Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
d4e8c99f
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d4e8c99f
编写于
3月 12, 2019
作者:
Q
Qiyang Min
提交者:
GitHub
3月 12, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #16095 from velconia/transfer_gru_unit
Imperative transfer gru unit
上级
94b7c1ea
de212ae2
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
290 addition
and
6 deletion
+290
-6
python/paddle/fluid/imperative/nn.py
python/paddle/fluid/imperative/nn.py
+136
-1
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+112
-4
python/paddle/fluid/tests/unittests/test_gru_op.py
python/paddle/fluid/tests/unittests/test_gru_op.py
+1
-1
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+41
-0
未找到文件。
python/paddle/fluid/imperative/nn.py
浏览文件 @
d4e8c99f
...
...
@@ -22,7 +22,8 @@ from . import layers
from
..framework
import
Variable
,
OpProtoHolder
from
..param_attr
import
ParamAttr
from
..initializer
import
Normal
,
Constant
__all__
=
[
'Conv2D'
,
'Pool2D'
,
'FC'
,
'BatchNorm'
,
'Embedding'
]
__all__
=
[
'Conv2D'
,
'Pool2D'
,
'FC'
,
'BatchNorm'
,
'Embedding'
,
'GRUUnit'
]
class
Conv2D
(
layers
.
Layer
):
...
...
@@ -468,3 +469,137 @@ class Embedding(layers.Layer):
})
return
out
class
GRUUnit
(
layers
.
Layer
):
"""
**GRU unit layer**
if origin_mode is True, then the equation of a gru step is from paper
`Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
.. math::
u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)
if origin_mode is False, then the equation of a gru step is from paper
`Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_
.. math::
u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)
The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
of the equation above, the :math:`z_t` is split into 3 parts -
:math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
implement a full GRU unit operator for an input, a fully
connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.
The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
an intermediate candidate hidden output, which is denoted by :math:`m_t`.
This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
Args:
input (Variable): The fc transformed input value of current step.
name_scope (str): See base class.
hidden (Variable): The hidden value of gru unit from previous step.
size (integer): The input dimension value.
param_attr(ParamAttr|None): The parameter attribute for the learnable
hidden-hidden weight matrix. Note:
- The shape of the weight matrix is :math:`(T
\\
times 3D)`, where
:math:`D` is the hidden size.
- All elements in the weight matrix can be divided into two parts.
The first part are weights of the update gate and reset gate with
shape :math:`(D
\\
times 2D)`, and the second part are weights for
candidate hidden state with shape :math:`(D
\\
times D)`.
If it is set to None or one attribute of ParamAttr, gru_unit will
create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
of GRU.Note that the bias with :math:`(1
\\
times 3D)` concatenates
the bias in the update gate, reset gate and candidate calculations.
If it is set to False, no bias will be applied to the update gate,
reset gate and candidate calculations. If it is set to None or one
attribute of ParamAttr, gru_unit will create ParamAttr as
bias_attr. If the Initializer of the bias_attr is not set, the bias
is initialized zero. Default: None.
activation (string): The activation type for cell (actNode).
Default: 'tanh'
gate_activation (string): The activation type for gates (actGate).
Default: 'sigmoid'
Returns:
tuple: The hidden value, reset-hidden value and gate values.
"""
def
__init__
(
self
,
name_scope
,
size
,
param_attr
=
None
,
bias_attr
=
None
,
activation
=
'tanh'
,
gate_activation
=
'sigmoid'
,
origin_mode
=
False
,
dtype
=
'float32'
):
super
(
GRUUnit
,
self
).
__init__
(
name_scope
)
activation_dict
=
dict
(
identity
=
0
,
sigmoid
=
1
,
tanh
=
2
,
relu
=
3
,
)
activation
=
activation_dict
[
activation
]
gate_activation
=
activation_dict
[
gate_activation
]
self
.
_dtype
=
dtype
size
=
size
//
3
# create weight
self
.
_weight
=
self
.
create_parameter
(
attr
=
param_attr
,
shape
=
[
size
,
3
*
size
],
dtype
=
dtype
)
# create bias
bias_size
=
[
1
,
3
*
size
]
self
.
_bias
=
self
.
create_parameter
(
attr
=
bias_attr
,
shape
=
bias_size
,
dtype
=
dtype
,
is_bias
=
True
)
def
forward
(
self
,
input
,
hidden
):
inputs
=
{
'Input'
:
input
,
'HiddenPrev'
:
hidden
,
'Weight'
:
self
.
_weight
}
if
self
.
_bias
:
inputs
[
'Bias'
]
=
self
.
_bias
gate
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
reset_hidden_pre
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
updated_hidden
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
'gru_unit'
,
inputs
=
inputs
,
outputs
=
{
'Gate'
:
gate
,
'ResetHiddenPrev'
:
reset_hidden_pre
,
'Hidden'
:
updated_hidden
,
},
attrs
=
{
'activation'
:
2
,
# tanh
'gate_activation'
:
1
,
# sigmoid
})
return
updated_hidden
,
reset_hidden_pre
,
gate
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
d4e8c99f
...
...
@@ -22,6 +22,7 @@ import six
import
time
import
itertools
import
collections
from
collections
import
defaultdict
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
...
...
@@ -257,8 +258,65 @@ class OpTest(unittest.TestCase):
outs
,
_
=
self
.
_calc_output
(
place
)
return
outs
def
_calc_output
(
self
,
place
,
parallel
=
False
,
no_check_set
=
None
):
def
_create_var_from_numpy
(
self
,
value
):
if
isinstance
(
value
,
tuple
):
data
=
value
[
0
]
lod
=
value
[
1
]
v
=
fluid
.
imperative
.
base
.
to_variable
(
value
=
data
)
v
.
_ivar
.
value
().
get_tensor
().
set_recursive_sequence_lengths
(
lod
)
return
v
else
:
return
fluid
.
imperative
.
base
.
to_variable
(
value
)
def
_calc_imperative_output
(
self
,
place
,
parallel
=
False
,
no_check_set
=
None
):
with
fluid
.
imperative
.
base
.
guard
(
place
=
place
):
block
=
fluid
.
default_main_program
().
global_block
()
# prepare input variable
inputs
=
defaultdict
(
list
)
for
name
,
np_value
in
six
.
iteritems
(
self
.
inputs
):
if
not
isinstance
(
np_value
,
list
):
np_value
=
[
np_value
]
for
i
in
range
(
len
(
np_value
)):
inputs
[
name
].
append
(
self
.
_create_var_from_numpy
(
np_value
[
i
]))
# prepare output variable
outputs
=
defaultdict
(
list
)
for
name
,
np_value
in
six
.
iteritems
(
self
.
outputs
):
if
not
isinstance
(
np_value
,
list
):
np_value
=
[
np_value
]
for
i
in
range
(
len
(
np_value
)):
value
=
np_value
[
i
]
if
isinstance
(
value
,
tuple
):
v
=
block
.
create_var
(
name
=
"%s_out%d"
%
(
name
,
i
),
dtype
=
value
[
0
].
dtype
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
persistable
=
False
,
stop_gradient
=
False
)
v
.
_ivar
.
value
().
get_tensor
(
).
set_recursive_sequence_lengths
(
value
[
1
])
else
:
v
=
block
.
create_var
(
name
=
"%s_out%d"
%
(
name
,
i
),
dtype
=
value
.
dtype
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
persistable
=
False
,
stop_gradient
=
False
)
outputs
[
name
].
append
(
v
)
block
.
append_op
(
type
=
self
.
op_type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
self
.
attrs
)
return
outputs
def
_calc_output
(
self
,
place
,
parallel
=
False
,
no_check_set
=
None
):
program
=
Program
()
block
=
program
.
global_block
()
self
.
_append_ops
(
block
)
...
...
@@ -305,8 +363,13 @@ class OpTest(unittest.TestCase):
place
,
atol
,
no_check_set
=
None
,
equal_nan
=
False
):
equal_nan
=
False
,
check_imperative
=
False
):
if
check_imperative
:
imperative_outs
=
self
.
_calc_imperative_output
(
place
,
no_check_set
=
no_check_set
)
outs
,
fetch_list
=
self
.
_calc_output
(
place
,
no_check_set
=
no_check_set
)
for
out_name
,
out_dup
in
Operator
.
get_op_outputs
(
self
.
op_type
):
if
out_name
not
in
self
.
outputs
:
continue
...
...
@@ -330,6 +393,10 @@ class OpTest(unittest.TestCase):
type
(
sub_out
))
for
item
in
sub_out
:
sub_out_name
,
expect
=
item
[
0
],
item
[
1
]
if
check_imperative
:
imperative_actual
=
imperative_outs
[
sub_out_name
][
0
]
imperative_actual_t
=
np
.
array
(
imperative_actual
.
_ivar
.
value
().
get_tensor
())
idx
=
find_actual
(
sub_out_name
,
fetch_list
)
actual
=
outs
[
idx
]
actual_t
=
np
.
array
(
actual
)
...
...
@@ -340,12 +407,31 @@ class OpTest(unittest.TestCase):
actual_t
,
expect_t
,
atol
=
atol
,
equal_nan
=
equal_nan
),
"Output ("
+
sub_out_name
+
") has diff at "
+
str
(
place
))
if
check_imperative
:
self
.
assertTrue
(
np
.
allclose
(
imperative_actual_t
,
expect_t
,
atol
=
atol
,
equal_nan
=
equal_nan
),
"Output ("
+
sub_out_name
+
") has diff at "
+
str
(
place
)
+
" in imperative mode"
)
if
isinstance
(
expect
,
tuple
):
self
.
assertListEqual
(
actual
.
recursive_sequence_lengths
(),
expect
[
1
],
"Output ("
+
sub_out_name
+
") has different lod at "
+
str
(
place
))
if
check_imperative
:
self
.
assertListEqual
(
imperative_actual
.
_ivar
.
value
().
get_tensor
()
.
recursive_sequence_lengths
(),
expect
[
1
],
"Output ("
+
out_name
+
") has different lod at "
+
str
(
place
)
+
" in imperative mode"
)
else
:
if
check_imperative
:
imperative_actual
=
imperative_outs
[
out_name
][
0
]
imperative_actual_t
=
np
.
array
(
imperative_actual
.
_ivar
.
value
().
get_tensor
())
idx
=
find_actual
(
out_name
,
fetch_list
)
actual
=
outs
[
idx
]
actual_t
=
np
.
array
(
actual
)
...
...
@@ -357,10 +443,27 @@ class OpTest(unittest.TestCase):
"Output ("
+
out_name
+
") has diff at "
+
str
(
place
)
+
"
\n
Expect "
+
str
(
expect_t
)
+
"
\n
"
+
"But Got"
+
str
(
actual_t
)
+
" in class "
+
self
.
__class__
.
__name__
)
if
check_imperative
:
self
.
assertTrue
(
np
.
allclose
(
imperative_actual_t
,
expect_t
,
atol
=
atol
,
equal_nan
=
equal_nan
),
"Output ("
+
out_name
+
") has diff at "
+
str
(
place
)
+
"
\n
Expect "
+
str
(
expect_t
)
+
"
\n
"
+
"But Got"
+
str
(
imperative_actual_t
)
+
" in class "
+
self
.
__class__
.
__name__
)
if
isinstance
(
expect
,
tuple
):
self
.
assertListEqual
(
actual
.
recursive_sequence_lengths
(),
expect
[
1
],
"Output ("
+
out_name
+
") has different lod at "
+
str
(
place
))
if
check_imperative
:
self
.
assertListEqual
(
imperative_actual
.
_ivar
.
value
().
get_tensor
()
.
recursive_sequence_lengths
(),
expect
[
1
],
"Output ("
+
out_name
+
") has different lod at "
+
str
(
place
)
+
" in imperative mode"
)
def
_get_places
(
self
):
if
self
.
dtype
==
np
.
float16
:
...
...
@@ -383,10 +486,15 @@ class OpTest(unittest.TestCase):
places
.
append
(
core
.
CUDAPlace
(
0
))
return
places
def
check_output
(
self
,
atol
=
1e-5
,
no_check_set
=
None
,
equal_nan
=
False
):
def
check_output
(
self
,
atol
=
1e-5
,
no_check_set
=
None
,
equal_nan
=
False
,
check_imperative
=
False
):
places
=
self
.
_get_places
()
for
place
in
places
:
self
.
check_output_with_place
(
place
,
atol
,
no_check_set
,
equal_nan
)
self
.
check_output_with_place
(
place
,
atol
,
no_check_set
,
equal_nan
,
check_imperative
)
def
check_output_customized
(
self
,
checker
):
places
=
self
.
_get_places
()
...
...
python/paddle/fluid/tests/unittests/test_gru_op.py
浏览文件 @
d4e8c99f
...
...
@@ -156,7 +156,7 @@ class TestGRUOp(OpTest):
}
def
test_check_output
(
self
):
self
.
check_output
(
atol
=
1e-8
)
self
.
check_output
(
atol
=
1e-8
,
check_imperative
=
True
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'Input'
,
'H0'
,
'Weight'
,
'Bias'
],
[
'Hidden'
])
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
d4e8c99f
...
...
@@ -112,6 +112,47 @@ class TestLayer(LayerTest):
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret
.
_numpy
()))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
static_ret2
))
def
test_gru_unit
(
self
):
lod
=
[[
2
,
4
,
3
]]
D
=
5
T
=
sum
(
lod
[
0
])
N
=
len
(
lod
[
0
])
input
=
np
.
random
.
rand
(
T
,
3
*
D
).
astype
(
'float32'
)
hidden_input
=
np
.
random
.
rand
(
T
,
D
).
astype
(
'float32'
)
with
self
.
static_graph
():
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
-
1
,
D
*
3
],
dtype
=
'float32'
)
hidden
=
layers
.
data
(
name
=
'hidden'
,
shape
=
[
-
1
,
D
],
dtype
=
'float32'
)
updated_hidden
,
reset_hidden_pre
,
gate
=
layers
.
gru_unit
(
input
=
x
,
hidden
=
hidden
,
size
=
D
*
3
)
static_ret
=
self
.
get_static_graph_result
(
feed
=
{
'x'
:
input
,
'hidden'
:
hidden_input
},
fetch_list
=
[
updated_hidden
,
reset_hidden_pre
,
gate
])
with
self
.
static_graph
():
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
-
1
,
D
*
3
],
dtype
=
'float32'
)
hidden
=
layers
.
data
(
name
=
'hidden'
,
shape
=
[
-
1
,
D
],
dtype
=
'float32'
)
updated_hidden
,
reset_hidden_pre
,
gate
=
layers
.
gru_unit
(
input
=
x
,
hidden
=
hidden
,
size
=
D
*
3
)
gru
=
nn
.
GRUUnit
(
'gru'
,
size
=
D
*
3
)
updated_hidden
,
reset_hidden_pre
,
gate
=
gru
(
x
,
hidden
)
static_ret2
=
self
.
get_static_graph_result
(
feed
=
{
'x'
:
input
,
'hidden'
:
hidden_input
},
fetch_list
=
[
updated_hidden
,
reset_hidden_pre
,
gate
])
with
self
.
dynamic_graph
():
gru
=
nn
.
GRUUnit
(
'gru'
,
size
=
D
*
3
)
dy_ret
=
gru
(
base
.
to_variable
(
input
),
base
.
to_variable
(
hidden_input
))
for
i
in
range
(
len
(
static_ret
)):
self
.
assertTrue
(
np
.
allclose
(
static_ret
[
i
],
static_ret2
[
i
]))
self
.
assertTrue
(
np
.
allclose
(
static_ret
[
i
],
dy_ret
[
i
].
_numpy
()))
class
TestBook
(
unittest
.
TestCase
):
def
test_fit_a_line
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录