Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
d5a6c81d
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d5a6c81d
编写于
11月 20, 2017
作者:
W
wangmeng28
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update docs for factorization machine layer
上级
6a0cfd94
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
4 addition
and
6 deletion
+4
-6
paddle/gserver/layers/FactorizationMachineLayer.h
paddle/gserver/layers/FactorizationMachineLayer.h
+2
-3
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+2
-3
未找到文件。
paddle/gserver/layers/FactorizationMachineLayer.h
浏览文件 @
d5a6c81d
...
@@ -36,8 +36,7 @@ namespace paddle {
...
@@ -36,8 +36,7 @@ namespace paddle {
*
*
* The detailed calculation for forward and backward can be found at this paper:
* The detailed calculation for forward and backward can be found at this paper:
*
*
* Rendle, Steffen. Factorization machines. IEEE 10th International
* Factorization machines.
* Conference on Data Mining (ICDM). IEEE, 2010.
*
*
* The config file api is factorization_machine.
* The config file api is factorization_machine.
*/
*/
...
@@ -59,7 +58,7 @@ private:
...
@@ -59,7 +58,7 @@ private:
// The result of input matrix * latent vector matrix that will be used in
// The result of input matrix * latent vector matrix that will be used in
// both forward and backward step
// both forward and backward step
MatrixPtr
inputMulFactor_
;
MatrixPtr
inputMulFactor_
;
//
Temporary calculation result store
//
Store temporary calculation result
MatrixPtr
tmpOut_
;
MatrixPtr
tmpOut_
;
MatrixPtr
tmpSum_
;
MatrixPtr
tmpSum_
;
// Negative identity matrix
// Negative identity matrix
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
d5a6c81d
...
@@ -3876,7 +3876,7 @@ def recurrent_layer(input,
...
@@ -3876,7 +3876,7 @@ def recurrent_layer(input,
:type input: LayerOutput
:type input: LayerOutput
:param act: Activation type. TanhActivation is the default activation.
:param act: Activation type. TanhActivation is the default activation.
:type act: BaseActivation
:type act: BaseActivation
:param bias_attr: The parameter attribute for bias. If this parameter is set to
:param bias_attr: The parameter attribute for bias. If this parameter is set to
False or an object whose type is not ParameterAttribute,
False or an object whose type is not ParameterAttribute,
no bias is defined. If the parameter is set to True,
no bias is defined. If the parameter is set to True,
the bias is initialized to zero.
the bias is initialized to zero.
...
@@ -7307,8 +7307,7 @@ def factorization_machine(input,
...
@@ -7307,8 +7307,7 @@ def factorization_machine(input,
each latent vector is k.
each latent vector is k.
For details of Factorization Machine, please refer to the paper:
For details of Factorization Machine, please refer to the paper:
Rendle, Steffen. Factorization machines. IEEE 10th International
Factorization machines.
Conference on Data Mining (ICDM). IEEE, 2010.
.. code-block:: python
.. code-block:: python
factor_machine = factorization_machine(input=input_layer, factor_size=10)
factor_machine = factorization_machine(input=input_layer, factor_size=10)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录