Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
d5702896
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d5702896
编写于
6月 19, 2020
作者:
X
xinyingxinying
提交者:
GitHub
6月 19, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add cutmix (#958)
* Add cutmix op(
#88
)
上级
83caf99f
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
291 addition
and
1 deletion
+291
-1
configs/anchor_free/README.md
configs/anchor_free/README.md
+2
-0
configs/anchor_free/fcos_dcn_r50_fpn_1x_cutmix.yml
configs/anchor_free/fcos_dcn_r50_fpn_1x_cutmix.yml
+187
-0
ppdet/data/reader.py
ppdet/data/reader.py
+15
-0
ppdet/data/transform/operators.py
ppdet/data/transform/operators.py
+87
-1
未找到文件。
configs/anchor_free/README.md
浏览文件 @
d5702896
...
...
@@ -31,6 +31,8 @@
| FCOS | ResNet50 | 2 |
[
ResNet50\_cos\_pretrained
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
)
| 39.8 | - |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/fcos_r50_fpn_1x.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/anchor_free/fcos_r50_fpn_1x.yml
)
|
| FCOS+multiscale_train | ResNet50 | 2 |
[
ResNet50\_cos\_pretrained
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
)
| 42.0 | - |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/fcos_r50_fpn_multiscale_2x.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/anchor_free/fcos_r50_fpn_multiscale_2x.yml
)
|
| FCOS+DCN | ResNet50 | 2 |
[
ResNet50\_cos\_pretrained
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
)
| 44.4 | - |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/fcos_dcn_r50_fpn_1x.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/anchor_free/fcos_dcn_r50_fpn_1x.yml
)
|
| FCOS+DCN+cutmix | ResNet50 | 2 |
[
ResNet50\_cos\_pretrained
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
)
| 44.5 | - | [下载链接]
(https://paddlemodels.bj.bcebos.com/object_detection/fcos_dcn_r50_fpn_1x_cutmix.pdparams) |
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/anchor_free/fcos_dcn_r50_fpn_1x_cutmix.yml
)
|
**注意:**
...
...
configs/anchor_free/fcos_dcn_r50_fpn_1x_cutmix.yml
0 → 100644
浏览文件 @
d5702896
architecture
:
FCOS
max_iters
:
90000
use_gpu
:
true
snapshot_iter
:
5000
log_smooth_window
:
20
log_iter
:
20
save_dir
:
output
pretrain_weights
:
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
metric
:
COCO
weights
:
output/fcos_dcn_r50_fpn_1x_cutmix/model_final
num_classes
:
80
FCOS
:
backbone
:
ResNet
fpn
:
FPN
fcos_head
:
FCOSHead
ResNet
:
norm_type
:
affine_channel
norm_decay
:
0.
depth
:
50
feature_maps
:
[
3
,
4
,
5
]
freeze_at
:
2
dcn_v2_stages
:
[
3
,
4
,
5
]
FPN
:
min_level
:
3
max_level
:
7
num_chan
:
256
use_c5
:
false
spatial_scale
:
[
0.03125
,
0.0625
,
0.125
]
has_extra_convs
:
true
FCOSHead
:
num_classes
:
80
fpn_stride
:
[
8
,
16
,
32
,
64
,
128
]
num_convs
:
4
norm_type
:
"
gn"
fcos_loss
:
FCOSLoss
norm_reg_targets
:
True
centerness_on_reg
:
True
use_dcn_in_tower
:
True
nms
:
MultiClassNMS
MultiClassNMS
:
score_threshold
:
0.025
nms_top_k
:
1000
keep_top_k
:
100
nms_threshold
:
0.6
background_label
:
-1
FCOSLoss
:
loss_alpha
:
0.25
loss_gamma
:
2.0
iou_loss_type
:
"
giou"
reg_weights
:
1.0
LearningRate
:
base_lr
:
0.01
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
[
60000
,
80000
]
-
!LinearWarmup
start_factor
:
0.3333333333333333
steps
:
500
OptimizerBuilder
:
optimizer
:
momentum
:
0.9
type
:
Momentum
regularizer
:
factor
:
0.0001
type
:
L2
TrainReader
:
inputs_def
:
fields
:
[
'
image'
,
'
im_info'
,
'
fcos_target'
]
dataset
:
!COCODataSet
image_dir
:
train2017
anno_path
:
annotations/instances_train2017.json
dataset_dir
:
dataset/coco
with_background
:
false
sample_transforms
:
-
!DecodeImage
to_rgb
:
true
with_cutmix
:
True
-
!CutmixImage
alpha
:
1.5
beta
:
1.5
-
!RandomFlipImage
prob
:
0.5
-
!NormalizeImage
is_channel_first
:
false
is_scale
:
true
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
-
!ResizeImage
target_size
:
800
max_size
:
1333
interp
:
1
use_cv2
:
true
-
!Permute
to_bgr
:
false
channel_first
:
true
batch_transforms
:
-
!PadBatch
pad_to_stride
:
128
use_padded_im_info
:
false
-
!Gt2FCOSTarget
object_sizes_boundary
:
[
64
,
128
,
256
,
512
]
center_sampling_radius
:
1.5
downsample_ratios
:
[
8
,
16
,
32
,
64
,
128
]
norm_reg_targets
:
True
batch_size
:
2
shuffle
:
true
worker_num
:
4
use_process
:
false
cutmix_epoch
:
10
EvalReader
:
inputs_def
:
fields
:
[
'
image'
,
'
im_id'
,
'
im_shape'
,
'
im_info'
]
dataset
:
!COCODataSet
image_dir
:
val2017
anno_path
:
annotations/instances_val2017.json
dataset_dir
:
dataset/coco
with_background
:
false
sample_transforms
:
-
!DecodeImage
to_rgb
:
true
with_mixup
:
false
-
!NormalizeImage
is_channel_first
:
false
is_scale
:
true
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
-
!ResizeImage
target_size
:
800
max_size
:
1333
interp
:
1
use_cv2
:
true
-
!Permute
channel_first
:
true
to_bgr
:
false
batch_transforms
:
-
!PadBatch
pad_to_stride
:
128
use_padded_im_info
:
true
batch_size
:
1
shuffle
:
false
worker_num
:
1
use_process
:
false
TestReader
:
inputs_def
:
# set image_shape if needed
fields
:
[
'
image'
,
'
im_id'
,
'
im_shape'
,
'
im_info'
]
dataset
:
!ImageFolder
anno_path
:
annotations/instances_val2017.json
with_background
:
false
sample_transforms
:
-
!DecodeImage
to_rgb
:
true
with_mixup
:
false
-
!NormalizeImage
is_channel_first
:
false
is_scale
:
true
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
-
!ResizeImage
interp
:
1
max_size
:
1333
target_size
:
800
use_cv2
:
true
-
!Permute
channel_first
:
true
to_bgr
:
false
batch_transforms
:
-
!PadBatch
pad_to_stride
:
128
use_padded_im_info
:
true
batch_size
:
1
shuffle
:
false
ppdet/data/reader.py
浏览文件 @
d5702896
...
...
@@ -167,6 +167,8 @@ class Reader(object):
Default True.
mixup_epoch (int): mixup epoc number. Default is -1, meaning
not use mixup.
cutmix_epoch (int): cutmix epoc number. Default is -1, meaning
not use cutmix.
class_aware_sampling (bool): whether use class-aware sampling or not.
Default False.
worker_num (int): number of working threads/processes.
...
...
@@ -191,6 +193,7 @@ class Reader(object):
drop_last
=
False
,
drop_empty
=
True
,
mixup_epoch
=-
1
,
cutmix_epoch
=-
1
,
class_aware_sampling
=
False
,
worker_num
=-
1
,
use_process
=
False
,
...
...
@@ -241,6 +244,7 @@ class Reader(object):
# sampling
self
.
_mixup_epoch
=
mixup_epoch
self
.
_cutmix_epoch
=
cutmix_epoch
self
.
_class_aware_sampling
=
class_aware_sampling
self
.
_load_img
=
False
...
...
@@ -289,6 +293,10 @@ class Reader(object):
logger
.
debug
(
"Disable mixup for dataset samples "
"less than 2 samples"
)
self
.
_mixup_epoch
=
-
1
if
self
.
_cutmix_epoch
>
0
and
len
(
self
.
indexes
)
<
2
:
logger
.
info
(
"Disable cutmix for dataset samples "
"less than 2 samples"
)
self
.
_cutmix_epoch
=
-
1
if
self
.
_epoch
<
0
:
self
.
_epoch
=
0
...
...
@@ -346,6 +354,13 @@ class Reader(object):
if
self
.
_load_img
:
sample
[
'mixup'
][
'image'
]
=
self
.
_load_image
(
sample
[
'mixup'
][
'im_file'
])
if
self
.
_epoch
<
self
.
_cutmix_epoch
:
num
=
len
(
self
.
indexes
)
mix_idx
=
np
.
random
.
randint
(
1
,
num
)
sample
[
'cutmix'
]
=
copy
.
deepcopy
(
self
.
_roidbs
[
mix_idx
])
if
self
.
_load_img
:
sample
[
'cutmix'
][
'image'
]
=
self
.
_load_image
(
sample
[
'cutmix'
][
'im_file'
])
batch
.
append
(
sample
)
bs
+=
1
...
...
ppdet/data/transform/operators.py
浏览文件 @
d5702896
...
...
@@ -89,21 +89,25 @@ class BaseOperator(object):
@
register_op
class
DecodeImage
(
BaseOperator
):
def
__init__
(
self
,
to_rgb
=
True
,
with_mixup
=
False
):
def
__init__
(
self
,
to_rgb
=
True
,
with_mixup
=
False
,
with_cutmix
=
False
):
""" Transform the image data to numpy format.
Args:
to_rgb (bool): whether to convert BGR to RGB
with_mixup (bool): whether or not to mixup image and gt_bbbox/gt_score
with_cutmix (bool): whether or not to cutmix image and gt_bbbox/gt_score
"""
super
(
DecodeImage
,
self
).
__init__
()
self
.
to_rgb
=
to_rgb
self
.
with_mixup
=
with_mixup
self
.
with_cutmix
=
with_cutmix
if
not
isinstance
(
self
.
to_rgb
,
bool
):
raise
TypeError
(
"{}: input type is invalid."
.
format
(
self
))
if
not
isinstance
(
self
.
with_mixup
,
bool
):
raise
TypeError
(
"{}: input type is invalid."
.
format
(
self
))
if
not
isinstance
(
self
.
with_cutmix
,
bool
):
raise
TypeError
(
"{}: input type is invalid."
.
format
(
self
))
def
__call__
(
self
,
sample
,
context
=
None
):
""" load image if 'im_file' field is not empty but 'image' is"""
...
...
@@ -142,6 +146,10 @@ class DecodeImage(BaseOperator):
# decode mixup image
if
self
.
with_mixup
and
'mixup'
in
sample
:
self
.
__call__
(
sample
[
'mixup'
],
context
)
# decode cutmix image
if
self
.
with_cutmix
and
'cutmix'
in
sample
:
self
.
__call__
(
sample
[
'cutmix'
],
context
)
return
sample
...
...
@@ -1094,6 +1102,84 @@ class MixupImage(BaseOperator):
return
sample
@
register_op
class
CutmixImage
(
BaseOperator
):
def
__init__
(
self
,
alpha
=
1.5
,
beta
=
1.5
):
"""
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features, see https://https://arxiv.org/abs/1905.04899
Cutmix image and gt_bbbox/gt_score
Args:
alpha (float): alpha parameter of beta distribute
beta (float): beta parameter of beta distribute
"""
super
(
CutmixImage
,
self
).
__init__
()
self
.
alpha
=
alpha
self
.
beta
=
beta
if
self
.
alpha
<=
0.0
:
raise
ValueError
(
"alpha shold be positive in {}"
.
format
(
self
))
if
self
.
beta
<=
0.0
:
raise
ValueError
(
"beta shold be positive in {}"
.
format
(
self
))
def
_rand_bbox
(
self
,
img1
,
img2
,
factor
):
""" _rand_bbox """
h
=
max
(
img1
.
shape
[
0
],
img2
.
shape
[
0
])
w
=
max
(
img1
.
shape
[
1
],
img2
.
shape
[
1
])
cut_rat
=
np
.
sqrt
(
1.
-
factor
)
cut_w
=
np
.
int
(
w
*
cut_rat
)
cut_h
=
np
.
int
(
h
*
cut_rat
)
# uniform
cx
=
np
.
random
.
randint
(
w
)
cy
=
np
.
random
.
randint
(
h
)
bbx1
=
np
.
clip
(
cx
-
cut_w
//
2
,
0
,
w
)
bby1
=
np
.
clip
(
cy
-
cut_h
//
2
,
0
,
h
)
bbx2
=
np
.
clip
(
cx
+
cut_w
//
2
,
0
,
w
)
bby2
=
np
.
clip
(
cy
+
cut_h
//
2
,
0
,
h
)
img_1
=
np
.
zeros
((
h
,
w
,
img1
.
shape
[
2
]),
'float32'
)
img_1
[:
img1
.
shape
[
0
],
:
img1
.
shape
[
1
],
:]
=
\
img1
.
astype
(
'float32'
)
img_2
=
np
.
zeros
((
h
,
w
,
img2
.
shape
[
2
]),
'float32'
)
img_2
[:
img2
.
shape
[
0
],
:
img2
.
shape
[
1
],
:]
=
\
img2
.
astype
(
'float32'
)
img_1
[
bby1
:
bby2
,
bbx1
:
bbx2
,
:]
=
img2
[
bby1
:
bby2
,
bbx1
:
bbx2
,
:]
return
img_1
def
__call__
(
self
,
sample
,
context
=
None
):
if
'cutmix'
not
in
sample
:
return
sample
factor
=
np
.
random
.
beta
(
self
.
alpha
,
self
.
beta
)
factor
=
max
(
0.0
,
min
(
1.0
,
factor
))
if
factor
>=
1.0
:
sample
.
pop
(
'cutmix'
)
return
sample
if
factor
<=
0.0
:
return
sample
[
'cutmix'
]
img1
=
sample
[
'image'
]
img2
=
sample
[
'cutmix'
][
'image'
]
img
=
self
.
_rand_bbox
(
img1
,
img2
,
factor
)
gt_bbox1
=
sample
[
'gt_bbox'
]
gt_bbox2
=
sample
[
'cutmix'
][
'gt_bbox'
]
gt_bbox
=
np
.
concatenate
((
gt_bbox1
,
gt_bbox2
),
axis
=
0
)
gt_class1
=
sample
[
'gt_class'
]
gt_class2
=
sample
[
'cutmix'
][
'gt_class'
]
gt_class
=
np
.
concatenate
((
gt_class1
,
gt_class2
),
axis
=
0
)
gt_score1
=
sample
[
'gt_score'
]
gt_score2
=
sample
[
'cutmix'
][
'gt_score'
]
gt_score
=
np
.
concatenate
(
(
gt_score1
*
factor
,
gt_score2
*
(
1.
-
factor
)),
axis
=
0
)
sample
[
'image'
]
=
img
sample
[
'gt_bbox'
]
=
gt_bbox
sample
[
'gt_score'
]
=
gt_score
sample
[
'gt_class'
]
=
gt_class
sample
[
'h'
]
=
img
.
shape
[
0
]
sample
[
'w'
]
=
img
.
shape
[
1
]
sample
.
pop
(
'cutmix'
)
return
sample
@
register_op
class
RandomInterpImage
(
BaseOperator
):
def
__init__
(
self
,
target_size
=
0
,
max_size
=
0
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录