Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
d36e13ef
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d36e13ef
编写于
7月 14, 2018
作者:
Y
yuyang18
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'feature/add_pyreader_demo' into feature/combine_open_files_and_double_buffer
上级
1478a5fc
c9cf2bdb
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
169 addition
and
29 deletion
+169
-29
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
...le/fluid/framework/details/threaded_ssa_graph_executor.cc
+7
-1
paddle/fluid/operators/reader/create_shuffle_reader_op.cc
paddle/fluid/operators/reader/create_shuffle_reader_op.cc
+1
-1
paddle/fluid/operators/reader/open_files_op.cc
paddle/fluid/operators/reader/open_files_op.cc
+4
-12
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+34
-15
python/paddle/fluid/tests/demo/pyreader.py
python/paddle/fluid/tests/demo/pyreader.py
+123
-0
未找到文件。
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
浏览文件 @
d36e13ef
...
...
@@ -168,7 +168,13 @@ void ThreadedSSAGraphExecutor::InsertFetchOps(
for
(
size_t
i
=
0
;
i
<
fetch_tensors
.
size
();
++
i
)
{
auto
&
var_name
=
fetch_tensors
[
i
];
auto
&
vars
=
fetched_vars
.
at
(
var_name
);
auto
fetched_var_it
=
fetched_vars
.
find
(
var_name
);
PADDLE_ENFORCE
(
fetched_var_it
!=
fetched_vars
.
end
(),
"Cannot find fetched variable.(Perhaps the main_program "
"is not set to ParallelExecutor)"
);
auto
&
vars
=
fetched_var_it
->
second
;
auto
*
op
=
new
FetchOpHandle
(
fetch_data
,
i
,
&
local_scopes_
);
fetch_ops
->
emplace_back
(
op
);
...
...
paddle/fluid/operators/reader/create_shuffle_reader_op.cc
浏览文件 @
d36e13ef
...
...
@@ -48,9 +48,9 @@ class ShuffleReader : public framework::DecoratedReader {
private:
void
ShutdownImpl
()
override
{
reader_
->
Shutdown
();
buffer_
.
clear
();
iteration_pos_
=
0
;
reader_
->
Shutdown
();
}
void
StartImpl
()
override
{
...
...
paddle/fluid/operators/reader/open_files_op.cc
浏览文件 @
d36e13ef
...
...
@@ -18,7 +18,6 @@
#include "ThreadPool.h"
#include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
#include "paddle/fluid/operators/reader/buffered_reader.h"
#include "paddle/fluid/operators/reader/reader_op_registry.h"
namespace
paddle
{
...
...
@@ -233,17 +232,12 @@ class OpenFilesOp : public framework::OperatorBase {
container
.
reset
(
new
OrderedReaderContainer
());
}
else
{
container
.
reset
(
new
PreemptiveReaderContainer
(
static_cast
<
size_t
>
(
Attr
<
int
>
(
"thread_num"
))));
std
::
min
(
file_names
.
size
(),
static_cast
<
size_t
>
(
std
::
thread
::
hardware_concurrency
()))));
}
auto
reader
=
std
::
make_shared
<
MultiFileReader
>
(
file_names
,
std
::
move
(
container
));
auto
buffer_size
=
Attr
<
int
>
(
"buffer_size"
);
if
(
buffer_size
>
1
)
{
reader
=
framework
::
MakeDecoratedReader
<
BufferedReader
>
(
reader
,
platform
::
CPUPlace
(),
buffer_size
);
}
out
->
Reset
(
reader
);
out
->
Reset
(
std
::
make_shared
<
MultiFileReader
>
(
file_names
,
std
::
move
(
container
)));
}
};
...
...
@@ -259,8 +253,6 @@ class OpenFilesOpMaker : public FileReaderMakerBase {
An OpenFilesOp creates a MultiFileReader, which is able to
read data multi-threaded from multiple files.
)DOC"
);
AddAttr
<
int
>
(
"thread_num"
,
"Number of thread to read files."
);
AddAttr
<
int
>
(
"buffer_size"
,
"The reading buffer of these files."
);
}
};
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
d36e13ef
...
...
@@ -12,16 +12,16 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
contextlib
import
multiprocessing
from
..
import
core
from
..framework
import
convert_np_dtype_to_dtype_
,
default_main_program
,
default_startup_program
,
Program
from
..unique_name
import
generate
as
unique_name
from
control_flow
import
BlockGuard
from
..layer_helper
import
LayerHelper
from
layer_function_generator
import
templatedoc
from
..
import
core
from
..executor
import
global_scope
from
layer_function_generator
import
generate_layer_fn
,
templatedoc
import
sys
import
multiprocessing
from
..framework
import
convert_np_dtype_to_dtype_
,
default_main_program
,
\
default_startup_program
from
..layer_helper
import
LayerHelper
from
..unique_name
import
generate
as
unique_name
__all__
=
[
'data'
,
'BlockGuardServ'
,
'ListenAndServ'
,
'Send'
,
'Recv'
,
...
...
@@ -448,7 +448,12 @@ def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
return
monkey_patch_reader_methods
(
main_prog_var
)
def
py_reader
(
capacity
,
shapes
,
dtypes
,
lod_levels
=
None
):
def
py_reader
(
capacity
,
shapes
,
dtypes
,
lod_levels
=
None
,
name
=
None
,
use_double_buffer
=
True
):
"""
Create a reader and blocking queue for data feeding in Python
...
...
@@ -461,10 +466,13 @@ def py_reader(capacity, shapes, dtypes, lod_levels=None):
using `close()` method when unused.
Args:
use_double_buffer(bool): Whether use double buffer or not.
capacity(int): The maximum capacity of the BlockingQueue.
shapes(list): List of tuples which declaring data shapes.
dtypes(list): List of strs which declaring data type.
lod_levels(list): List of ints which declaring data lod_level.
shapes(list|tuple): List of tuples which declaring data shapes.
dtypes(list|tuple): List of strs which declaring data type.
lod_levels(list|tuple): List of ints which declaring data lod_level.
name(basestring): The prefix Python queue name and Reader name. None will
be generated automatically.
Returns:
tuple(Variable, BlockingQueue):
...
...
@@ -505,15 +513,23 @@ def py_reader(capacity, shapes, dtypes, lod_levels=None):
if
lod_levels
is
None
:
lod_levels
=
[
0
]
*
len
(
shapes
)
queue_name
=
unique_name
(
'lod_tensor_blocking_queue'
)
if
name
is
None
:
queue_name
=
unique_name
(
'lod_tensor_blocking_queue'
)
reader_name
=
unique_name
(
'create_py_reader'
)
double_buffer_name
=
unique_name
(
'double_buffer'
)
else
:
queue_name
=
"_"
.
join
([
name
,
"queue"
])
reader_name
=
"_"
.
join
([
name
,
"reader"
])
double_buffer_name
=
"_"
.
join
([
name
,
"double_buffer"
])
var
=
global_scope
().
var
(
queue_name
)
feed_queue
=
core
.
init_lod_tensor_blocking_queue
(
var
,
capacity
,
shapes
)
startup_blk
=
default_startup_program
().
current_block
()
startup_var
=
startup_blk
.
create_var
(
name
=
unique_name
(
'create_py_reader'
)
)
startup_var
=
startup_blk
.
create_var
(
name
=
reader_name
)
startup_blk
.
append_op
(
type
=
'create_py_reader'
,
inputs
=
{
'blocking_queue'
:
queue_name
},
inputs
=
{
'blocking_queue'
:
[
queue_name
]
},
outputs
=
{
'Out'
:
[
startup_var
]},
attrs
=
{
'shape_concat'
:
shape_concat
,
...
...
@@ -527,7 +543,10 @@ def py_reader(capacity, shapes, dtypes, lod_levels=None):
main_prog_var
=
_copy_reader_var_
(
default_main_program
().
current_block
(),
startup_var
)
return
monkey_patch_reader_methods
(
main_prog_var
),
feed_queue
reader
=
monkey_patch_reader_methods
(
main_prog_var
)
if
use_double_buffer
:
reader
=
double_buffer
(
reader
,
name
=
double_buffer_name
)
return
reader
,
feed_queue
def
open_files
(
filenames
,
...
...
python/paddle/fluid/tests/demo/pyreader.py
0 → 100644
浏览文件 @
d36e13ef
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.fluid
as
fluid
import
paddle.dataset.mnist
as
mnist
import
paddle
import
paddle.v2
import
threading
import
numpy
def
network
(
is_train
):
reader
,
queue
=
fluid
.
layers
.
py_reader
(
capacity
=
10
,
shapes
=
((
-
1
,
784
),
(
-
1
,
1
)),
dtypes
=
(
'float32'
,
'int64'
),
name
=
"train_reader"
if
is_train
else
"test_reader"
)
img
,
label
=
fluid
.
layers
.
read_file
(
reader
)
hidden
=
img
for
i
in
xrange
(
2
):
hidden
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
100
,
act
=
'tanh'
)
hidden
=
fluid
.
layers
.
dropout
(
hidden
,
dropout_prob
=
0.5
,
is_test
=
not
is_train
)
prediction
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
return
fluid
.
layers
.
mean
(
loss
),
queue
,
reader
def
pipe_reader_to_queue
(
reader_creator
,
queue
):
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
fluid
.
layers
.
data
(
name
=
'img'
,
dtype
=
'float32'
,
shape
=
[
784
]),
fluid
.
layers
.
data
(
name
=
'label'
,
dtype
=
'int64'
,
shape
=
[
1
])
],
place
=
fluid
.
CPUPlace
())
def
__thread_main__
():
for
data
in
feeder
.
decorate_reader
(
reader_creator
,
multi_devices
=
False
)():
tmp
=
fluid
.
core
.
LoDTensorArray
()
tmp
.
append
(
data
[
'img'
])
tmp
.
append
(
data
[
'label'
])
queue
.
push
(
tmp
)
queue
.
close
()
th
=
threading
.
Thread
(
target
=
__thread_main__
)
th
.
start
()
return
th
def
main
():
train_prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
loss
,
train_queue
,
train_reader
=
network
(
True
)
adam
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.01
)
adam
.
minimize
(
loss
)
test_prog
=
fluid
.
Program
()
test_startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
test_prog
,
test_startup
):
with
fluid
.
unique_name
.
guard
():
test_loss
,
test_queue
,
test_reader
=
network
(
False
)
fluid
.
Executor
(
fluid
.
CUDAPlace
(
0
)).
run
(
startup_prog
)
fluid
.
Executor
(
fluid
.
CUDAPlace
(
0
)).
run
(
test_startup
)
trainer
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
loss_name
=
loss
.
name
,
main_program
=
train_prog
)
tester
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
share_vars_from
=
trainer
,
main_program
=
test_prog
)
for
epoch_id
in
xrange
(
10
):
train_data_thread
=
pipe_reader_to_queue
(
paddle
.
batch
(
paddle
.
v2
.
reader
.
firstn
(
mnist
.
train
(),
32
),
64
),
train_queue
)
try
:
while
True
:
print
'train_loss'
,
numpy
.
array
(
trainer
.
run
(
fetch_list
=
[
loss
.
name
]))
except
fluid
.
core
.
EOFException
:
print
'End of epoch'
,
epoch_id
train_reader
.
reset
()
train_data_thread
.
join
()
test_data_thread
=
pipe_reader_to_queue
(
paddle
.
batch
(
mnist
.
test
(),
32
),
test_queue
)
try
:
while
True
:
print
'test loss'
,
numpy
.
array
(
tester
.
run
(
fetch_list
=
[
test_loss
.
name
]))
except
fluid
.
core
.
EOFException
:
print
'End of testing'
test_reader
.
reset
()
test_data_thread
.
join
()
break
del
trainer
del
tester
if
__name__
==
'__main__'
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录