
CudnnHolder
::
CudnnHolder
(
const
cudaStream_t
*
stream
,
const
CUDAPlace
&
place
)
public:
:
workspace_
(
nullptr
),
workspace_len_
(
0
),
stream_
(
stream
),
place_
(
place
)
{
CudnnHolder
(
const
cudaStream_t
*
stream
,
const
CUDAPlace
&
place
)
PADDLE_ENFORCE
(
dynload
::
cudnnCreate
(
&
cudnn_handle_
));
:
workspace_
(
nullptr
),
workspace_len_
(
0
),
stream_
(
stream
),
place_
(
place
)
{
PADDLE_ENFORCE
(
dynload
::
cudnnSetStream
(
cudnn_handle_
,
*
stream_
));
PADDLE_ENFORCE
(
dynload
::
cudnnCreate
(
&
cudnn_handle_
));
}
PADDLE_ENFORCE
(
dynload
::
cudnnSetStream
(
cudnn_handle_
,
*
stream_
));
}
cudnnHandle_t
cudnn_handle
()
const
{
return
cudnn_handle_
;
}
void
RunFunc
(
const
std
::
function
<
void
(
void
*
)
>&
cudnn_func
,
CudnnHolder
::~
CudnnHolder
()
{
size_t
required_workspace_len
)
{
PADDLE_ENFORCE
(
dynload
::
cudnnDestroy
(
cudnn_handle_
));
std
::
lock_guard
<
std
::
mutex
>
lock
(
mtx_
);
if
(
workspace_
!=
nullptr
)
{
if
(
required_workspace_len
>
workspace_len_
)
{
paddle
::
memory
::
Free
(
place_
,
workspace_
);
ReallocateWorkspace
(
required_workspace_len
);
}
cudnn_func
(
workspace_
);
}
}
}
~
CudnnHolder
()
{
void
CudnnHolder
::
ReallocateWorkspace
(
size_t
required_workspace_len
)
{
PADDLE_ENFORCE
(
dynload
::
cudnnDestroy
(
cudnn_handle_
));
if
(
required_workspace_len
<=
workspace_len_
)
{
if
(
workspace_
!=
nullptr
)
{
return
;
paddle
::
memory
::
Free
(
place_
,
workspace_
);
}
}
}
if
(
workspace_
!=
nullptr
)
{
private:
// Maybe someone is using the current workspace
void
ReallocateWorkspace
(
size_t
required_workspace_len
)
{
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
*
stream_
));
if
(
required_workspace_len
<=
workspace_len_
)
{
paddle
::
memory
::
Free
(
place_
,
workspace_
);
return
;
}
if
(
workspace_
!=
nullptr
)
{
// Maybe someone is using the current workspace
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
*
stream_
));
paddle
::
memory
::
Free
(
place_
,
workspace_
);
}
workspace_
=
paddle
::
memory
::
Alloc
(
place_
,
required_workspace_len
);
workspace_len_
=
required_workspace_len
;
}
}
workspace_
=
paddle
::
memory
::
Alloc
(
place_
,
required_workspace_len
);
cudnnHandle_t
cudnn_handle_
;
workspace_len_
=
required_workspace_len
;
void
*
workspace_
;
}
size_t
workspace_len_
;
const
cudaStream_t
*
stream_
;
// not owned;
const
CUDAPlace
place_
;
std
::
mutex
mtx_
;
};
CUDADeviceContext
::
CUDADeviceContext
(
CUDAPlace
place
)
CUDADeviceContext
::
CUDADeviceContext
(
CUDAPlace
place
)
:
place_
(
place
),
cudnn_holder_
(
nullptr
)
{
:
place_
(
place
),
cudnn_holder_
(
nullptr
)
{
...
@@ -222,12 +198,12 @@ CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
...
@@ -222,12 +198,12 @@ CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
driver_version_
=
GetCUDADriverVersion
(
place_
.
device
);
driver_version_
=
GetCUDADriverVersion
(
place_
.
device
);
runtime_version_
=
GetCUDARuntimeVersion
(
place_
.
device
);
runtime_version_
=
GetCUDARuntimeVersion
(
place_
.
device
);
LOG
(
INFO
)
<<
"
device: "
<<
place_
.
device
LOG
_FIRST_N
(
WARNING
,
1
)
<<
"Please NOTE:
device: "
<<
place_
.
device
<<
", CUDA Capability: "
<<
compute_capability_
<<
", CUDA Capability: "
<<
compute_capability_
<<
", Driver Version: "
<<
driver_version_
/
1000
<<
"."
<<
", Driver Version: "
<<
driver_version_
/
1000
<<
(
driver_version_
%
100
)
/
10
<<
"."
<<
(
driver_version_
%
100
)
/
10
<<
", Runtime Version: "
<<
runtime_version_
/
1000
<<
"."
<<
", Runtime Version: "
<<
runtime_version_
/
1000
<<
(
runtime_version_
%
100
)
/
10
;
<<
"."
<<
(
runtime_version_
%
100
)
/
10
;
callback_manager_
.
reset
(
new
StreamCallbackManager
(
stream_
));
callback_manager_
.
reset
(
new
StreamCallbackManager
(
stream_
));
}
}
...
@@ -269,9 +245,8 @@ cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
...
@@ -269,9 +245,8 @@ cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
return
cudnn_holder_
->
cudnn_handle
();
return
cudnn_holder_
->
cudnn_handle
();
}
}
void
CUDADeviceContext
::
RunCudnnFuncWithWorkspace
(
CudnnWorkspaceHandle
CUDADeviceContext
::
cudnn_workspace_handle
()
const
{
const
std
::
function
<
void
(
void
*
)
>&
cudnn_func
,
size_t
workspace_len
)
const
{
return
CudnnWorkspaceHandle
(
cudnn_holder_
.
get
());
cudnn_holder_
->
RunFunc
(
cudnn_func
,
workspace_len
);
}
}
cudaStream_t
CUDADeviceContext
::
stream
()
const
{
return
stream_
;
}
cudaStream_t
CUDADeviceContext
::
stream
()
const
{
return
stream_
;
}
...
...
paddle/fluid/platform/device_context.h
浏览文件 @
dd343a49
...
@@ -73,7 +73,60 @@ struct DefaultDeviceContextType<platform::CPUPlace> {
...
@@ -73,7 +73,60 @@ struct DefaultDeviceContextType<platform::CPUPlace> {
#ifdef PADDLE_WITH_CUDA
#ifdef PADDLE_WITH_CUDA
class
EigenCudaStreamDevice
;
class
EigenCudaStreamDevice
;
class
CudnnHolder
;
class
CudnnHolder
{
public:
CudnnHolder
(
const
cudaStream_t
*
stream
,
const
CUDAPlace
&
place
);
~
CudnnHolder
();
cudnnHandle_t
cudnn_handle
()
const
{
return
cudnn_handle_
;
}
private:
friend
class
CudnnWorkspaceHandle
;
void
ReallocateWorkspace
(
size_t
required_workspace_len
);
template
<
typename
Callback
>
void
RunFuncImpl
(
Callback
&&
cudnn_func
,
size_t
required_workspace_len
)
{
if
(
required_workspace_len
>
workspace_len_
)
{
ReallocateWorkspace
(
required_workspace_len
);
}
cudnn_func
(
workspace_
);
}
std
::
mutex
&
Mutex
()
{
return
mtx_
;
}
cudnnHandle_t
cudnn_handle_
;
void
*
workspace_
;
size_t
workspace_len_
;
const
cudaStream_t
*
stream_
;
// not owned;
const
CUDAPlace
place_
;
std
::
mutex
mtx_
;
};
class
CudnnWorkspaceHandle
{
public:
/*! \brief The lock would not be acquired when constructor calls.
* The lock would be acquired when RunFunc() is called first time. */
inline
explicit
CudnnWorkspaceHandle
(
CudnnHolder
*
holder
)
:
holder_
(
holder
)
{}
/*! \brief Thread which call RunFunc() would acquire the lock first
* before invoking cudnn functions. */
template
<
typename
Callback
>
inline
void
RunFunc
(
Callback
&&
cudnn_func
,
size_t
required_workspace_len
)
{
if
(
!
guard_
)
{
guard_
.
reset
(
new
std
::
lock_guard
<
std
::
mutex
>
(
holder_
->
Mutex
()));
}
holder_
->
RunFuncImpl
(
std
::
forward
<
Callback
>
(
cudnn_func
),
required_workspace_len
);
}
CudnnWorkspaceHandle
(
CudnnWorkspaceHandle
&&
)
=
default
;
CudnnWorkspaceHandle
&
operator
=
(
CudnnWorkspaceHandle
&&
)
=
delete
;
private:
CudnnHolder
*
holder_
;
// not own
std
::
unique_ptr
<
std
::
lock_guard
<
std
::
mutex
>>
guard_
;
};
class
CUDADeviceContext
:
public
DeviceContext
{
class
CUDADeviceContext
:
public
DeviceContext
{
public:
public:
...
@@ -101,10 +154,14 @@ class CUDADeviceContext : public DeviceContext {
...
@@ -101,10 +154,14 @@ class CUDADeviceContext : public DeviceContext {
/*! \brief Return cudnn handle in the device context. */
/*! \brief Return cudnn handle in the device context. */
cudnnHandle_t
cudnn_handle
()
const
;
cudnnHandle_t
cudnn_handle
()
const
;
/*! \brief Run a cudnn function with the workspace provided by
/*! \brief Return a cudnn workspace handle to call multiple cudnn
* CUDADeviceContext */
* functions without interrupting by other threads.
void
RunCudnnFuncWithWorkspace
(
const
std
::
function
<
void
(
void
*
)
>&
cudnn_func
,
* Once the first cudnn function is called by the handle, a lock
size_t
workspace_len
)
const
;
* would be acquired to prevent other threads from accessing the
* workspace. Once the handle is destructed, the lock would be released.
* CudnnWorkspaceHandle is an RAII object to implement thread-safe
* sequential cudnn function calls. */
CudnnWorkspaceHandle
cudnn_workspace_handle
()
const
;
/*! \brief Return cuda stream in the device context. */
/*! \brief Return cuda stream in the device context. */
cudaStream_t
stream
()
const
;
cudaStream_t
stream
()
const
;
...
...
paddle/fluid/platform/stream_callback_manager.h
浏览文件 @
dd343a49
...
@@ -24,8 +24,6 @@
...
@@ -24,8 +24,6 @@
namespace
paddle
{
namespace
paddle
{
namespace
platform
{
namespace
platform
{
using
StreamCallback
=
std
::
function
<
void
(
cudaStream_t
,
cudaError_t
)
>
;
class
StreamCallbackManager
;
class
StreamCallbackManager
;
struct
StreamCallbackContext
{
struct
StreamCallbackContext
{
...
@@ -35,7 +33,7 @@ struct StreamCallbackContext {
...
@@ -35,7 +33,7 @@ struct StreamCallbackContext {
:
manager_
(
manager
),
callback_
(
callback
)
{}
:
manager_
(
manager
),
callback_
(
callback
)
{}
const
StreamCallbackManager
*
manager_
;
// do not own
const
StreamCallbackManager
*
manager_
;
// do not own
StreamCallback
callback_
;
std
::
function
<
void
()
>
callback_
;
};
};
class
StreamCallbackManager
{
class
StreamCallbackManager
{
...
@@ -45,16 +43,18 @@ class StreamCallbackManager {
...
@@ -45,16 +43,18 @@ class StreamCallbackManager {
template
<
typename
Callback
>
template
<
typename
Callback
>
inline
void
AddCallback
(
Callback
&&
callback
)
const
{
inline
void
AddCallback
(
Callback
&&
callback
)
const
{
AddCallbackWithStreamAndErrorInfo
(
auto
*
stream_callback_context
=
[
=
](
cudaStream_t
,
cudaError_t
)
{
callback
();
});
new
StreamCallbackContext
(
this
,
std
::
forward
<
Callback
>
(
callback
));
}
PADDLE_ENFORCE
(
#if CUDA_VERSION >= 10000
template
<
typename
Callback
>
cudaLaunchHostFunc
(
stream_
,
StreamCallbackManager
::
StreamCallbackFunc
,
inline
void
AddCallbackWithStreamAndErrorInfo
(
Callback
&&
callback
)
const
{
stream_callback_context
)
auto
*
stream_callback_context
=
new
StreamCallbackContext
(
this
,
callback
);
#else
PADDLE_ENFORCE
(
cudaStreamAddCallback
(
cudaStreamAddCallback
(
stream_
,
stream_
,
StreamCallbackManager
::
StreamCallbackFunc
,
StreamCallbackManager
::
StreamCallbackFunc
,
stream_callback_context
,
0
));
stream_callback_context
,
0
)
#endif
);
// NOLINT
}
}
void
Wait
()
const
{
thread_pool_
.
reset
(
new
ThreadPool
(
1
));
}
void
Wait
()
const
{
thread_pool_
.
reset
(
new
ThreadPool
(
1
));
}
...
@@ -63,17 +63,21 @@ class StreamCallbackManager {
...
@@ -63,17 +63,21 @@ class StreamCallbackManager {
const
cudaStream_t
stream_
;
const
cudaStream_t
stream_
;
mutable
std
::
unique_ptr
<
ThreadPool
>
thread_pool_
;
mutable
std
::
unique_ptr
<
ThreadPool
>
thread_pool_
;
// cudaStreamCallback cannot call CUDA API inside, so we have to use
// cudaStreamCallback cannot call CUDA API inside, so we have to use
// thread_pool here
// thread_pool here
#if CUDA_VERSION >= 10000
static
void
CUDART_CB
StreamCallbackFunc
(
void
*
user_data
)
#else
static
void
CUDART_CB
StreamCallbackFunc
(
cudaStream_t
stream
,
static
void
CUDART_CB
StreamCallbackFunc
(
cudaStream_t
stream
,
cudaError_t
status
,
cudaError_t
status
,
void
*
user_data
)
void
*
user_data
)
{
#endif
{
auto
*
callback_context_ptr
=
auto
*
callback_context_ptr
=
reinterpret_cast
<
StreamCallbackContext
*>
(
user_data
);
reinterpret_cast
<
StreamCallbackContext
*>
(
user_data
);
callback_context_ptr
->
manager_
->
thread_pool_
->
enqueue
([
=
]()
{
callback_context_ptr
->
manager_
->
thread_pool_
->
enqueue
([
=
]()
{
std
::
unique_ptr
<
StreamCallbackContext
>
callback_context
(
std
::
unique_ptr
<
StreamCallbackContext
>
callback_context
(
callback_context_ptr
);
callback_context_ptr
);
callback_context
->
callback_
(
stream
,
status
);
callback_context
->
callback_
();
});
});
}
}
};
};
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
dd343a49
...
@@ -821,13 +821,24 @@ All parameter, weight, gradient are variables in Paddle.
...
@@ -821,13 +821,24 @@ All parameter, weight, gradient are variables in Paddle.
[](
BuildStrategy
&
self
,
bool
b
)
{
[](
BuildStrategy
&
self
,
bool
b
)
{
self
.
enable_data_balance_
=
b
;
self
.
enable_data_balance_
=
b
;
})
// FIXME(chengudo): enable_data_balance seems not important
})
// FIXME(chengudo): enable_data_balance seems not important
.
def_property
(
"enable_sequential_execution"
,
.
def_property
(
[](
const
BuildStrategy
&
self
)
{
"enable_sequential_execution"
,
return
self
.
enable_sequential_execution_
;
[](
const
BuildStrategy
&
self
)
{
},
return
self
.
enable_sequential_execution_
;
[](
BuildStrategy
&
self
,
bool
b
)
{
},
self
.
enable_sequential_execution_
=
b
;
[](
BuildStrategy
&
self
,
bool
b
)
{
})
self
.
enable_sequential_execution_
=
b
;
},
R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC"
)
.
def_property
(
"remove_unnecessary_lock"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
remove_unnecessary_lock_
;
},
[](
BuildStrategy
&
self
,
bool
b
)
{
self
.
remove_unnecessary_lock_
=
b
;
},
R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC"
)
.
def_property
(
.
def_property
(
"fuse_elewise_add_act_ops"
,
"fuse_elewise_add_act_ops"
,
[](
const
BuildStrategy
&
self
)
{
[](
const
BuildStrategy
&
self
)
{
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
dd343a49
...
@@ -86,6 +86,8 @@ if(WITH_DISTRIBUTE)
...
@@ -86,6 +86,8 @@ if(WITH_DISTRIBUTE)
# FIXME(typhoonzero): add this back
# FIXME(typhoonzero): add this back
#py_test_modules(test_dist_transformer MODULES test_dist_transformer)
#py_test_modules(test_dist_transformer MODULES test_dist_transformer)
#set_tests_properties(test_dist_transformer PROPERTIES TIMEOUT 1000)
#set_tests_properties(test_dist_transformer PROPERTIES TIMEOUT 1000)
# TODO(typhoonzero): make dist test parallel when fix port management issue
set_tests_properties
(
test_dist_mnist test_dist_word2vec test_dist_se_resnext test_dist_ctr test_dist_simnet_bow test_dist_save_load test_dist_text_classification test_dist_mnist_batch_merge PROPERTIES RUN_SERIAL TRUE
)
endif
(
NOT APPLE
)
endif
(
NOT APPLE
)
py_test_modules
(
test_dist_transpiler MODULES test_dist_transpiler
)
py_test_modules
(
test_dist_transpiler MODULES test_dist_transpiler
)
endif
()
endif
()
...
...
python/paddle/fluid/tests/unittests/parallel_executor_test_base.py
浏览文件 @
dd343a49
...
@@ -18,6 +18,7 @@ import multiprocessing
...
@@ -18,6 +18,7 @@ import multiprocessing
import
os
import
os
import
unittest
import
unittest
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
time
import
time
import
numpy
as
np
import
numpy
as
np
import
math
import
math
...
@@ -82,6 +83,8 @@ class TestParallelExecutorBase(unittest.TestCase):
...
@@ -82,6 +83,8 @@ class TestParallelExecutorBase(unittest.TestCase):
if
use_reduce
else
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
if
use_reduce
else
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
build_strategy
.
fuse_elewise_add_act_ops
=
fuse_elewise_add_act_ops
build_strategy
.
fuse_elewise_add_act_ops
=
fuse_elewise_add_act_ops
build_strategy
.
enable_sequential_execution
=
enable_sequential_execution
build_strategy
.
enable_sequential_execution
=
enable_sequential_execution
if
use_cuda
and
core
.
is_compiled_with_cuda
():
build_strategy
.
remove_unnecessary_lock
=
True
if
use_parallel_executor
:
if
use_parallel_executor
:
exe
=
fluid
.
ParallelExecutor
(
exe
=
fluid
.
ParallelExecutor
(
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_crf.py
浏览文件 @
dd343a49
...
@@ -174,7 +174,6 @@ class TestCRFModel(unittest.TestCase):
...
@@ -174,7 +174,6 @@ class TestCRFModel(unittest.TestCase):
print
(
pe
.
run
(
feed
=
feeder
.
feed
(
cur_batch
),
print
(
pe
.
run
(
feed
=
feeder
.
feed
(
cur_batch
),
fetch_list
=
[
avg_cost
.
name
])[
0
])
fetch_list
=
[
avg_cost
.
name
])[
0
])
@
unittest
.
skip
(
reason
=
"CI hangs"
)
def
test_update_sparse_parameter_all_reduce
(
self
):
def
test_update_sparse_parameter_all_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
...
@@ -183,7 +182,6 @@ class TestCRFModel(unittest.TestCase):
...
@@ -183,7 +182,6 @@ class TestCRFModel(unittest.TestCase):
self
.
check_network_convergence
(
self
.
check_network_convergence
(
is_sparse
=
True
,
build_strategy
=
build_strategy
,
use_cuda
=
False
)
is_sparse
=
True
,
build_strategy
=
build_strategy
,
use_cuda
=
False
)
@
unittest
.
skip
(
reason
=
"CI hangs"
)
def
test_update_dense_parameter_all_reduce
(
self
):
def
test_update_dense_parameter_all_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
...
@@ -192,7 +190,6 @@ class TestCRFModel(unittest.TestCase):
...
@@ -192,7 +190,6 @@ class TestCRFModel(unittest.TestCase):
self
.
check_network_convergence
(
self
.
check_network_convergence
(
is_sparse
=
False
,
build_strategy
=
build_strategy
,
use_cuda
=
False
)
is_sparse
=
False
,
build_strategy
=
build_strategy
,
use_cuda
=
False
)
@
unittest
.
skip
(
reason
=
"CI hangs"
)
def
test_update_sparse_parameter_reduce
(
self
):
def
test_update_sparse_parameter_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
...
@@ -201,7 +198,6 @@ class TestCRFModel(unittest.TestCase):
...
@@ -201,7 +198,6 @@ class TestCRFModel(unittest.TestCase):
self
.
check_network_convergence
(
self
.
check_network_convergence
(
is_sparse
=
True
,
build_strategy
=
build_strategy
,
use_cuda
=
False
)
is_sparse
=
True
,
build_strategy
=
build_strategy
,
use_cuda
=
False
)
@
unittest
.
skip
(
reason
=
"CI hangs"
)
def
test_update_dense_parameter_reduce
(
self
):
def
test_update_dense_parameter_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
dd343a49
...
@@ -1588,7 +1588,6 @@ to transpile() call.")
...
@@ -1588,7 +1588,6 @@ to transpile() call.")
ref_inputs
=
[]
ref_inputs
=
[]
for
p
,
p_bak
in
self
.
param_bak_list
:
for
p
,
p_bak
in
self
.
param_bak_list
:
if
p
.
name
==
param_var
.
name
:
if
p
.
name
==
param_var
.
name
:
print
(
"#### ref inputs: "
,
param_var
.
name
,
p_bak
.
name
)
ref_inputs
.
append
(
p_bak
)
ref_inputs
.
append
(
p_bak
)
block
.
append_op
(
block
.
append_op
(
type
=
"ref_by_trainer_id"
,
type
=
"ref_by_trainer_id"
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录