Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
db73d68f
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
db73d68f
编写于
8月 02, 2021
作者:
C
cnn
提交者:
GitHub
8月 02, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix error (#3843)
上级
1adca6bf
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
45 addition
and
51 deletion
+45
-51
ppdet/modeling/heads/s2anet_head.py
ppdet/modeling/heads/s2anet_head.py
+45
-51
未找到文件。
ppdet/modeling/heads/s2anet_head.py
浏览文件 @
db73d68f
...
...
@@ -551,32 +551,29 @@ class S2ANetHead(nn.Layer):
fam_cls_score1
=
fam_cls_score
feat_labels
=
paddle
.
to_tensor
(
feat_labels
)
if
(
feat_labels
>=
0
).
astype
(
paddle
.
int32
).
sum
()
>
0
:
feat_labels_one_hot
=
paddle
.
nn
.
functional
.
one_hot
(
feat_labels
,
self
.
cls_out_channels
+
1
)
feat_labels_one_hot
=
feat_labels_one_hot
[:,
1
:]
feat_labels_one_hot
.
stop_gradient
=
True
num_total_samples
=
paddle
.
to_tensor
(
num_total_samples
,
dtype
=
'float32'
,
stop_gradient
=
True
)
fam_cls
=
F
.
sigmoid_focal_loss
(
fam_cls_score1
,
feat_labels_one_hot
,
normalizer
=
num_total_samples
,
reduction
=
'none'
)
feat_label_weights
=
feat_label_weights
.
reshape
(
feat_label_weights
.
shape
[
0
],
1
)
feat_label_weights
=
np
.
repeat
(
feat_label_weights
,
self
.
cls_out_channels
,
axis
=
1
)
feat_label_weights
=
paddle
.
to_tensor
(
feat_label_weights
,
stop_gradient
=
True
)
fam_cls
=
fam_cls
*
feat_label_weights
fam_cls_total
=
paddle
.
sum
(
fam_cls
)
else
:
fam_cls_total
=
paddle
.
zeros
([
0
],
dtype
=
fam_cls_score1
.
dtype
)
feat_labels_one_hot
=
paddle
.
nn
.
functional
.
one_hot
(
feat_labels
,
self
.
cls_out_channels
+
1
)
feat_labels_one_hot
=
feat_labels_one_hot
[:,
1
:]
feat_labels_one_hot
.
stop_gradient
=
True
num_total_samples
=
paddle
.
to_tensor
(
num_total_samples
,
dtype
=
'float32'
,
stop_gradient
=
True
)
fam_cls
=
F
.
sigmoid_focal_loss
(
fam_cls_score1
,
feat_labels_one_hot
,
normalizer
=
num_total_samples
,
reduction
=
'none'
)
feat_label_weights
=
feat_label_weights
.
reshape
(
feat_label_weights
.
shape
[
0
],
1
)
feat_label_weights
=
np
.
repeat
(
feat_label_weights
,
self
.
cls_out_channels
,
axis
=
1
)
feat_label_weights
=
paddle
.
to_tensor
(
feat_label_weights
,
stop_gradient
=
True
)
fam_cls
=
fam_cls
*
feat_label_weights
fam_cls_total
=
paddle
.
sum
(
fam_cls
)
fam_cls_losses
.
append
(
fam_cls_total
)
# step3: regression loss
...
...
@@ -673,31 +670,28 @@ class S2ANetHead(nn.Layer):
odm_cls_score1
=
odm_cls_score
feat_labels
=
paddle
.
to_tensor
(
feat_labels
)
if
(
feat_labels
>=
0
).
astype
(
paddle
.
int32
).
sum
()
>
0
:
feat_labels_one_hot
=
paddle
.
nn
.
functional
.
one_hot
(
feat_labels
,
self
.
cls_out_channels
+
1
)
feat_labels_one_hot
=
feat_labels_one_hot
[:,
1
:]
feat_labels_one_hot
.
stop_gradient
=
True
num_total_samples
=
paddle
.
to_tensor
(
num_total_samples
,
dtype
=
'float32'
,
stop_gradient
=
True
)
odm_cls
=
F
.
sigmoid_focal_loss
(
odm_cls_score1
,
feat_labels_one_hot
,
normalizer
=
num_total_samples
,
reduction
=
'none'
)
feat_label_weights
=
feat_label_weights
.
reshape
(
feat_label_weights
.
shape
[
0
],
1
)
feat_label_weights
=
np
.
repeat
(
feat_label_weights
,
self
.
cls_out_channels
,
axis
=
1
)
feat_label_weights
=
paddle
.
to_tensor
(
feat_label_weights
)
feat_label_weights
.
stop_gradient
=
True
odm_cls
=
odm_cls
*
feat_label_weights
odm_cls_total
=
paddle
.
sum
(
odm_cls
)
else
:
odm_cls_total
=
paddle
.
zeros
([
0
],
dtype
=
odm_cls_score1
.
dtype
)
feat_labels_one_hot
=
paddle
.
nn
.
functional
.
one_hot
(
feat_labels
,
self
.
cls_out_channels
+
1
)
feat_labels_one_hot
=
feat_labels_one_hot
[:,
1
:]
feat_labels_one_hot
.
stop_gradient
=
True
num_total_samples
=
paddle
.
to_tensor
(
num_total_samples
,
dtype
=
'float32'
,
stop_gradient
=
True
)
odm_cls
=
F
.
sigmoid_focal_loss
(
odm_cls_score1
,
feat_labels_one_hot
,
normalizer
=
num_total_samples
,
reduction
=
'none'
)
feat_label_weights
=
feat_label_weights
.
reshape
(
feat_label_weights
.
shape
[
0
],
1
)
feat_label_weights
=
np
.
repeat
(
feat_label_weights
,
self
.
cls_out_channels
,
axis
=
1
)
feat_label_weights
=
paddle
.
to_tensor
(
feat_label_weights
)
feat_label_weights
.
stop_gradient
=
True
odm_cls
=
odm_cls
*
feat_label_weights
odm_cls_total
=
paddle
.
sum
(
odm_cls
)
odm_cls_losses
.
append
(
odm_cls_total
)
# # step3: regression loss
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录