Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
d2ee3c98
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d2ee3c98
编写于
11月 29, 2017
作者:
S
sweetsky0901
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
format code
上级
2d42fa74
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
110 addition
and
100 deletion
+110
-100
paddle/operators/math/unpooling.cc
paddle/operators/math/unpooling.cc
+9
-7
paddle/operators/math/unpooling.cu
paddle/operators/math/unpooling.cu
+28
-22
paddle/operators/math/unpooling.h
paddle/operators/math/unpooling.h
+10
-7
paddle/operators/unpool_op.cc
paddle/operators/unpool_op.cc
+56
-58
paddle/operators/unpool_op.cu.cc
paddle/operators/unpool_op.cu.cc
+4
-4
python/paddle/v2/fluid/tests/test_unpool_op.py
python/paddle/v2/fluid/tests/test_unpool_op.py
+3
-2
未找到文件。
paddle/operators/math/unpooling.cc
浏览文件 @
d2ee3c98
...
...
@@ -19,9 +19,9 @@ namespace math {
template
<
typename
T
>
class
Unpool2dMaxFunctor
<
platform
::
CPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
indices
,
framework
::
Tensor
*
output
)
{
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
indices
,
framework
::
Tensor
*
output
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_width
=
input
.
dims
()[
3
];
...
...
@@ -50,10 +50,12 @@ class Unpool2dMaxFunctor<platform::CPUPlace, T> {
template
<
class
T
>
class
Unpool2dMaxGradFunctor
<
platform
::
CPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
indices
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
framework
::
Tensor
*
input_grad
)
{
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
indices
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_width
=
input
.
dims
()[
3
];
...
...
paddle/operators/math/unpooling.cu
浏览文件 @
d2ee3c98
...
...
@@ -19,10 +19,12 @@ namespace paddle {
namespace
operators
{
namespace
math
{
template
<
typename
T
>
__global__
void
KernelUnpool2dMax
(
const
int
nthreads
,
const
T
*
input_data
,
const
int
*
indices_data
,
const
int
input_height
,
const
int
input_width
,
const
int
channels
,
T
*
output_data
,
const
int
output_height
,
const
int
output_width
)
{
__global__
void
KernelUnpool2dMax
(
const
int
nthreads
,
const
T
*
input_data
,
const
int
*
indices_data
,
const
int
input_height
,
const
int
input_width
,
const
int
channels
,
T
*
output_data
,
const
int
output_height
,
const
int
output_width
)
{
int
in_n_stride
=
input_height
*
input_width
*
channels
;
int
in_c_stride
=
input_height
*
input_width
;
int
out_n_stride
=
output_height
*
output_width
*
channels
;
...
...
@@ -40,11 +42,12 @@ __global__ void KernelUnpool2dMax(
}
}
template
<
typename
T
>
__global__
void
KernelUnpool2dMaxGrad
(
const
int
nthreads
,
const
T
*
input_data
,
const
int
*
indices_data
,
const
int
input_height
,
const
int
input_width
,
const
int
channels
,
const
T
*
output_data
,
const
T
*
output_grad
,
const
int
output_height
,
const
int
output_width
,
T
*
input_grad
)
{
__global__
void
KernelUnpool2dMaxGrad
(
const
int
nthreads
,
const
T
*
input_data
,
const
int
*
indices_data
,
const
int
input_height
,
const
int
input_width
,
const
int
channels
,
const
T
*
output_data
,
const
T
*
output_grad
,
const
int
output_height
,
const
int
output_width
,
T
*
input_grad
)
{
int
in_n_stride
=
input_height
*
input_width
*
channels
;
int
in_c_stride
=
input_height
*
input_width
;
int
out_n_stride
=
output_height
*
output_width
*
channels
;
...
...
@@ -67,9 +70,9 @@ __global__ void KernelUnpool2dMaxGrad(
template
<
typename
T
>
class
Unpool2dMaxFunctor
<
platform
::
GPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
indices
,
framework
::
Tensor
*
output
)
{
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
indices
,
framework
::
Tensor
*
output
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_width
=
input
.
dims
()[
3
];
...
...
@@ -81,11 +84,12 @@ class Unpool2dMaxFunctor<platform::GPUPlace, T> {
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
threads
=
1024
;
int
grid
=
(
input
.
numel
()
+
threads
-
1
)
/
threads
;
KernelUnpool2dMax
<
T
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
input
.
numel
(),
input_data
,
indices_data
,
input_height
,
input_width
,
output_channels
,
output_data
,
output_height
,
output_width
);
KernelUnpool2dMax
<
T
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
input
.
numel
(),
input_data
,
indices_data
,
input_height
,
input_width
,
output_channels
,
output_data
,
output_height
,
output_width
);
}
};
/*
...
...
@@ -113,11 +117,13 @@ class Unpool2dMaxGradFunctor<platform::GPUPlace, T> {
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
threads
=
1024
;
int
grid
=
(
input
.
numel
()
+
threads
-
1
)
/
threads
;
KernelUnpool2dMaxGrad
<
T
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
input
.
numel
(),
input_data
,
indices_data
,
input_height
,
input_width
,
output_channels
,
output_data
,
output_grad_data
,
output_height
,
output_width
,
input_grad_data
);
KernelUnpool2dMaxGrad
<
T
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
input
.
numel
(),
input_data
,
indices_data
,
input_height
,
input_width
,
output_channels
,
output_data
,
output_grad_data
,
output_height
,
output_width
,
input_grad_data
);
}
};
template
class
Unpool2dMaxGradFunctor
<
platform
::
GPUPlace
,
float
>;
...
...
paddle/operators/math/unpooling.h
浏览文件 @
d2ee3c98
...
...
@@ -21,17 +21,20 @@ namespace math {
template
<
typename
Place
,
typename
T
>
class
Unpool2dMaxFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
indices
,
framework
::
Tensor
*
output
);
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
indices
,
framework
::
Tensor
*
output
);
};
template
<
typename
Place
,
class
T
>
class
Unpool2dMaxGradFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
indices
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
framework
::
Tensor
*
input_grad
);
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
indices
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
framework
::
Tensor
*
input_grad
);
};
}
// namespace math
}
// namespace operators
...
...
paddle/operators/unpool_op.cc
浏览文件 @
d2ee3c98
...
...
@@ -32,24 +32,22 @@ class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker {
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of feature."
);
AddOutput
(
"Out"
,
"(Tensor) The output tensor of unpool operator."
"The format of output tensor is also NCHW."
"Where N is batch size, C is "
"the number of channels, H and W is the height and "
"width of feature."
);
"(Tensor) The output tensor of unpool operator."
"The format of output tensor is also NCHW."
"Where N is batch size, C is "
"the number of channels, H and W is the height and "
"width of feature."
);
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"(vector), the unpooling window size(height, width) "
"of unpooling operator."
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector, default:{1, 1}), "
"strides (height, width) of unpooling operator."
)
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector, default:{1, 1}), "
"strides (height, width) of unpooling operator."
)
.
SetDefault
({
1
,
1
});
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"(vector defalut:{0,0}), "
"paddings (height, width) of unpooling operator."
)
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"(vector defalut:{0,0}), "
"paddings (height, width) of unpooling operator."
)
.
SetDefault
({
0
,
0
});
AddAttr
<
std
::
string
>
(
"unpooling_type"
,
...
...
@@ -75,71 +73,71 @@ int OutputSize(int input_size, int ksize, int padding, int stride) {
}
class
UnpoolOp
:
public
framework
::
OperatorWithKernel
{
protected:
framework
::
OpKernelType
GetKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
protected:
framework
::
OpKernelType
GetKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of UnpoolOp"
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of UnpoolOp"
"should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Indices"
),
"Input(Indices) of UnpoolOp"
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Indices"
),
"Input(Indices) of UnpoolOp"
"should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of UnpoolOp should not be null."
);
auto
in_x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
in_y_dims
=
ctx
->
GetInputDim
(
"Indices"
);
std
::
string
unpooling_type
=
auto
in_x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
in_y_dims
=
ctx
->
GetInputDim
(
"Indices"
);
std
::
string
unpooling_type
=
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"unpooling_type"
);
std
::
vector
<
int
>
ksize
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
std
::
vector
<
int
>
ksize
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
PADDLE_ENFORCE
(
in_x_dims
.
size
()
==
4
,
PADDLE_ENFORCE
(
in_x_dims
.
size
()
==
4
,
"Unpooling intput must be of 4-dimensional."
);
PADDLE_ENFORCE_EQ
(
in_x_dims
,
in_y_dims
);
std
::
vector
<
int64_t
>
output_shape
({
in_x_dims
[
0
],
in_x_dims
[
1
]});
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
output_shape
.
push_back
(
OutputSize
(
in_x_dims
[
i
+
2
],
ksize
[
i
],
paddings
[
i
],
strides
[
i
]));
}
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_shape
));
}
PADDLE_ENFORCE_EQ
(
in_x_dims
,
in_y_dims
);
std
::
vector
<
int64_t
>
output_shape
({
in_x_dims
[
0
],
in_x_dims
[
1
]});
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
output_shape
.
push_back
(
OutputSize
(
in_x_dims
[
i
+
2
],
ksize
[
i
],
paddings
[
i
],
strides
[
i
]));
}
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_shape
));
}
};
class
UnpoolOpGrad
:
public
framework
::
OperatorWithKernel
{
protected:
framework
::
OpKernelType
GetKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
protected:
framework
::
OpKernelType
GetKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) must not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) must not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
"Input(X@GRAD) should not be null."
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
}
};
}
// namespace operators
}
// namespace paddle
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
unpool
,
ops
::
UnpoolOp
,
ops
::
Unpool2dOpMaker
,
unpool_grad
,
ops
::
UnpoolOpGrad
);
REGISTER_OP_CPU_KERNEL
(
unpool
,
ops
::
UnpoolKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
UnpoolKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
unpool
,
ops
::
UnpoolKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
UnpoolKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
unpool_grad
,
ops
::
UnpoolGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
UnpoolGradKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
unpool_grad
,
ops
::
UnpoolGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
UnpoolGradKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
paddle/operators/unpool_op.cu.cc
浏览文件 @
d2ee3c98
...
...
@@ -16,8 +16,8 @@ limitations under the License. */
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
unpool
,
ops
::
UnpoolKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
UnpoolKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
unpool
,
ops
::
UnpoolKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
UnpoolKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
REGISTER_OP_GPU_KERNEL
(
unpool_grad
,
ops
::
UnpoolGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
UnpoolGradKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
unpool_grad
,
ops
::
UnpoolGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
UnpoolGradKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
python/paddle/v2/fluid/tests/test_unpool_op.py
浏览文件 @
d2ee3c98
...
...
@@ -55,13 +55,13 @@ class TestUnpoolOp(OpTest):
self
.
inputs
=
{
'X'
:
input
.
astype
(
'float32'
),
'Indices'
:
indices
.
astype
(
'int32'
)
}
}
self
.
attrs
=
{
'strides'
:
self
.
strides
,
'paddings'
:
self
.
paddings
,
'ksize'
:
self
.
ksize
,
'unpooling_type'
:
self
.
unpooling_type
,
}
}
self
.
outputs
=
{
'Out'
:
output
.
astype
(
'float32'
)}
def
test_check_output
(
self
):
...
...
@@ -78,5 +78,6 @@ class TestUnpoolOp(OpTest):
self
.
strides
=
[
2
,
2
]
self
.
paddings
=
[
0
,
0
]
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录