Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
d7d3b411
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d7d3b411
编写于
1月 11, 2018
作者:
K
Kavya Srinet
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into doc
上级
c806eeff
5dbd5370
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
78 addition
and
0 deletion
+78
-0
benchmark/cluster/README.md
benchmark/cluster/README.md
+78
-0
未找到文件。
benchmark/cluster/README.md
0 → 100644
浏览文件 @
d7d3b411
# Cluster Training Benchmark
## Setup
-
Platform
-
Kubernetes: v1.6.2
-
Linux Kernel: v3.10.0
-
Resource
-
CPU: 10 Cores per Pod
-
Memory: 5GB per Pod
-
Docker Image
We use different base Docker Image to run the benchmark on Kubernetes:
-
PaddlePaddle v2: paddlepaddle/paddle:0.11.0
-
PaddlePaddle Fluid: paddlepaddle/paddle:[commit-id]
-
TensorFlow: tensorflow/tensorflow:1.5.0-rc0
-
Model
vgg16 is used in this benchmark.
## Cases
-
Variable
-
Batch Size of training data.
-
PServer count of the training job.
-
The number of trainers.
-
Invariant
-
The resource of trainer/pserver Pod.
### Measure the Performance for Different Batch Size
-
PServer Count: 40
-
Trainer Count: 100
-
Metrics: mini-batch / sec
| Batch Size | 32 | 64 | 128 | 256 |
| -- | -- | -- | -- | -- |
| PaddlePaddle Fluid | - | - | - | - |
| PaddlePaddle v2 | - | - | - | - |
| TensorFlow | - | - | - | - |
### Measure the Performance for Different PServer Count
-
Trainer Count: 100
-
Batch Size: 64
-
Metrics: mini-batch / sec
| PServer Count | 10 | 20 | 40 | 60 |
| -- | -- | -- | -- | -- |
| PaddlePaddle Fluid | - | - | - | - |
| PaddlePaddle v2 | - | - | - | - |
| TensorFlow | - | - | - | - |
### Measure Parallel Efficiency By Increasing Trainer Count
-
PServer Count: 20
-
Batch Size: 64
-
Metrics:
$S =
\d
iv(T1, TN)$
which S is the ratio of T1 over TN, training time of 1 and N trainers.
The parallel efficiency is:
$E =
\d
iv(S, N)$
| Trainer Counter | 1 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
| -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| PaddlePaddle Fluid | - | - | - | - | - | - | - | - | - | - | - |
| PaddlePaddle v2 | - | - | - | - | - | - | - | - | - | - | - | - |
| TensorFlow | - | - | - | - | - | - | - | - | - | - | - | - | - |
## Reproduce the benchmark
TODO
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录