Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
d6d33fd7
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d6d33fd7
编写于
6月 04, 2019
作者:
Y
Yibing Liu
提交者:
GitHub
6月 04, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add update method for ema (#17812)
上级
c10157a5
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
28 addition
and
15 deletion
+28
-15
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+27
-15
未找到文件。
paddle/fluid/API.spec
浏览文件 @
d6d33fd7
...
@@ -528,6 +528,7 @@ paddle.fluid.optimizer.LambOptimizer.minimize (ArgSpec(args=['self', 'loss', 'st
...
@@ -528,6 +528,7 @@ paddle.fluid.optimizer.LambOptimizer.minimize (ArgSpec(args=['self', 'loss', 'st
paddle.fluid.optimizer.ExponentialMovingAverage.__init__ (ArgSpec(args=['self', 'decay', 'thres_steps', 'name'], varargs=None, keywords=None, defaults=(0.999, None, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.optimizer.ExponentialMovingAverage.__init__ (ArgSpec(args=['self', 'decay', 'thres_steps', 'name'], varargs=None, keywords=None, defaults=(0.999, None, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.optimizer.ExponentialMovingAverage.apply (ArgSpec(args=['self', 'executor', 'need_restore'], varargs=None, keywords=None, defaults=(True,)), ('document', '30f494752ac8921dc5835a63637f453a'))
paddle.fluid.optimizer.ExponentialMovingAverage.apply (ArgSpec(args=['self', 'executor', 'need_restore'], varargs=None, keywords=None, defaults=(True,)), ('document', '30f494752ac8921dc5835a63637f453a'))
paddle.fluid.optimizer.ExponentialMovingAverage.restore (ArgSpec(args=['self', 'executor'], varargs=None, keywords=None, defaults=None), ('document', '8c8a1791608b02a1ede53d6dd3a4fcec'))
paddle.fluid.optimizer.ExponentialMovingAverage.restore (ArgSpec(args=['self', 'executor'], varargs=None, keywords=None, defaults=None), ('document', '8c8a1791608b02a1ede53d6dd3a4fcec'))
paddle.fluid.optimizer.ExponentialMovingAverage.update (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', 'ea10f08af6d7aac3b7974aa976e4085f'))
paddle.fluid.backward.append_backward (ArgSpec(args=['loss', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '08a5dd9f6f376ff3d55e0b1d92115cbd'))
paddle.fluid.backward.append_backward (ArgSpec(args=['loss', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '08a5dd9f6f376ff3d55e0b1d92115cbd'))
paddle.fluid.regularizer.L1DecayRegularizer.__init__ (ArgSpec(args=['self', 'regularization_coeff'], varargs=None, keywords=None, defaults=(0.0,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.regularizer.L1DecayRegularizer.__init__ (ArgSpec(args=['self', 'regularization_coeff'], varargs=None, keywords=None, defaults=(0.0,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.regularizer.L2DecayRegularizer.__init__ (ArgSpec(args=['self', 'regularization_coeff'], varargs=None, keywords=None, defaults=(0.0,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.regularizer.L2DecayRegularizer.__init__ (ArgSpec(args=['self', 'regularization_coeff'], varargs=None, keywords=None, defaults=(0.0,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
d6d33fd7
...
@@ -2333,10 +2333,10 @@ class ExponentialMovingAverage(object):
...
@@ -2333,10 +2333,10 @@ class ExponentialMovingAverage(object):
\\
text{EMA}_t & =
\\
text{decay} *
\\
text{EMA}_{t-1} + (1 -
\\
text{decay}) *
\\
theta_t
\\
text{EMA}_t & =
\\
text{decay} *
\\
text{EMA}_{t-1} + (1 -
\\
text{decay}) *
\\
theta_t
The average results
will be saved in temporary variables which are created
The average results
calculated by **update()** method will be saved in
and maintained by the object, and can be applied to parameters of current
temporary variables which are created and maintained by the object, and can
model by calling **apply()** method. And the **restore()** method is used to
be applied to parameters of current model by calling **apply()** method. And
restore the parameters.
the **restore()** method is used to
restore the parameters.
**Bias correction**. All EMAs are initialized to :math:`0` and hence they will be
**Bias correction**. All EMAs are initialized to :math:`0` and hence they will be
zero biased, which can be corrected by divided by a factor
zero biased, which can be corrected by divided by a factor
...
@@ -2382,6 +2382,7 @@ class ExponentialMovingAverage(object):
...
@@ -2382,6 +2382,7 @@ class ExponentialMovingAverage(object):
global_steps = fluid.layers.learning_rate_scheduler._decay_step_counter()
global_steps = fluid.layers.learning_rate_scheduler._decay_step_counter()
ema = fluid.optimizer.ExponentialMovingAverage(0.999, thres_steps=global_steps)
ema = fluid.optimizer.ExponentialMovingAverage(0.999, thres_steps=global_steps)
ema.update()
# pseudo code
# pseudo code
for pass_id in range(args.pass_num):
for pass_id in range(args.pass_num):
...
@@ -2407,7 +2408,7 @@ class ExponentialMovingAverage(object):
...
@@ -2407,7 +2408,7 @@ class ExponentialMovingAverage(object):
self
.
_name
=
name
if
name
is
not
None
else
''
self
.
_name
=
name
if
name
is
not
None
else
''
self
.
_decay_var
=
self
.
_get_ema_decay
()
self
.
_decay_var
=
self
.
_get_ema_decay
()
self
.
params_tmps
=
[]
self
.
_
params_tmps
=
[]
for
param
in
default_main_program
().
global_block
().
all_parameters
():
for
param
in
default_main_program
().
global_block
().
all_parameters
():
if
param
.
do_model_average
!=
False
:
if
param
.
do_model_average
!=
False
:
tmp
=
param
.
block
.
create_var
(
tmp
=
param
.
block
.
create_var
(
...
@@ -2416,22 +2417,22 @@ class ExponentialMovingAverage(object):
...
@@ -2416,22 +2417,22 @@ class ExponentialMovingAverage(object):
dtype
=
param
.
dtype
,
dtype
=
param
.
dtype
,
persistable
=
False
,
persistable
=
False
,
stop_gradient
=
True
)
stop_gradient
=
True
)
self
.
params_tmps
.
append
((
param
,
tmp
))
self
.
_
params_tmps
.
append
((
param
,
tmp
))
ema_vars
=
{}
self
.
_
ema_vars
=
{}
for
param
,
tmp
in
self
.
params_tmps
:
for
param
,
tmp
in
self
.
_
params_tmps
:
with
param
.
block
.
program
.
_optimized_guard
(
with
param
.
block
.
program
.
_optimized_guard
(
[
param
,
tmp
]),
name_scope
(
'moving_average'
):
[
param
,
tmp
]),
name_scope
(
'moving_average'
):
ema_vars
[
param
.
name
]
=
self
.
_append_ema_op
s
(
param
)
self
.
_ema_vars
[
param
.
name
]
=
self
.
_create_ema_var
s
(
param
)
self
.
apply_program
=
Program
()
self
.
apply_program
=
Program
()
block
=
self
.
apply_program
.
global_block
()
block
=
self
.
apply_program
.
global_block
()
with
program_guard
(
main_program
=
self
.
apply_program
):
with
program_guard
(
main_program
=
self
.
apply_program
):
decay_pow
=
self
.
_get_decay_pow
(
block
)
decay_pow
=
self
.
_get_decay_pow
(
block
)
for
param
,
tmp
in
self
.
params_tmps
:
for
param
,
tmp
in
self
.
_
params_tmps
:
param
=
block
.
_clone_variable
(
param
)
param
=
block
.
_clone_variable
(
param
)
tmp
=
block
.
_clone_variable
(
tmp
)
tmp
=
block
.
_clone_variable
(
tmp
)
ema
=
block
.
_clone_variable
(
ema_vars
[
param
.
name
])
ema
=
block
.
_clone_variable
(
self
.
_
ema_vars
[
param
.
name
])
layers
.
assign
(
input
=
param
,
output
=
tmp
)
layers
.
assign
(
input
=
param
,
output
=
tmp
)
# bias correction
# bias correction
ema
=
ema
/
(
1.0
-
decay_pow
)
ema
=
ema
/
(
1.0
-
decay_pow
)
...
@@ -2440,7 +2441,7 @@ class ExponentialMovingAverage(object):
...
@@ -2440,7 +2441,7 @@ class ExponentialMovingAverage(object):
self
.
restore_program
=
Program
()
self
.
restore_program
=
Program
()
block
=
self
.
restore_program
.
global_block
()
block
=
self
.
restore_program
.
global_block
()
with
program_guard
(
main_program
=
self
.
restore_program
):
with
program_guard
(
main_program
=
self
.
restore_program
):
for
param
,
tmp
in
self
.
params_tmps
:
for
param
,
tmp
in
self
.
_
params_tmps
:
tmp
=
block
.
_clone_variable
(
tmp
)
tmp
=
block
.
_clone_variable
(
tmp
)
param
=
block
.
_clone_variable
(
param
)
param
=
block
.
_clone_variable
(
param
)
layers
.
assign
(
input
=
tmp
,
output
=
param
)
layers
.
assign
(
input
=
tmp
,
output
=
param
)
...
@@ -2472,7 +2473,7 @@ class ExponentialMovingAverage(object):
...
@@ -2472,7 +2473,7 @@ class ExponentialMovingAverage(object):
decay_pow_acc
=
layers
.
elementwise_pow
(
decay_var
,
global_steps
+
1
)
decay_pow_acc
=
layers
.
elementwise_pow
(
decay_var
,
global_steps
+
1
)
return
decay_pow_acc
return
decay_pow_acc
def
_
append_ema_op
s
(
self
,
param
):
def
_
create_ema_var
s
(
self
,
param
):
param_ema
=
layers
.
create_global_var
(
param_ema
=
layers
.
create_global_var
(
name
=
unique_name
.
generate
(
self
.
_name
+
param
.
name
+
'_ema'
),
name
=
unique_name
.
generate
(
self
.
_name
+
param
.
name
+
'_ema'
),
shape
=
param
.
shape
,
shape
=
param
.
shape
,
...
@@ -2480,10 +2481,21 @@ class ExponentialMovingAverage(object):
...
@@ -2480,10 +2481,21 @@ class ExponentialMovingAverage(object):
dtype
=
param
.
dtype
,
dtype
=
param
.
dtype
,
persistable
=
True
)
persistable
=
True
)
ema_t
=
param_ema
*
self
.
_decay_var
+
param
*
(
1
-
self
.
_decay_var
)
layers
.
assign
(
input
=
ema_t
,
output
=
param_ema
)
return
param_ema
return
param_ema
def
update
(
self
):
"""
Update Exponential Moving Average. Should only call this method in
train program.
"""
for
param
,
tmp
in
self
.
_params_tmps
:
with
param
.
block
.
program
.
_optimized_guard
(
[
param
,
tmp
]),
name_scope
(
'moving_average'
):
param_ema
=
self
.
_ema_vars
[
param
.
name
]
ema_t
=
param_ema
*
self
.
_decay_var
+
param
*
(
1
-
self
.
_decay_var
)
layers
.
assign
(
input
=
ema_t
,
output
=
param_ema
)
@
signature_safe_contextmanager
@
signature_safe_contextmanager
def
apply
(
self
,
executor
,
need_restore
=
True
):
def
apply
(
self
,
executor
,
need_restore
=
True
):
"""
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录