Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
d0e3b240
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d0e3b240
编写于
1月 09, 2019
作者:
Q
Qiao Longfei
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into fix-dist-sparse-decay
test=develop
上级
c3b9edf9
223cc89f
变更
47
隐藏空白更改
内联
并排
Showing
47 changed file
with
1239 addition
and
197 deletion
+1239
-197
cmake/FindJeMalloc.cmake
cmake/FindJeMalloc.cmake
+7
-0
cmake/cuda.cmake
cmake/cuda.cmake
+13
-1
cmake/external/boost.cmake
cmake/external/boost.cmake
+2
-5
cmake/external/mkldnn.cmake
cmake/external/mkldnn.cmake
+1
-1
cmake/external/mklml.cmake
cmake/external/mklml.cmake
+16
-18
cmake/generic.cmake
cmake/generic.cmake
+1
-1
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+1
-1
paddle/fluid/framework/details/build_strategy.cc
paddle/fluid/framework/details/build_strategy.cc
+1
-0
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+1
-0
paddle/fluid/framework/ir/lock_free_optimize_pass.cc
paddle/fluid/framework/ir/lock_free_optimize_pass.cc
+358
-0
paddle/fluid/framework/ir/lock_free_optimize_pass.h
paddle/fluid/framework/ir/lock_free_optimize_pass.h
+130
-0
paddle/fluid/framework/scope.cc
paddle/fluid/framework/scope.cc
+3
-2
paddle/fluid/framework/var_type_traits.cc
paddle/fluid/framework/var_type_traits.cc
+5
-3
paddle/fluid/framework/var_type_traits.h
paddle/fluid/framework/var_type_traits.h
+2
-2
paddle/fluid/framework/var_type_traits_test.cc
paddle/fluid/framework/var_type_traits_test.cc
+5
-4
paddle/fluid/inference/analysis/analyzer_tester.cc
paddle/fluid/inference/analysis/analyzer_tester.cc
+2
-2
paddle/fluid/inference/analysis/passes/CMakeLists.txt
paddle/fluid/inference/analysis/passes/CMakeLists.txt
+1
-0
paddle/fluid/operators/jit/benchmark.cc
paddle/fluid/operators/jit/benchmark.cc
+23
-0
paddle/fluid/operators/jit/gen/CMakeLists.txt
paddle/fluid/operators/jit/gen/CMakeLists.txt
+1
-0
paddle/fluid/operators/jit/gen/seqpool.cc
paddle/fluid/operators/jit/gen/seqpool.cc
+85
-0
paddle/fluid/operators/jit/gen/seqpool.h
paddle/fluid/operators/jit/gen/seqpool.h
+214
-0
paddle/fluid/operators/jit/helper.cc
paddle/fluid/operators/jit/helper.cc
+15
-0
paddle/fluid/operators/jit/helper.h
paddle/fluid/operators/jit/helper.h
+6
-0
paddle/fluid/operators/jit/kernel_base.h
paddle/fluid/operators/jit/kernel_base.h
+23
-0
paddle/fluid/operators/jit/kernel_key.cc
paddle/fluid/operators/jit/kernel_key.cc
+7
-0
paddle/fluid/operators/jit/more/mkl/CMakeLists.txt
paddle/fluid/operators/jit/more/mkl/CMakeLists.txt
+1
-0
paddle/fluid/operators/jit/more/mkl/mkl.cc
paddle/fluid/operators/jit/more/mkl/mkl.cc
+31
-0
paddle/fluid/operators/jit/more/mkl/mkl.h
paddle/fluid/operators/jit/more/mkl/mkl.h
+26
-0
paddle/fluid/operators/jit/refer/CMakeLists.txt
paddle/fluid/operators/jit/refer/CMakeLists.txt
+1
-0
paddle/fluid/operators/jit/refer/refer.cc
paddle/fluid/operators/jit/refer/refer.cc
+2
-0
paddle/fluid/operators/jit/refer/refer.h
paddle/fluid/operators/jit/refer/refer.h
+24
-0
paddle/fluid/operators/jit/test.cc
paddle/fluid/operators/jit/test.cc
+49
-0
paddle/fluid/operators/math/CMakeLists.txt
paddle/fluid/operators/math/CMakeLists.txt
+1
-1
paddle/fluid/operators/math/blas_impl.cu.h
paddle/fluid/operators/math/blas_impl.cu.h
+64
-70
paddle/fluid/operators/math/sequence_pooling.cc
paddle/fluid/operators/math/sequence_pooling.cc
+21
-11
paddle/fluid/operators/ngraph/ops/binary_unnary_op.h
paddle/fluid/operators/ngraph/ops/binary_unnary_op.h
+0
-2
paddle/fluid/operators/ngraph/ops/elementwise_scalar_op.h
paddle/fluid/operators/ngraph/ops/elementwise_scalar_op.h
+0
-2
paddle/fluid/operators/ngraph/ops/fill_constant_op.h
paddle/fluid/operators/ngraph/ops/fill_constant_op.h
+0
-2
paddle/fluid/operators/ngraph/ops/mean_op.h
paddle/fluid/operators/ngraph/ops/mean_op.h
+0
-2
paddle/fluid/operators/ngraph/ops/mul_op.h
paddle/fluid/operators/ngraph/ops/mul_op.h
+0
-2
paddle/fluid/operators/ngraph/ops/scale_op.h
paddle/fluid/operators/ngraph/ops/scale_op.h
+0
-2
paddle/fluid/operators/ngraph/ops/top_k_op.h
paddle/fluid/operators/ngraph/ops/top_k_op.h
+0
-2
paddle/fluid/platform/cuda_helper.h
paddle/fluid/platform/cuda_helper.h
+58
-0
paddle/fluid/platform/device_context.cc
paddle/fluid/platform/device_context.cc
+13
-5
paddle/fluid/platform/device_context.h
paddle/fluid/platform/device_context.h
+24
-52
paddle/fluid/platform/device_context_test.cu
paddle/fluid/platform/device_context_test.cu
+0
-3
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+1
-1
未找到文件。
cmake/FindJeMalloc.cmake
浏览文件 @
d0e3b240
...
...
@@ -19,3 +19,10 @@ find_package_handle_standard_args(jemalloc DEFAULT_MSG JEMALLOC_LIBRARIES JEMALL
mark_as_advanced
(
JEMALLOC_LIBRARIES
JEMALLOC_INCLUDE_DIR
)
if
(
JEMALLOC_FOUND
)
add_library
(
jemalloc::jemalloc UNKNOWN IMPORTED
)
set_target_properties
(
jemalloc::jemalloc PROPERTIES
IMPORTED_LOCATION
${
JEMALLOC_LIBRARIES
}
INTERFACE_INCLUDE_DIRECTORIES
"
${
JEMALLOC_INCLUDE_DIR
}
"
)
endif
()
cmake/cuda.cmake
浏览文件 @
d0e3b240
...
...
@@ -2,9 +2,11 @@ if(NOT WITH_GPU)
return
()
endif
()
set
(
paddle_known_gpu_archs
"30 35 50 52 60 61 70
75
"
)
set
(
paddle_known_gpu_archs
"30 35 50 52 60 61 70"
)
set
(
paddle_known_gpu_archs7
"30 35 50 52"
)
set
(
paddle_known_gpu_archs8
"30 35 50 52 60 61"
)
set
(
paddle_known_gpu_archs9
"30 35 50 52 60 61 70"
)
set
(
paddle_known_gpu_archs10
"30 35 50 52 60 61 70 75"
)
######################################################################################
# A function for automatic detection of GPUs installed (if autodetection is enabled)
...
...
@@ -155,6 +157,16 @@ elseif (${CUDA_VERSION} LESS 9.0) # CUDA 8.x
# warning for now.
list
(
APPEND CUDA_NVCC_FLAGS
"-Wno-deprecated-gpu-targets"
)
add_definitions
(
"-DPADDLE_CUDA_BINVER=
\"
80
\"
"
)
elseif
(
${
CUDA_VERSION
}
LESS 10.0
)
# CUDA 9.x
set
(
paddle_known_gpu_archs
${
paddle_known_gpu_archs9
}
)
list
(
APPEND CUDA_NVCC_FLAGS
"-D_MWAITXINTRIN_H_INCLUDED"
)
list
(
APPEND CUDA_NVCC_FLAGS
"-D__STRICT_ANSI__"
)
add_definitions
(
"-DPADDLE_CUDA_BINVER=
\"
90
\"
"
)
elseif
(
${
CUDA_VERSION
}
LESS 11.0
)
# CUDA 10.x
set
(
paddle_known_gpu_archs
${
paddle_known_gpu_archs10
}
)
list
(
APPEND CUDA_NVCC_FLAGS
"-D_MWAITXINTRIN_H_INCLUDED"
)
list
(
APPEND CUDA_NVCC_FLAGS
"-D__STRICT_ANSI__"
)
add_definitions
(
"-DPADDLE_CUDA_BINVER=
\"
100
\"
"
)
endif
()
include_directories
(
${
CUDA_INCLUDE_DIRS
}
)
...
...
cmake/external/boost.cmake
浏览文件 @
d0e3b240
...
...
@@ -23,11 +23,8 @@ set(BOOST_PROJECT "extern_boost")
# checked that the devtools package of CentOS 6 installs boost 1.41.0.
# So we use 1.41.0 here.
set
(
BOOST_VER
"1.41.0"
)
if
((
NOT DEFINED BOOST_TAR
)
OR
(
NOT DEFINED BOOST_URL
))
message
(
STATUS
"use pre defined download url"
)
set
(
BOOST_TAR
"boost_1_41_0"
CACHE STRING
""
FORCE
)
set
(
BOOST_URL
"http://paddlepaddledeps.cdn.bcebos.com/
${
BOOST_TAR
}
.tar.gz"
CACHE STRING
""
FORCE
)
endif
()
set
(
BOOST_TAR
"boost_1_41_0"
CACHE STRING
""
FORCE
)
set
(
BOOST_URL
"http://paddlepaddledeps.cdn.bcebos.com/
${
BOOST_TAR
}
.tar.gz"
CACHE STRING
""
FORCE
)
MESSAGE
(
STATUS
"BOOST_TAR:
${
BOOST_TAR
}
, BOOST_URL:
${
BOOST_URL
}
"
)
...
...
cmake/external/mkldnn.cmake
浏览文件 @
d0e3b240
...
...
@@ -55,7 +55,7 @@ ExternalProject_Add(
${
MKLDNN_PROJECT
}
${
EXTERNAL_PROJECT_LOG_ARGS
}
DEPENDS
${
MKLDNN_DEPENDS
}
GIT_REPOSITORY
"https://github.com/
01org
/mkl-dnn.git"
GIT_REPOSITORY
"https://github.com/
intel
/mkl-dnn.git"
GIT_TAG
"830a10059a018cd2634d94195140cf2d8790a75a"
PREFIX
${
MKLDNN_SOURCES_DIR
}
UPDATE_COMMAND
""
...
...
cmake/external/mklml.cmake
浏览文件 @
d0e3b240
...
...
@@ -16,6 +16,12 @@ IF(NOT ${WITH_MKLML})
return
()
ENDIF
(
NOT
${
WITH_MKLML
}
)
IF
(
APPLE
)
MESSAGE
(
WARNING
"Mac is not supported with MKLML in Paddle yet. Force WITH_MKLML=OFF."
)
SET
(
WITH_MKLML OFF CACHE STRING
"Disable MKLML package in MacOS"
FORCE
)
return
()
ENDIF
()
INCLUDE
(
ExternalProject
)
SET
(
MKLML_DST_DIR
"mklml"
)
SET
(
MKLML_INSTALL_ROOT
"
${
THIRD_PARTY_PATH
}
/install"
)
...
...
@@ -23,32 +29,24 @@ SET(MKLML_INSTALL_DIR ${MKLML_INSTALL_ROOT}/${MKLML_DST_DIR})
SET
(
MKLML_ROOT
${
MKLML_INSTALL_DIR
}
)
SET
(
MKLML_INC_DIR
${
MKLML_ROOT
}
/include
)
SET
(
MKLML_LIB_DIR
${
MKLML_ROOT
}
/lib
)
if
(
WIN32
)
SET
(
CMAKE_INSTALL_RPATH
"
${
CMAKE_INSTALL_RPATH
}
"
"
${
MKLML_ROOT
}
/lib"
)
SET
(
TIME_VERSION
"2019.0.1.20181227"
)
IF
(
WIN32
)
SET
(
MKLML_VER
"mklml_win_
${
TIME_VERSION
}
"
CACHE STRING
""
FORCE
)
SET
(
MKLML_URL
"https://paddlepaddledeps.cdn.bcebos.com/
${
MKLML_VER
}
.zip"
CACHE STRING
""
FORCE
)
SET
(
MKLML_LIB
${
MKLML_LIB_DIR
}
/mklml.lib
)
SET
(
MKLML_IOMP_LIB
${
MKLML_LIB_DIR
}
/libiomp5md.lib
)
SET
(
MKLML_SHARED_LIB
${
MKLML_LIB_DIR
}
/mklml.dll
)
SET
(
MKLML_SHARED_IOMP_LIB
${
MKLML_LIB_DIR
}
/libiomp5md.dll
)
else
()
ELSE
()
SET
(
MKLML_VER
"mklml_lnx_
${
TIME_VERSION
}
"
CACHE STRING
""
FORCE
)
SET
(
MKLML_URL
"http://paddlepaddledeps.cdn.bcebos.com/
${
MKLML_VER
}
.tgz"
CACHE STRING
""
FORCE
)
SET
(
MKLML_LIB
${
MKLML_LIB_DIR
}
/libmklml_intel.so
)
SET
(
MKLML_IOMP_LIB
${
MKLML_LIB_DIR
}
/libiomp5.so
)
SET
(
MKLML_SHARED_LIB
${
MKLML_LIB_DIR
}
/libmklml_intel.so
)
SET
(
MKLML_SHARED_IOMP_LIB
${
MKLML_LIB_DIR
}
/libiomp5.so
)
endif
()
SET
(
CMAKE_INSTALL_RPATH
"
${
CMAKE_INSTALL_RPATH
}
"
"
${
MKLML_ROOT
}
/lib"
)
IF
((
NOT DEFINED MKLML_VER
)
OR
(
NOT DEFINED MKLML_URL
))
MESSAGE
(
STATUS
"use pre defined download url"
)
if
(
WIN32
)
SET
(
MKLML_VER
"mklml_win_2019.0.1.20180928"
CACHE STRING
""
FORCE
)
SET
(
MKLML_URL
"https://paddlepaddledeps.cdn.bcebos.com/
${
MKLML_VER
}
.zip"
CACHE STRING
""
FORCE
)
elseif
(
APPLE
)
SET
(
MKLML_VER
"mklml_mac_2019.0.1.20180928"
CACHE STRING
""
FORCE
)
SET
(
MKLML_URL
"http://paddlepaddledeps.cdn.bcebos.com/
${
MKLML_VER
}
.tgz"
CACHE STRING
""
FORCE
)
else
()
SET
(
MKLML_VER
"mklml_lnx_2019.0.1.20180928"
CACHE STRING
""
FORCE
)
SET
(
MKLML_URL
"http://paddlepaddledeps.cdn.bcebos.com/
${
MKLML_VER
}
.tgz"
CACHE STRING
""
FORCE
)
ENDIF
()
endif
()
ENDIF
()
SET
(
MKLML_PROJECT
"extern_mklml"
)
MESSAGE
(
STATUS
"MKLML_VER:
${
MKLML_VER
}
, MKLML_URL:
${
MKLML_URL
}
"
)
...
...
cmake/generic.cmake
浏览文件 @
d0e3b240
...
...
@@ -117,7 +117,7 @@ function(common_link TARGET_NAME)
endif
()
if
(
WITH_JEMALLOC
)
target_link_libraries
(
${
TARGET_NAME
}
${
JEMALLOC_LIBRARIES
}
)
target_link_libraries
(
${
TARGET_NAME
}
jemalloc::jemalloc
)
endif
()
endfunction
()
...
...
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
d0e3b240
...
...
@@ -94,4 +94,4 @@ cc_library(build_strategy SRCS build_strategy.cc DEPS
graph_viz_pass multi_devices_graph_pass
multi_devices_graph_print_pass multi_devices_graph_check_pass
fuse_elewise_add_act_pass multi_batch_merge_pass
memory_optimize_pass
)
memory_optimize_pass
lock_free_optimize_pass
)
paddle/fluid/framework/details/build_strategy.cc
浏览文件 @
d0e3b240
...
...
@@ -232,3 +232,4 @@ USE_PASS(analysis_var_pass);
USE_PASS
(
sequential_execution_pass
);
USE_PASS
(
all_reduce_deps_pass
);
USE_PASS
(
modify_op_lock_and_record_event_pass
);
USE_PASS
(
lock_free_optimize_pass
);
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
d0e3b240
...
...
@@ -31,6 +31,7 @@ cc_library(fuse_pass_base SRCS fuse_pass_base.cc DEPS pass)
pass_library
(
graph_to_program_pass base
)
pass_library
(
graph_viz_pass base
)
pass_library
(
lock_free_optimize_pass base
)
pass_library
(
fc_fuse_pass inference
)
pass_library
(
attention_lstm_fuse_pass inference
)
pass_library
(
infer_clean_graph_pass inference
)
...
...
paddle/fluid/framework/ir/lock_free_optimize_pass.cc
0 → 100644
浏览文件 @
d0e3b240
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/lock_free_optimize_pass.h"
#include <string>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
const
char
kSumGradOpName
[]
=
"sum"
;
// TODO(minqiyang): only support sgd at current time, please add
// other optimizers later.
const
char
kOptimizerType
[]
=
"sgd"
;
std
::
unique_ptr
<
ir
::
Graph
>
LockFreeOptimizePass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
PADDLE_ENFORCE
(
graph
.
get
());
// We could collect all weights' name from SGD, where
// W1 <- SGD(W0, Grad0)
std
::
unordered_set
<
std
::
string
>
weight_var_set
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
IsOpNamed
(
node
,
kOptimizerType
))
{
auto
&
param_out_vars
=
node
->
Op
()
->
Output
(
"ParamOut"
);
PADDLE_ENFORCE
(
param_out_vars
.
size
()
==
1u
);
weight_var_set
.
insert
(
param_out_vars
[
0
]);
}
}
// find all grad's merge op via weight name, where
// Grad0 <- SUM(Grad1, Grad2, Grad3 ...)
std
::
unordered_set
<
ir
::
Node
*>
grad_sum_op_set
;
for
(
ir
::
Node
*
node
:
graph
->
Nodes
())
{
if
(
IsOpNamed
(
node
,
kSumGradOpName
))
{
for
(
ir
::
Node
*
output
:
node
->
outputs
)
{
// strip the last grad suffix @GRAD
std
::
string
var_name
=
output
->
Name
();
const
std
::
string
suffix
(
kGradVarSuffix
);
if
(
var_name
!=
suffix
&&
var_name
.
size
()
>
suffix
.
size
()
&&
var_name
.
substr
(
var_name
.
size
()
-
suffix
.
size
())
==
suffix
)
{
// if so then strip them off
var_name
=
var_name
.
substr
(
0
,
var_name
.
size
()
-
suffix
.
size
());
if
(
weight_var_set
.
find
(
var_name
)
!=
weight_var_set
.
end
())
{
grad_sum_op_set
.
insert
(
node
);
break
;
}
}
}
}
}
// get the forward op and backward op pairs, where
// out <- forward(X, W)
// Grad1 <- backward(out, X')
// Grad0 <- SUM(Grad1, Grad2, Grad3 ...)
// W0 <- SGD(W1, Grad0)
for
(
ir
::
Node
*
node
:
grad_sum_op_set
)
{
for
(
ir
::
Node
*
merged_grad_var
:
node
->
outputs
)
{
// find the optimizers connected with sum op
if
(
IsVarNameEndsWith
(
merged_grad_var
,
kGradVarSuffix
)
&&
merged_grad_var
->
outputs
.
size
()
==
1u
)
{
ir
::
Node
*
opt_node
=
merged_grad_var
->
outputs
[
0
];
VLOG
(
3
)
<<
"Found opt node "
<<
opt_node
->
Name
();
// find the backward op connected with sum op
for
(
ir
::
Node
*
unmerged_grad_var
:
node
->
inputs
)
{
if
(
IsVarNameContains
(
unmerged_grad_var
,
kGradVarSuffix
)
&&
unmerged_grad_var
->
inputs
.
size
()
==
1u
)
{
ir
::
Node
*
backward_op
=
unmerged_grad_var
->
inputs
[
0
];
VLOG
(
3
)
<<
"Found backward_op "
<<
backward_op
->
Name
();
// find the forward op related to the backward op
ir
::
Node
*
forward_op
=
FindForwardOpViaBackwardOp
(
graph
.
get
(),
backward_op
);
VLOG
(
3
)
<<
"Found forward_op "
<<
forward_op
->
Name
();
PADDLE_ENFORCE
(
forward_op
);
Node
*
new_optimizer_node
=
CreateNewSGDNode
(
graph
.
get
(),
forward_op
,
backward_op
,
node
,
opt_node
);
PADDLE_ENFORCE
(
new_optimizer_node
);
}
}
}
}
}
// Remove the sum_op and its' outputs and connected Optimizers
for
(
Node
*
sum_op
:
grad_sum_op_set
)
{
for
(
Node
*
sum_op_output
:
sum_op
->
outputs
)
{
for
(
Node
*
optimize_op
:
sum_op_output
->
outputs
)
{
if
(
optimize_op
->
NodeType
()
==
Node
::
Type
::
kOperation
&&
optimize_op
->
Name
()
==
kOptimizerType
)
{
VLOG
(
3
)
<<
"remove optimize_op: "
<<
optimize_op
->
Name
()
<<
"_"
<<
optimize_op
->
id
();
graph
->
RemoveNode
(
optimize_op
);
}
}
VLOG
(
3
)
<<
"remove sum_op_output: "
<<
sum_op_output
->
Name
()
<<
"_"
<<
sum_op_output
->
id
();
graph
->
RemoveNode
(
sum_op_output
);
}
VLOG
(
3
)
<<
"remove sum_op: "
<<
sum_op
->
Name
()
<<
"_"
<<
sum_op
->
id
();
graph
->
RemoveNode
(
sum_op
);
}
for
(
auto
*
node
:
graph
->
Nodes
())
{
for
(
Node
*
output_node
:
node
->
outputs
)
{
if
(
output_node
->
Name
()
==
"sgd"
)
{
VLOG
(
3
)
<<
"Node link to SGD: "
<<
node
->
Name
()
<<
"_"
<<
node
->
id
()
<<
" --> "
<<
output_node
->
Name
()
<<
"_"
<<
output_node
->
id
();
for
(
Node
*
input_node
:
node
->
inputs
)
{
VLOG
(
3
)
<<
"SGD Input link: "
<<
input_node
->
Name
()
<<
"_"
<<
input_node
->
id
()
<<
" --> "
<<
node
->
Name
()
<<
"_"
<<
node
->
id
();
}
}
}
}
return
graph
;
}
ir
::
Node
*
LockFreeOptimizePass
::
CreateNewSGDNode
(
ir
::
Graph
*
graph
,
ir
::
Node
*
forward_node
,
ir
::
Node
*
backward_node
,
ir
::
Node
*
grad_sum_node
,
ir
::
Node
*
optimize_node
)
const
{
PADDLE_ENFORCE
(
graph
);
PADDLE_ENFORCE
(
forward_node
);
PADDLE_ENFORCE
(
backward_node
);
PADDLE_ENFORCE
(
grad_sum_node
);
PADDLE_ENFORCE
(
optimize_node
);
// find the grad var node between the grad sum node and backward_node
std
::
vector
<
ir
::
Node
*>
grad_vars
=
FindConnectedNode
(
backward_node
,
grad_sum_node
);
ir
::
Node
*
grad_node
=
nullptr
;
for
(
ir
::
Node
*
node
:
grad_vars
)
{
if
(
!
ir
::
IsControlDepVar
(
*
node
))
{
grad_node
=
node
;
}
}
PADDLE_ENFORCE
(
grad_node
);
// create a new SGD node
OpDesc
*
old_desc
=
optimize_node
->
Op
();
// keep with the same block between new optimizer and the old one
OpDesc
new_desc
(
*
old_desc
,
old_desc
->
Block
());
new_desc
.
SetInput
(
"Param"
,
old_desc
->
Input
(
"Param"
));
new_desc
.
SetInput
(
"LearningRate"
,
old_desc
->
Input
(
"LearningRate"
));
new_desc
.
SetInput
(
"Grad"
,
std
::
vector
<
std
::
string
>
({
grad_node
->
Name
()}));
new_desc
.
SetOutput
(
"ParamOut"
,
old_desc
->
Output
(
"ParamOut"
));
std
::
vector
<
std
::
string
>
op_role_vars
=
boost
::
get
<
std
::
vector
<
std
::
string
>>
(
new_desc
.
GetAttr
(
framework
::
OpProtoAndCheckerMaker
::
OpRoleVarAttrName
()));
// replace the second op role var, because the grad name was
// changed in new optimizer
op_role_vars
.
pop_back
();
op_role_vars
.
push_back
(
grad_node
->
Name
());
new_desc
.
SetAttr
(
framework
::
OpProtoAndCheckerMaker
::
OpRoleVarAttrName
(),
op_role_vars
);
new_desc
.
SetType
(
kOptimizerType
);
// set backward op's op role var, this will be used to
// set device_id in multi_device_pass
backward_node
->
Op
()
->
SetAttr
(
framework
::
OpProtoAndCheckerMaker
::
OpRoleVarAttrName
(),
op_role_vars
);
// backward_node->Op()->SetAttr(
// framework::OpProtoAndCheckerMaker::OpRoleVarAttrName(), {});
// keep with the same output nodes between new optimizer and the
// old one
Node
*
sgd_node
=
graph
->
CreateOpNode
(
&
new_desc
);
// change all outputs of the optimize_node to the new one
ReplaceAllDownstreamNode
(
optimize_node
,
sgd_node
);
// find connected node between forward node and optimize node
// and replace the optimize node to new sgd node
std
::
vector
<
ir
::
Node
*>
forward_opt_connected_nodes
=
FindConnectedNode
(
forward_node
,
optimize_node
);
for
(
ir
::
Node
*
node
:
forward_opt_connected_nodes
)
{
ReplaceUpstreamNode
(
node
,
optimize_node
,
sgd_node
);
}
// find connected node between backward node and optimize node
// and replace the optimize node to new sgd node
std
::
vector
<
ir
::
Node
*>
backward_opt_connected_nodes
=
FindConnectedNode
(
backward_node
,
optimize_node
);
for
(
ir
::
Node
*
node
:
backward_opt_connected_nodes
)
{
ReplaceUpstreamNode
(
node
,
optimize_node
,
sgd_node
);
}
// SGD must have only one param and LR in
PADDLE_ENFORCE
(
old_desc
->
Input
(
"LearningRate"
).
size
()
==
1u
);
PADDLE_ENFORCE
(
old_desc
->
Input
(
"Param"
).
size
()
==
1u
);
// LR and weight nodes should be copied
for
(
Node
*
upstream_node
:
optimize_node
->
inputs
)
{
if
(
upstream_node
->
Name
()
==
old_desc
->
Input
(
"LearningRate"
)[
0
]
||
upstream_node
->
Name
()
==
old_desc
->
Input
(
"Param"
)[
0
])
{
ReplaceUpstreamNode
(
upstream_node
,
optimize_node
,
sgd_node
);
}
}
VLOG
(
3
)
<<
"Create new opt node"
<<
sgd_node
->
Name
()
<<
"_"
<<
sgd_node
->
id
();
return
sgd_node
;
}
std
::
vector
<
ir
::
Node
*>
LockFreeOptimizePass
::
FindConnectedNode
(
ir
::
Node
*
upstream_node
,
ir
::
Node
*
downstream_node
)
const
{
std
::
vector
<
ir
::
Node
*>
result
;
for
(
ir
::
Node
*
out_node
:
upstream_node
->
outputs
)
{
for
(
ir
::
Node
*
in_node
:
downstream_node
->
inputs
)
{
if
(
in_node
==
out_node
)
{
result
.
push_back
(
in_node
);
}
}
}
return
result
;
}
void
LockFreeOptimizePass
::
ReplaceUpstreamNode
(
ir
::
Node
*
upstream_node
,
ir
::
Node
*
old_optimizer_node
,
ir
::
Node
*
new_optimizer_node
)
const
{
PADDLE_ENFORCE
(
upstream_node
);
PADDLE_ENFORCE
(
old_optimizer_node
);
PADDLE_ENFORCE
(
new_optimizer_node
);
// Remove the old_optimizer_node from upstream_node's outputs vector
auto
&
output_node_vec
=
upstream_node
->
outputs
;
for
(
auto
output_node_iter
=
output_node_vec
.
begin
();
output_node_iter
!=
output_node_vec
.
end
();)
{
if
(
*
output_node_iter
==
old_optimizer_node
)
{
output_node_vec
.
erase
(
output_node_iter
);
break
;
}
else
{
++
output_node_iter
;
}
}
// Add the new_optimizer_node to upstream_node's outputs vector
output_node_vec
.
emplace_back
(
new_optimizer_node
);
new_optimizer_node
->
inputs
.
emplace_back
(
upstream_node
);
}
void
LockFreeOptimizePass
::
ReplaceAllDownstreamNode
(
ir
::
Node
*
old_optimizer_node
,
ir
::
Node
*
new_optimizer_node
)
const
{
PADDLE_ENFORCE
(
old_optimizer_node
);
PADDLE_ENFORCE
(
new_optimizer_node
);
for
(
ir
::
Node
*
downstream_node
:
old_optimizer_node
->
outputs
)
{
// Remove the old_optimizer_node from downstream_node's inputs vector
auto
&
input_node_vec
=
downstream_node
->
inputs
;
for
(
auto
input_node_iter
=
input_node_vec
.
begin
();
input_node_iter
!=
input_node_vec
.
end
();)
{
if
(
*
input_node_iter
==
old_optimizer_node
)
{
input_node_vec
.
erase
(
input_node_iter
);
break
;
}
else
{
++
input_node_iter
;
}
}
// Add the new_optimizer_node to downstream_node's inputs vector
input_node_vec
.
emplace_back
(
new_optimizer_node
);
new_optimizer_node
->
outputs
.
emplace_back
(
downstream_node
);
}
}
ir
::
Node
*
LockFreeOptimizePass
::
FindForwardOpViaBackwardOp
(
ir
::
Graph
*
graph
,
ir
::
Node
*
backward_node
)
const
{
PADDLE_ENFORCE
(
graph
);
PADDLE_ENFORCE
(
backward_node
);
// strip the suffix _grad of backward_node's name
std
::
string
forward_op_name
=
backward_node
->
Name
();
const
std
::
string
suffix
(
"_grad"
);
if
(
forward_op_name
!=
suffix
&&
forward_op_name
.
size
()
>
suffix
.
size
()
&&
forward_op_name
.
substr
(
forward_op_name
.
size
()
-
suffix
.
size
())
==
suffix
)
{
// if so then strip them off
forward_op_name
=
forward_op_name
.
substr
(
0
,
forward_op_name
.
size
()
-
suffix
.
size
());
}
else
{
LOG
(
WARNING
)
<<
"Illegal backward node's name "
<<
backward_node
->
Name
()
<<
" id "
<<
backward_node
->
id
();
return
nullptr
;
}
for
(
ir
::
Node
*
node
:
graph
->
Nodes
())
{
if
(
node
->
Name
()
==
forward_op_name
)
{
if
(
node
->
outputs
.
size
()
==
0u
)
{
// if forward_node has no output, then it has NO grad op
continue
;
}
// check whether all inputs of the backward_op that ends_with @GRAD
// comes from the output of forward_op is the input of the backward_op
bool
is_related_forward_node
=
true
;
for
(
ir
::
Node
*
backward_input
:
backward_node
->
inputs
)
{
if
(
IsVarNameEndsWith
(
backward_input
,
kGradVarSuffix
))
{
bool
meets_correct_output
=
false
;
for
(
ir
::
Node
*
forward_output
:
node
->
outputs
)
{
if
(
forward_output
->
Name
()
+
kGradVarSuffix
==
backward_input
->
Name
())
{
meets_correct_output
=
true
;
break
;
}
}
if
(
!
meets_correct_output
)
{
is_related_forward_node
=
false
;
break
;
}
}
}
if
(
is_related_forward_node
)
{
return
node
;
}
}
}
return
nullptr
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
lock_free_optimize_pass
,
paddle
::
framework
::
ir
::
LockFreeOptimizePass
);
paddle/fluid/framework/ir/lock_free_optimize_pass.h
0 → 100644
浏览文件 @
d0e3b240
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef PADDLE_FLUID_FRAMEWORK_IR_LOCK_FREE_OPTIMIZE_PASS_H_
#define PADDLE_FLUID_FRAMEWORK_IR_LOCK_FREE_OPTIMIZE_PASS_H_
#include <string>
#include <vector>
#include <boost/algorithm/string/predicate.hpp>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
Node
;
/*
* Remove the sum op of all gradients of the backward op.
* And remove the dependecies of the optimizer related to the
* same backward op.
*
* Before this pass:
*
* forward_op1 forward_op2
* | |
* grad_op1 grad_op2
* \ /
* \ /
* sum_op
* |
* sgd_op
*
* After this pass:
* forward_op1 forward_op2
* | |
* grad_op1 grad_op2
* | |
* sgd_op1 sgd_op2
*
* sgd_op1 and sgd_op2 will update the same weight which holds the same
* memory, so we could benefits from the acceleration
*/
class
LockFreeOptimizePass
:
public
Pass
{
public:
virtual
~
LockFreeOptimizePass
()
{}
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
;
private:
// Create a new sgd node via current optimizer node
ir
::
Node
*
CreateNewSGDNode
(
ir
::
Graph
*
graph
,
ir
::
Node
*
forward_node
,
ir
::
Node
*
backward_node
,
ir
::
Node
*
grad_sum_node
,
ir
::
Node
*
optimize_node
)
const
;
// Replace the input weight's optimizers
void
ReplaceUpstreamNode
(
ir
::
Node
*
upstream_node
,
ir
::
Node
*
old_optimizer_node
,
ir
::
Node
*
new_optimizer_node
)
const
;
// Replace the output weight's optimizers
void
ReplaceAllDownstreamNode
(
ir
::
Node
*
old_optimizer_node
,
ir
::
Node
*
new_optimizer_node
)
const
;
// Find all weight variables in graph
bool
FindAllWeightVars
(
ir
::
Graph
*
graph
)
const
;
// Find the forward_op node via the backward_op node
ir
::
Node
*
FindForwardOpViaBackwardOp
(
ir
::
Graph
*
graph
,
ir
::
Node
*
backward_node
)
const
;
std
::
vector
<
ir
::
Node
*>
FindConnectedNode
(
ir
::
Node
*
upstream_node
,
ir
::
Node
*
downstream_node
)
const
;
inline
bool
IsOpNamed
(
ir
::
Node
*
node
,
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE
(
node
);
return
node
->
NodeType
()
==
Node
::
Type
::
kOperation
&&
node
->
Name
()
==
name
;
}
inline
bool
IsVarNamed
(
ir
::
Node
*
node
,
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE
(
node
);
return
node
->
NodeType
()
==
Node
::
Type
::
kVariable
&&
node
->
Name
()
==
name
;
}
inline
bool
IsVarNameEndsWith
(
ir
::
Node
*
node
,
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE
(
node
);
return
node
->
NodeType
()
==
Node
::
Type
::
kVariable
&&
boost
::
algorithm
::
ends_with
(
node
->
Name
(),
name
);
}
inline
bool
IsVarNameContains
(
ir
::
Node
*
node
,
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE
(
node
);
return
node
->
NodeType
()
==
Node
::
Type
::
kVariable
&&
node
->
Name
().
find
(
name
)
!=
std
::
string
::
npos
;
}
inline
bool
IsControlDepFrom
(
ir
::
Node
*
ctrl_dep_node
,
ir
::
Node
*
node
)
const
{
PADDLE_ENFORCE
(
ctrl_dep_node
);
PADDLE_ENFORCE
(
node
);
return
IsControlDepVar
(
*
ctrl_dep_node
)
&&
ctrl_dep_node
->
inputs
.
size
()
>=
1u
&&
ctrl_dep_node
->
inputs
[
0
]
==
node
;
}
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
#endif // PADDLE_FLUID_FRAMEWORK_IR_LOCK_FREE_OPTIMIZE_PASS_H_
paddle/fluid/framework/scope.cc
浏览文件 @
d0e3b240
...
...
@@ -87,11 +87,12 @@ Variable* Scope::Var(const std::string& name) {
}
Variable
*
Scope
::
Var
(
std
::
string
*
name
)
{
auto
new_name
=
string
::
Sprintf
(
"%p.%d"
,
this
,
vars_
.
size
());
SCOPE_VARS_WRITER_LOCK
auto
new_name
=
std
::
to_string
(
reinterpret_cast
<
uintptr_t
>
(
this
))
+
"."
+
std
::
to_string
(
vars_
.
size
());
if
(
name
!=
nullptr
)
{
*
name
=
new_name
;
}
SCOPE_VARS_WRITER_LOCK
return
VarInternal
(
new_name
);
}
...
...
paddle/fluid/framework/var_type_traits.cc
浏览文件 @
d0e3b240
...
...
@@ -105,13 +105,15 @@ struct VarIdToTypeIndexMapHolder {
}
// namespace detail
const
std
::
type_index
&
ToTypeIndex
(
int
var_id
)
{
const
std
::
type_index
&
VarTraitId
ToTypeIndex
(
int
var_id
)
{
return
detail
::
VarIdToTypeIndexMapHolder
::
ToTypeIndex
(
var_id
);
}
const
char
*
ToTypeName
(
int
var_id
)
{
return
ToTypeIndex
(
var_id
).
name
();
}
const
char
*
ToTypeName
(
int
var_id
)
{
return
VarTraitIdToTypeIndex
(
var_id
).
name
();
}
int
T
oType
Id
(
const
std
::
type_index
&
type
)
{
int
T
ypeIndexToVarTrait
Id
(
const
std
::
type_index
&
type
)
{
return
detail
::
VarIdToTypeIndexMapHolder
::
ToTypeId
(
type
);
}
...
...
paddle/fluid/framework/var_type_traits.h
浏览文件 @
d0e3b240
...
...
@@ -66,8 +66,8 @@ namespace paddle {
namespace
framework
{
const
char
*
ToTypeName
(
int
var_id
);
const
std
::
type_index
&
ToTypeIndex
(
int
var_id
);
int
T
oType
Id
(
const
std
::
type_index
&
type
);
const
std
::
type_index
&
VarTraitId
ToTypeIndex
(
int
var_id
);
int
T
ypeIndexToVarTrait
Id
(
const
std
::
type_index
&
type
);
namespace
detail
{
...
...
paddle/fluid/framework/var_type_traits_test.cc
浏览文件 @
d0e3b240
...
...
@@ -45,10 +45,11 @@ struct TypeIndexChecker {
constexpr
auto
kId
=
VarTypeTrait
<
Type
>::
kId
;
std
::
type_index
actual_type
(
typeid
(
Type
));
EXPECT_EQ
(
std
::
string
(
ToTypeName
(
kId
)),
std
::
string
(
actual_type
.
name
()));
EXPECT_EQ
(
ToTypeIndex
(
kId
),
actual_type
);
EXPECT_EQ
(
ToTypeId
(
actual_type
),
kId
);
EXPECT_EQ
(
ToTypeIndex
(
ToTypeId
(
actual_type
)),
actual_type
);
EXPECT_EQ
(
ToTypeId
(
ToTypeIndex
(
kId
)),
kId
);
EXPECT_EQ
(
VarTraitIdToTypeIndex
(
kId
),
actual_type
);
EXPECT_EQ
(
TypeIndexToVarTraitId
(
actual_type
),
kId
);
EXPECT_EQ
(
VarTraitIdToTypeIndex
(
TypeIndexToVarTraitId
(
actual_type
)),
actual_type
);
EXPECT_EQ
(
TypeIndexToVarTraitId
(
VarTraitIdToTypeIndex
(
kId
)),
kId
);
EXPECT_TRUE
(
var_id_set
->
count
(
kId
)
==
0
);
// NOLINT
EXPECT_TRUE
(
type_index_set
->
count
(
actual_type
)
==
0
);
// NOLINT
...
...
paddle/fluid/inference/analysis/analyzer_tester.cc
浏览文件 @
d0e3b240
...
...
@@ -80,8 +80,8 @@ void TestWord2vecPrediction(const std::string& model_path) {
i
++
)
{
LOG
(
INFO
)
<<
"data: "
<<
static_cast
<
float
*>
(
outputs
.
front
().
data
.
data
())[
i
]
<<
" result: "
<<
result
[
i
];
PADDLE_ENFORCE
(
static_cast
<
float
*>
(
outputs
.
front
().
data
.
data
())
[
i
],
result
[
i
]
);
EXPECT_NEAR
(
static_cast
<
float
*>
(
outputs
.
front
().
data
.
data
())[
i
],
result
[
i
],
1e-3
);
}
}
...
...
paddle/fluid/inference/analysis/passes/CMakeLists.txt
浏览文件 @
d0e3b240
...
...
@@ -7,4 +7,5 @@ set(analysis_deps ${analysis_deps}
ir_graph_build_pass
ir_analysis_pass
analysis_passes
subgraph_detector
CACHE INTERNAL
""
)
paddle/fluid/operators/jit/benchmark.cc
浏览文件 @
d0e3b240
...
...
@@ -190,6 +190,26 @@ void BenchGRUKernel() {
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
BenchSeqPoolKernel
()
{
std
::
vector
<
jit
::
SeqPoolType
>
pool_types
=
{
jit
::
SeqPoolType
::
kSum
,
jit
::
SeqPoolType
::
kAvg
,
jit
::
SeqPoolType
::
kSqrt
};
for
(
auto
type
:
pool_types
)
{
for
(
int
w
:
TestSizes
())
{
jit
::
seq_pool_attr_t
attr
(
w
,
type
);
for
(
int
h
:
TestSizes
())
{
attr
.
h
=
h
;
std
::
vector
<
T
>
x
(
h
*
w
),
y
(
w
);
RandomVec
<
T
>
(
h
*
w
,
x
.
data
(),
-
2.
f
,
2.
f
);
const
T
*
x_data
=
x
.
data
();
T
*
y_data
=
y
.
data
();
BenchAllImpls
<
KT
,
jit
::
SeqPoolTuples
<
T
>
,
PlaceType
>
(
attr
,
x_data
,
y_data
,
&
attr
);
}
}
}
}
// Benchmark all jit kernels including jitcode, mkl and refer.
// To use this tool, run command: ./benchmark [options...]
// Options:
...
...
@@ -228,4 +248,7 @@ int main(int argc, char* argv[]) {
BenchGRUKernel
<
jit
::
kGRUH1
,
T
,
PlaceType
>
();
BenchGRUKernel
<
jit
::
kGRUHtPart1
,
T
,
PlaceType
>
();
BenchGRUKernel
<
jit
::
kGRUHtPart2
,
T
,
PlaceType
>
();
// seq pool function
BenchSeqPoolKernel
<
jit
::
kSeqPool
,
T
,
PlaceType
>
();
}
paddle/fluid/operators/jit/gen/CMakeLists.txt
浏览文件 @
d0e3b240
...
...
@@ -26,3 +26,4 @@ USE_JITKERNEL_GEN(kGRUH1)
USE_JITKERNEL_GEN
(
kGRUHtPart1
)
USE_JITKERNEL_GEN
(
kGRUHtPart2
)
USE_JITKERNEL_GEN
(
kNCHW16CMulNC
)
USE_JITKERNEL_GEN
(
kSeqPool
)
paddle/fluid/operators/jit/gen/seqpool.cc
0 → 100644
浏览文件 @
d0e3b240
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/jit/gen/seqpool.h"
#include "paddle/fluid/operators/jit/gen/act.h" // for exp_float_consts ones
#include "paddle/fluid/operators/jit/registry.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace
paddle
{
namespace
operators
{
namespace
jit
{
namespace
gen
{
void
SeqPoolJitCode
::
genCode
()
{
constexpr
int
block
=
YMM_FLOAT_BLOCK
;
constexpr
int
max_num_regs
=
8
;
const
int
num_block
=
w_
/
block
;
const
int
num_groups
=
num_block
/
max_num_regs
;
int
rest_num_regs
=
num_block
%
max_num_regs
;
mov
(
reg32_int_h
,
dword
[
param_attr
]);
if
(
type_
==
SeqPoolType
::
kAvg
||
type_
==
SeqPoolType
::
kSqrt
)
{
mov
(
reg_tmp
,
reinterpret_cast
<
size_t
>
(
exp_float_consts
));
vmovups
(
xmm_t
(
1
),
ptr
[
reg_tmp
+
OFFSET_EXP_ONE
]);
mov
(
reg_tmp
,
reinterpret_cast
<
size_t
>
(
fp_h_
));
fild
(
dword
[
param_attr
]);
fstp
(
dword
[
reg_tmp
]);
vmovss
(
xmm_t
(
0
),
ptr
[
reg_tmp
]);
if
(
type_
==
SeqPoolType
::
kSqrt
)
{
vsqrtps
(
xmm_t
(
0
),
xmm_t
(
0
));
}
vdivps
(
xmm_t
(
1
),
xmm_t
(
1
),
xmm_t
(
0
));
vmovss
(
ptr
[
reg_tmp
],
xmm_t
(
1
));
}
const
int
group_len
=
max_num_regs
*
block
*
sizeof
(
float
);
for
(
int
g
=
0
;
g
<
num_groups
;
++
g
)
{
pool_height
<
ymm_t
>
(
g
*
group_len
,
block
,
max_num_regs
);
}
if
(
rest_num_regs
>
0
)
{
pool_height
<
ymm_t
>
(
num_groups
*
group_len
,
block
,
rest_num_regs
);
}
// part of rest_w * height
const
int
rest
=
w_
%
block
;
pool_height_of_rest_width
(
rest
,
(
w_
-
rest
)
*
sizeof
(
float
),
max_num_regs
);
ret
();
}
class
SeqPoolCreator
:
public
JitCodeCreator
<
seq_pool_attr_t
>
{
public:
bool
UseMe
(
const
seq_pool_attr_t
&
attr
)
const
override
{
return
platform
::
MayIUse
(
platform
::
avx
);
}
size_t
CodeSize
(
const
seq_pool_attr_t
&
attr
)
const
override
{
return
96
+
((
attr
.
w
/
YMM_FLOAT_BLOCK
+
4
/* for rest */
)
*
4
/* load, mul and save */
+
256
)
*
8
;
}
std
::
unique_ptr
<
GenBase
>
CreateJitCode
(
const
seq_pool_attr_t
&
attr
)
const
override
{
PADDLE_ENFORCE_GT
(
attr
.
w
,
0
);
PADDLE_ENFORCE_GT
(
attr
.
h
,
0
);
return
make_unique
<
SeqPoolJitCode
>
(
attr
,
CodeSize
(
attr
));
}
};
}
// namespace gen
}
// namespace jit
}
// namespace operators
}
// namespace paddle
namespace
gen
=
paddle
::
operators
::
jit
::
gen
;
REGISTER_JITKERNEL_GEN
(
kSeqPool
,
gen
::
SeqPoolCreator
);
paddle/fluid/operators/jit/gen/seqpool.h
0 → 100644
浏览文件 @
d0e3b240
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <string>
#include "glog/logging.h"
#include "paddle/fluid/operators/jit/gen/jitcode.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
operators
{
namespace
jit
{
namespace
gen
{
class
SeqPoolJitCode
:
public
JitCode
{
public:
explicit
SeqPoolJitCode
(
const
seq_pool_attr_t
&
attr
,
size_t
code_size
=
256
*
1024
,
void
*
code_ptr
=
nullptr
)
:
JitCode
(
code_size
,
code_ptr
),
w_
(
attr
.
w
),
type_
(
attr
.
type
)
{
if
(
!
(
type_
==
SeqPoolType
::
kSum
||
type_
==
SeqPoolType
::
kAvg
||
type_
==
SeqPoolType
::
kSqrt
))
{
LOG
(
FATAL
)
<<
"Only support sum pool yet "
;
}
fp_h_
[
0
]
=
1.
f
;
this
->
genCode
();
}
virtual
const
char
*
name
()
const
{
std
::
string
base
=
"SeqPoolJitCode"
;
if
(
type_
==
SeqPoolType
::
kSum
)
{
base
+=
"_Sum"
;
}
else
if
(
type_
==
SeqPoolType
::
kAvg
)
{
base
+=
"_Avg"
;
}
else
if
(
type_
==
SeqPoolType
::
kSqrt
)
{
base
+=
"_Sqrt"
;
}
base
+=
(
"_W"
+
std
::
to_string
(
w_
));
return
base
.
c_str
();
}
void
genCode
()
override
;
protected:
template
<
typename
JMM
>
void
pool_height
(
int
w_offset
,
int
block
,
int
max_num_regs
)
{
int
offset
=
w_offset
;
for
(
int
i
=
0
;
i
<
max_num_regs
;
++
i
)
{
vmovups
(
JMM
(
i
),
ptr
[
param_src
+
offset
]);
offset
+=
sizeof
(
float
)
*
block
;
}
cmp
(
reg32_int_h
,
1
);
Label
l_next_h
,
l_h_done
;
jle
(
l_h_done
,
T_NEAR
);
mov
(
reg_h_i
,
1
);
mov
(
reg_tmp
,
param_src
);
add
(
reg_tmp
,
w_
*
sizeof
(
float
)
+
w_offset
);
L
(
l_next_h
);
{
mov
(
reg_ptr_src_i
,
reg_tmp
);
for
(
int
i
=
0
;
i
<
max_num_regs
;
++
i
)
{
vmovups
(
JMM
(
i
+
max_num_regs
),
ptr
[
reg_ptr_src_i
]);
// sum anyway
vaddps
(
JMM
(
i
),
JMM
(
i
),
JMM
(
i
+
max_num_regs
));
add
(
reg_ptr_src_i
,
sizeof
(
float
)
*
block
);
}
inc
(
reg_h_i
);
add
(
reg_tmp
,
w_
*
sizeof
(
float
));
cmp
(
reg_h_i
,
reg32_int_h
);
jl
(
l_next_h
,
T_NEAR
);
}
L
(
l_h_done
);
// save right now
if
(
type_
==
SeqPoolType
::
kAvg
||
type_
==
SeqPoolType
::
kSqrt
)
{
mov
(
reg_tmp
,
reinterpret_cast
<
size_t
>
(
fp_h_
));
vbroadcastss
(
JMM
(
max_num_regs
),
ptr
[
reg_tmp
]);
}
offset
=
w_offset
;
for
(
int
i
=
0
;
i
<
max_num_regs
;
++
i
)
{
if
(
type_
==
SeqPoolType
::
kAvg
||
type_
==
SeqPoolType
::
kSqrt
)
{
vmulps
(
JMM
(
i
),
JMM
(
i
),
JMM
(
max_num_regs
));
}
vmovups
(
ptr
[
param_dst
+
offset
],
JMM
(
i
));
offset
+=
sizeof
(
float
)
*
block
;
}
}
void
pool_height_of_rest_width
(
int
rest
,
int
w_offset
,
int
max_num_regs
)
{
const
int
rest_used_num_regs
=
load_rest
(
rest
,
w_offset
,
0
);
const
bool
has_block4
=
rest
/
4
>
0
;
const
bool
has_block2
=
(
rest
%
4
)
/
2
>
0
;
const
bool
has_block1
=
(
rest
%
2
)
==
1
;
cmp
(
reg32_int_h
,
1
);
Label
l_next_h
,
l_h_done
;
jle
(
l_h_done
,
T_NEAR
);
mov
(
reg_h_i
,
1
);
mov
(
reg_tmp
,
param_src
);
add
(
reg_tmp
,
w_
*
sizeof
(
float
)
+
w_offset
);
L
(
l_next_h
);
{
int
reg_idx
=
0
;
mov
(
reg_ptr_src_i
,
reg_tmp
);
if
(
has_block4
)
{
vmovups
(
xmm_t
(
reg_idx
+
max_num_regs
),
ptr
[
reg_ptr_src_i
]);
add
(
reg_ptr_src_i
,
sizeof
(
float
)
*
4
);
reg_idx
++
;
}
if
(
has_block2
)
{
vmovups
(
xmm_t
(
reg_idx
+
max_num_regs
),
ptr
[
reg_ptr_src_i
]);
add
(
reg_ptr_src_i
,
sizeof
(
float
)
*
2
);
reg_idx
++
;
}
if
(
has_block1
)
{
vmovss
(
xmm_t
(
reg_idx
+
max_num_regs
),
ptr
[
reg_ptr_src_i
]);
reg_idx
++
;
}
PADDLE_ENFORCE_EQ
(
reg_idx
,
rest_used_num_regs
,
"All heights should use same regs"
);
for
(
int
i
=
0
;
i
<
reg_idx
;
++
i
)
{
vaddps
(
xmm_t
(
i
),
xmm_t
(
i
),
xmm_t
(
i
+
max_num_regs
));
}
inc
(
reg_h_i
);
add
(
reg_tmp
,
w_
*
sizeof
(
float
));
cmp
(
reg_h_i
,
reg32_int_h
);
jl
(
l_next_h
,
T_NEAR
);
}
L
(
l_h_done
);
// save right now
if
(
type_
==
SeqPoolType
::
kAvg
||
type_
==
SeqPoolType
::
kSqrt
)
{
mov
(
reg_tmp
,
reinterpret_cast
<
size_t
>
(
fp_h_
));
vbroadcastss
(
xmm_t
(
max_num_regs
),
ptr
[
reg_tmp
]);
for
(
int
i
=
0
;
i
<
rest_used_num_regs
;
++
i
)
{
vmulps
(
xmm_t
(
i
),
xmm_t
(
i
),
xmm_t
(
max_num_regs
));
}
}
save_rest
(
rest
,
w_offset
);
}
// return the number of used regs, use start from reg 0
int
load_rest
(
int
rest
,
int
w_offset
,
const
int
num_shift_regs
,
const
int
reg_start
=
0
)
{
const
bool
has_block4
=
rest
/
4
>
0
;
const
bool
has_block2
=
(
rest
%
4
)
/
2
>
0
;
const
bool
has_block1
=
(
rest
%
2
)
==
1
;
int
reg_idx
=
reg_start
;
if
(
has_block4
)
{
vmovups
(
xmm_t
(
reg_idx
+
num_shift_regs
),
ptr
[
param_src
+
w_offset
]);
w_offset
+=
sizeof
(
float
)
*
4
;
reg_idx
++
;
}
if
(
has_block2
)
{
vmovq
(
xmm_t
(
reg_idx
+
num_shift_regs
),
ptr
[
param_src
+
w_offset
]);
w_offset
+=
sizeof
(
float
)
*
2
;
reg_idx
++
;
}
if
(
has_block1
)
{
vmovss
(
xmm_t
(
reg_idx
+
num_shift_regs
),
ptr
[
param_src
+
w_offset
]);
reg_idx
++
;
}
return
reg_idx
;
}
// use reg start from 0
void
save_rest
(
int
rest
,
int
w_offset
,
int
reg_start
=
0
)
{
const
bool
has_block4
=
rest
/
4
>
0
;
const
bool
has_block2
=
(
rest
%
4
)
/
2
>
0
;
const
bool
has_block1
=
(
rest
%
2
)
==
1
;
int
reg_idx
=
reg_start
;
if
(
has_block4
)
{
vmovups
(
ptr
[
param_dst
+
w_offset
],
xmm_t
(
reg_idx
));
w_offset
+=
sizeof
(
float
)
*
4
;
reg_idx
++
;
}
if
(
has_block2
)
{
vmovq
(
ptr
[
param_dst
+
w_offset
],
xmm_t
(
reg_idx
));
w_offset
+=
sizeof
(
float
)
*
2
;
reg_idx
++
;
}
if
(
has_block1
)
{
vmovss
(
ptr
[
param_dst
+
w_offset
],
xmm_t
(
reg_idx
));
}
}
private:
float
ALIGN32_BEG
fp_h_
[
1
]
ALIGN32_END
;
int
w_
;
SeqPoolType
type_
;
reg64_t
param_src
{
abi_param1
};
reg64_t
param_dst
{
abi_param2
};
reg64_t
param_attr
{
abi_param3
};
reg64_t
reg_tmp
{
rax
};
reg32_t
reg32_int_h
{
r8d
};
reg32_t
reg32_fp_h
{
r9d
};
reg64_t
reg_h_i
{
r10
};
reg64_t
reg_ptr_src_i
{
r11
};
};
}
// namespace gen
}
// namespace jit
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/jit/helper.cc
浏览文件 @
d0e3b240
...
...
@@ -26,6 +26,7 @@ namespace jit {
const
char
*
to_string
(
KernelType
kt
)
{
switch
(
kt
)
{
ONE_CASE
(
kNone
);
ONE_CASE
(
kVMul
);
ONE_CASE
(
kVAdd
);
ONE_CASE
(
kVAddRelu
);
...
...
@@ -45,12 +46,26 @@ const char* to_string(KernelType kt) {
ONE_CASE
(
kCRFDecoding
);
ONE_CASE
(
kLayerNorm
);
ONE_CASE
(
kNCHW16CMulNC
);
ONE_CASE
(
kSeqPool
);
default:
PADDLE_THROW
(
"Not support type: %d, or forget to add it."
,
kt
);
return
"NOT JITKernel"
;
}
return
nullptr
;
}
const
char
*
to_string
(
SeqPoolType
tp
)
{
switch
(
tp
)
{
ONE_CASE
(
kNonePoolType
);
ONE_CASE
(
kSum
);
ONE_CASE
(
kAvg
);
ONE_CASE
(
kSqrt
);
default:
PADDLE_THROW
(
"Not support type: %d, or forget to add it."
,
tp
);
return
"NOT PoolType"
;
}
return
nullptr
;
}
#undef ONE_CASE
KernelType
to_kerneltype
(
const
std
::
string
&
act
)
{
...
...
paddle/fluid/operators/jit/helper.h
浏览文件 @
d0e3b240
...
...
@@ -119,6 +119,7 @@ typename KernelTuples::func_type Get(
}
const
char
*
to_string
(
KernelType
kt
);
const
char
*
to_string
(
SeqPoolType
kt
);
KernelType
to_kerneltype
(
const
std
::
string
&
act
);
...
...
@@ -134,6 +135,11 @@ inline std::ostream& operator<<(std::ostream& os, const gru_attr_t& attr) {
<<
"],act_cand["
<<
to_string
(
attr
.
act_cand
)
<<
"]"
;
return
os
;
}
inline
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
seq_pool_attr_t
&
attr
)
{
os
<<
"height_size["
<<
attr
.
h
<<
"],width_size["
<<
attr
.
w
<<
"],pool_type["
<<
to_string
(
attr
.
type
)
<<
"]"
;
return
os
;
}
}
// namespace jit
}
// namespace operators
...
...
paddle/fluid/operators/jit/kernel_base.h
浏览文件 @
d0e3b240
...
...
@@ -41,8 +41,16 @@ typedef enum {
kCRFDecoding
,
kLayerNorm
,
kNCHW16CMulNC
,
kSeqPool
,
}
KernelType
;
typedef
enum
{
kNonePoolType
=
0
,
kSum
=
1
,
kAvg
,
kSqrt
,
}
SeqPoolType
;
template
<
typename
T
>
struct
XYZNTuples
{
typedef
T
data_type
;
...
...
@@ -112,6 +120,21 @@ struct GRUTuples {
typedef
void
(
*
func_type
)(
gru_t
*
,
const
gru_attr_t
*
);
};
typedef
struct
seq_pool_attr_s
{
int
h
,
w
;
// h should always be the first one
SeqPoolType
type
;
seq_pool_attr_s
()
=
default
;
explicit
seq_pool_attr_s
(
int
width
,
SeqPoolType
pool_type
,
int
height
=
1
)
:
h
(
height
),
w
(
width
),
type
(
pool_type
)
{}
}
seq_pool_attr_t
;
template
<
typename
T
>
struct
SeqPoolTuples
{
typedef
T
data_type
;
typedef
seq_pool_attr_t
attr_type
;
typedef
void
(
*
func_type
)(
const
T
*
,
T
*
,
const
seq_pool_attr_t
*
);
};
template
<
typename
T
>
struct
CRFDecodingTuples
{
typedef
T
data_type
;
...
...
paddle/fluid/operators/jit/kernel_key.cc
浏览文件 @
d0e3b240
...
...
@@ -42,6 +42,13 @@ size_t JitCodeKey<gru_attr_t>(const gru_attr_t& attr) {
(
static_cast
<
int
>
(
attr
.
act_cand
)
<<
act_type_shift
);
}
template
<
>
size_t
JitCodeKey
<
seq_pool_attr_t
>
(
const
seq_pool_attr_t
&
attr
)
{
size_t
key
=
attr
.
w
;
constexpr
int
pool_type_shift
=
3
;
return
(
key
<<
pool_type_shift
)
+
static_cast
<
int
>
(
attr
.
type
);
}
}
// namespace jit
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/jit/more/mkl/CMakeLists.txt
浏览文件 @
d0e3b240
...
...
@@ -9,3 +9,4 @@ USE_JITKERNEL_MORE(kVScal, mkl)
USE_JITKERNEL_MORE
(
kVExp, mkl
)
USE_JITKERNEL_MORE
(
kVSigmoid, mkl
)
USE_JITKERNEL_MORE
(
kVTanh, mkl
)
USE_JITKERNEL_MORE
(
kSeqPool, mkl
)
paddle/fluid/operators/jit/more/mkl/mkl.cc
浏览文件 @
d0e3b240
...
...
@@ -72,6 +72,26 @@ void VExp<double>(const double* x, double* y, int n) {
platform
::
dynload
::
vdExp
(
n
,
x
,
y
);
}
template
<
>
void
VCopy
<
float
>
(
const
float
*
x
,
float
*
y
,
int
n
)
{
platform
::
dynload
::
cblas_scopy
(
n
,
x
,
1
,
y
,
1
);
}
template
<
>
void
VCopy
<
double
>
(
const
double
*
x
,
double
*
y
,
int
n
)
{
platform
::
dynload
::
cblas_dcopy
(
n
,
x
,
1
,
y
,
1
);
}
template
<
>
void
VAXPY
<
float
>
(
float
a
,
const
float
*
x
,
float
*
y
,
int
n
)
{
platform
::
dynload
::
cblas_saxpy
(
n
,
a
,
x
,
1
,
y
,
1
);
}
template
<
>
void
VAXPY
<
double
>
(
double
a
,
const
double
*
x
,
double
*
y
,
int
n
)
{
platform
::
dynload
::
cblas_daxpy
(
n
,
a
,
x
,
1
,
y
,
1
);
}
// TODO(TJ): tuning me carefully on AVX, AVX2 and AVX512
template
<
>
bool
VMulKernel
<
float
>::
UseMe
(
const
int
&
d
)
const
{
...
...
@@ -103,6 +123,16 @@ bool VTanhKernel<float>::UseMe(const int& d) const {
return
d
>
7
;
}
template
<
>
bool
SeqPoolKernel
<
float
>::
UseMe
(
const
seq_pool_attr_t
&
attr
)
const
{
return
true
;
}
template
<
>
bool
SeqPoolKernel
<
double
>::
UseMe
(
const
seq_pool_attr_t
&
attr
)
const
{
return
true
;
}
#define AWALYS_USE_ME_WITH_DOUBLE(func) \
template <> \
bool func##Kernel<double>::UseMe(const int& d) const { \
...
...
@@ -135,5 +165,6 @@ REGISTER_MKL_KERNEL(kVScal, VScal);
REGISTER_MKL_KERNEL
(
kVExp
,
VExp
);
REGISTER_MKL_KERNEL
(
kVSigmoid
,
VSigmoid
);
REGISTER_MKL_KERNEL
(
kVTanh
,
VTanh
);
REGISTER_MKL_KERNEL
(
kSeqPool
,
SeqPool
);
#undef REGISTER_MKL_KERNEL
paddle/fluid/operators/jit/more/mkl/mkl.h
浏览文件 @
d0e3b240
...
...
@@ -14,6 +14,7 @@
#pragma once
#include <cmath>
#include <type_traits>
#include "paddle/fluid/operators/jit/kernel_base.h"
...
...
@@ -35,6 +36,12 @@ void VScal(const T* a, const T* x, T* y, int n);
template
<
typename
T
>
void
VExp
(
const
T
*
x
,
T
*
y
,
int
n
);
template
<
typename
T
>
void
VCopy
(
const
T
*
x
,
T
*
y
,
int
n
);
template
<
typename
T
>
void
VAXPY
(
T
a
,
const
T
*
x
,
T
*
y
,
int
n
);
template
<
typename
T
>
void
VSigmoid
(
const
T
*
x
,
T
*
y
,
int
n
)
{
const
T
min
=
SIGMOID_THRESHOLD_MIN
;
...
...
@@ -60,6 +67,23 @@ void VTanh(const T* x, T* y, int n) {
}
}
template
<
typename
T
>
void
SeqPool
(
const
T
*
x
,
T
*
y
,
const
seq_pool_attr_t
*
attr
)
{
VCopy
<
T
>
(
x
,
y
,
attr
->
w
);
for
(
int
h
=
1
;
h
!=
attr
->
h
;
++
h
)
{
VAXPY
<
T
>
(
static_cast
<
T
>
(
1
),
x
+
h
*
attr
->
w
,
y
,
attr
->
w
);
}
if
(
attr
->
type
==
SeqPoolType
::
kAvg
||
attr
->
type
==
SeqPoolType
::
kSqrt
)
{
T
scalar
=
static_cast
<
T
>
(
1
);
if
(
attr
->
type
==
SeqPoolType
::
kAvg
)
{
scalar
=
scalar
/
static_cast
<
T
>
(
attr
->
h
);
}
else
{
scalar
=
scalar
/
std
::
sqrt
(
static_cast
<
T
>
(
attr
->
h
));
}
VScal
<
T
>
(
&
scalar
,
y
,
y
,
attr
->
w
);
}
}
#define DECLARE_MKL_KERNEL(name, tuples) \
template <typename T> \
class name##Kernel : public KernelMore<tuples<T>> { \
...
...
@@ -81,6 +105,8 @@ DECLARE_MKL_KERNEL(VExp, XYNTuples);
DECLARE_MKL_KERNEL
(
VSigmoid
,
XYNTuples
);
DECLARE_MKL_KERNEL
(
VTanh
,
XYNTuples
);
DECLARE_MKL_KERNEL
(
SeqPool
,
SeqPoolTuples
);
#undef DECLARE_MKL_KERNEL
}
// namespace mkl
...
...
paddle/fluid/operators/jit/refer/CMakeLists.txt
浏览文件 @
d0e3b240
...
...
@@ -26,3 +26,4 @@ USE_JITKERNEL_REFER(kGRUHtPart2)
USE_JITKERNEL_REFER
(
kCRFDecoding
)
USE_JITKERNEL_REFER
(
kLayerNorm
)
USE_JITKERNEL_REFER
(
kNCHW16CMulNC
)
USE_JITKERNEL_REFER
(
kSeqPool
)
paddle/fluid/operators/jit/refer/refer.cc
浏览文件 @
d0e3b240
...
...
@@ -47,4 +47,6 @@ REGISTER_REFER_KERNEL(kLayerNorm, LayerNorm);
REGISTER_REFER_KERNEL
(
kNCHW16CMulNC
,
NCHW16CMulNC
);
REGISTER_REFER_KERNEL
(
kSeqPool
,
SeqPool
);
#undef REGISTER_REFER_KERNEL
paddle/fluid/operators/jit/refer/refer.h
浏览文件 @
d0e3b240
...
...
@@ -332,6 +332,28 @@ void NCHW16CMulNC(const T* x, const T* y, T* z, int height, int width) {
}
}
template
<
typename
T
>
void
SeqPool
(
const
T
*
x
,
T
*
y
,
const
seq_pool_attr_t
*
attr
)
{
for
(
int
w
=
0
;
w
<
attr
->
w
;
++
w
)
{
const
T
*
src
=
x
+
w
;
T
*
dst
=
y
+
w
;
*
dst
=
static_cast
<
T
>
(
0
);
for
(
int
h
=
0
;
h
<
attr
->
h
;
++
h
)
{
*
dst
=
*
dst
+
*
src
;
src
+=
attr
->
w
;
}
}
if
(
attr
->
type
==
SeqPoolType
::
kAvg
||
attr
->
type
==
SeqPoolType
::
kSqrt
)
{
T
scalar
=
static_cast
<
T
>
(
1
);
if
(
attr
->
type
==
SeqPoolType
::
kAvg
)
{
scalar
=
scalar
/
static_cast
<
T
>
(
attr
->
h
);
}
else
{
scalar
=
scalar
/
std
::
sqrt
(
static_cast
<
T
>
(
attr
->
h
));
}
VScal
<
T
>
(
&
scalar
,
y
,
y
,
attr
->
w
);
}
}
#define DECLARE_REFER_KERNEL(name, tuples) \
template <typename T> \
class name##Kernel : public ReferKernel<tuples<T>> { \
...
...
@@ -370,6 +392,8 @@ DECLARE_REFER_KERNEL(LayerNorm, LayerNormTuples);
DECLARE_REFER_KERNEL
(
NCHW16CMulNC
,
NCHW16CMulNCTuples
);
DECLARE_REFER_KERNEL
(
SeqPool
,
SeqPoolTuples
);
#undef DECLARE_REFER_KERNEL
}
// namespace refer
...
...
paddle/fluid/operators/jit/test.cc
浏览文件 @
d0e3b240
...
...
@@ -211,6 +211,24 @@ struct TestFuncWithRefer<jit::GRUTuples<T>, std::vector<T>, std::vector<T>,
}
};
template
<
typename
T
>
struct
TestFuncWithRefer
<
jit
::
SeqPoolTuples
<
T
>
,
std
::
vector
<
T
>
,
std
::
vector
<
T
>>
{
void
operator
()(
const
typename
jit
::
SeqPoolTuples
<
T
>::
func_type
tgt
,
const
std
::
vector
<
T
>&
x
,
const
std
::
vector
<
T
>&
yref
,
const
typename
jit
::
SeqPoolTuples
<
T
>::
attr_type
&
attr
)
{
EXPECT_TRUE
(
tgt
!=
nullptr
);
EXPECT_EQ
(
x
.
size
()
%
yref
.
size
(),
0
);
int
w
=
yref
.
size
();
std
::
vector
<
T
>
y
(
w
);
const
T
*
x_data
=
x
.
data
();
const
T
*
yref_data
=
yref
.
data
();
T
*
y_data
=
y
.
data
();
tgt
(
x_data
,
y_data
,
&
attr
);
ExpectEQ
<
T
>
(
y_data
,
yref_data
,
w
);
}
};
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
KernelTuples
,
typename
PlaceType
,
typename
...
Args
>
void
TestAllImpls
(
const
typename
KernelTuples
::
attr_type
&
attr
,
Args
...
args
)
{
...
...
@@ -415,6 +433,31 @@ void TestGRUKernel() {
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestSeqPoolKernel
()
{
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
std
::
vector
<
jit
::
SeqPoolType
>
pool_types
=
{
jit
::
SeqPoolType
::
kSum
,
jit
::
SeqPoolType
::
kAvg
,
jit
::
SeqPoolType
::
kSqrt
};
for
(
auto
type
:
pool_types
)
{
for
(
int
w
:
TestSizes
())
{
jit
::
seq_pool_attr_t
attr
(
w
,
type
);
for
(
int
h
:
TestSizes
())
{
attr
.
h
=
h
;
auto
ref
=
jit
::
GetRefer
<
KT
,
jit
::
SeqPoolTuples
<
T
>>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
std
::
vector
<
T
>
x
(
h
*
w
),
yref
(
w
);
RandomVec
<
T
>
(
h
*
w
,
x
.
data
(),
-
2.
f
,
2.
f
);
const
T
*
x_data
=
x
.
data
();
T
*
yref_data
=
yref
.
data
();
ref
(
x_data
,
yref_data
,
&
attr
);
VLOG
(
10
)
<<
attr
;
TestAllImpls
<
KT
,
jit
::
SeqPoolTuples
<
T
>
,
PlaceType
,
std
::
vector
<
T
>
,
std
::
vector
<
T
>>
(
attr
,
x
,
yref
,
attr
);
}
}
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestNCHW16CMulNCKernel
()
{
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
...
...
@@ -569,6 +612,12 @@ TEST(JITKernel, kGRUHtPart2) {
TestGRUKernel
<
jit
::
kGRUHtPart2
,
double
,
paddle
::
platform
::
CPUPlace
>
();
}
TEST
(
JITKernel
,
kSeqPool
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestSeqPoolKernel
<
jit
::
kSeqPool
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestSeqPoolKernel
<
jit
::
kSeqPool
,
double
,
paddle
::
platform
::
CPUPlace
>
();
}
TEST
(
JITKernel
,
kNCHW16CMulNC
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestNCHW16CMulNCKernel
<
jit
::
kNCHW16CMulNC
,
float
,
...
...
paddle/fluid/operators/math/CMakeLists.txt
浏览文件 @
d0e3b240
...
...
@@ -51,7 +51,7 @@ math_library(pooling)
math_library
(
selected_rows_functor DEPS selected_rows math_function blas
)
math_library
(
sequence2batch
)
math_library
(
sequence_padding
)
math_library
(
sequence_pooling DEPS math_function
)
math_library
(
sequence_pooling DEPS math_function
jit_kernel_helper
)
math_library
(
sequence_scale
)
math_library
(
softmax DEPS math_function
)
...
...
paddle/fluid/operators/math/blas_impl.cu.h
浏览文件 @
d0e3b240
...
...
@@ -62,27 +62,19 @@ struct CUBlas<float> {
cudaDataType_t
Atype
,
int
lda
,
const
void
*
B
,
cudaDataType_t
Btype
,
int
ldb
,
const
float
*
beta
,
void
*
C
,
cudaDataType_t
Ctype
,
int
ldc
)
{
// Because the gcc 4.8 doesn't expand template parameter pack that
// appears in a lambda-expression, I can not use template parameter pack
// here.
auto
cublas_call
=
[
&
]()
{
// Because the gcc 4.8 doesn't expand template parameter pack that
// appears in a lambda-expression, I can not use template parameter pack
// here.
#if CUDA_VERSION >= 8000
VLOG
(
5
)
<<
"use_tensor_op_math: "
<<
(
platform
::
TensorCoreAvailable
()
?
"True"
:
"False"
);
VLOG
(
5
)
<<
"use_tensor_op_math: "
<<
(
dev_ctx
->
tensor_core_available
()
?
"True"
:
"False"
);
dev_ctx
->
TensorCoreCublasCallIfAvailable
([
&
](
cublasHandle_t
handle
)
{
PADDLE_ENFORCE
(
platform
::
dynload
::
cublasSgemmEx
(
dev_ctx
->
cublas_handle
(),
transa
,
transb
,
m
,
n
,
k
,
alpha
,
A
,
Atype
,
lda
,
B
,
Btype
,
ldb
,
beta
,
C
,
Ctype
,
ldc
));
handle
,
transa
,
transb
,
m
,
n
,
k
,
alpha
,
A
,
Atype
,
lda
,
B
,
Btype
,
ldb
,
beta
,
C
,
Ctype
,
ldc
));
});
#else
PADDLE_THROW
(
"cublasSgemmEx is supported on cuda >= 8.0"
);
#endif
};
#if CUDA_VERSION >= 9000
// NOTES: To use Tensor Core, we should change the cublas config,
// but the cublas may be hold by multi-thread.
dev_ctx
->
CublasCall
(
cublas_call
,
CUBLAS_TENSOR_OP_MATH
);
#else
cublas_call
();
PADDLE_THROW
(
"cublasSgemmEx is supported on cuda >= 8.0"
);
#endif
}
};
...
...
@@ -170,32 +162,24 @@ struct CUBlas<platform::float16> {
cudaDataType_t
Btype
,
int
ldb
,
const
void
*
beta
,
void
*
C
,
cudaDataType_t
Ctype
,
int
ldc
,
cudaDataType_t
computeType
)
{
auto
cublas_call
=
[
&
]()
{
#if CUDA_VERSION >= 8000
cublasGemmAlgo_t
algo
=
CUBLAS_GEMM_DFALT
;
cublasGemmAlgo_t
algo
=
CUBLAS_GEMM_DFALT
;
#if CUDA_VERSION >= 9000
bool
use_tensor_op_math
=
platform
::
TensorCoreA
vailable
();
if
(
use_tensor_op_math
)
{
algo
=
CUBLAS_GEMM_DFALT_TENSOR_OP
;
}
VLOG
(
5
)
<<
"use_tensor_op_math: "
<<
(
use_tensor_op_math
?
"True"
:
"False"
);
bool
use_tensor_op_math
=
dev_ctx
->
tensor_core_a
vailable
();
if
(
use_tensor_op_math
)
{
algo
=
CUBLAS_GEMM_DFALT_TENSOR_OP
;
}
VLOG
(
5
)
<<
"use_tensor_op_math: "
<<
(
use_tensor_op_math
?
"True"
:
"False"
);
#endif // CUDA_VERSION >= 9000
dev_ctx
->
TensorCoreCublasCallIfAvailable
([
&
](
cublasHandle_t
handle
)
{
PADDLE_ENFORCE
(
platform
::
dynload
::
cublasGemmEx
(
dev_ctx
->
cublas_handle
(),
transa
,
transb
,
m
,
n
,
k
,
alpha
,
A
,
Atype
,
lda
,
B
,
Btype
,
ldb
,
beta
,
C
,
Ctype
,
ldc
,
computeType
,
algo
));
handle
,
transa
,
transb
,
m
,
n
,
k
,
alpha
,
A
,
Atype
,
lda
,
B
,
Btype
,
ldb
,
beta
,
C
,
Ctype
,
ldc
,
computeType
,
algo
));
});
#else
PADDLE_THROW
(
"cublasGemmEx is supported on cuda >= 8.0"
);
#endif
};
#if CUDA_VERSION >= 9000
// NOTES: To use Tensor Core, we should change the cublas config,
// but the cublas may be hold by multi-thread.
dev_ctx
->
CublasCall
(
cublas_call
,
CUBLAS_TENSOR_OP_MATH
);
#else
cublas_call
();
PADDLE_THROW
(
"cublasGemmEx is supported on cuda >= 8.0"
);
#endif
}
};
...
...
@@ -223,9 +207,10 @@ void Blas<platform::CUDADeviceContext>::GEMM(CBLAS_TRANSPOSE transA,
CUDA_R_32F
,
N
);
}
else
{
#endif // CUDA_VERSION >= 8000
CUBlas
<
T
>::
GEMM
(
context_
.
cublas_handle
(),
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
alpha
,
B
,
ldb
,
A
,
lda
,
&
beta
,
C
,
N
);
context_
.
CublasCall
([
&
](
cublasHandle_t
handle
)
{
CUBlas
<
T
>::
GEMM
(
handle
,
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
alpha
,
B
,
ldb
,
A
,
lda
,
&
beta
,
C
,
N
);
});
#if CUDA_VERSION >= 8000
}
...
...
@@ -266,9 +251,12 @@ inline void Blas<platform::CUDADeviceContext>::GEMM(
CUDA_R_16F
,
lda
,
&
h_beta
,
C
,
CUDA_R_16F
,
N
,
CUDA_R_32F
);
#else
// CUDA 7.5 does not support cublasGemmEx, hence we fall back to use hgemm
CUBlas
<
platform
::
float16
>::
GEMM
(
context_
.
cublas_handle
(),
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
h_alpha
,
h_B
,
ldb
,
h_A
,
lda
,
&
h_beta
,
h_C
,
N
);
context_
.
CublasCall
([
&
](
cublasHandle_t
handle
)
{
CUBlas
<
platform
::
float16
>::
GEMM
(
handle
,
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
h_alpha
,
h_B
,
ldb
,
h_A
,
lda
,
&
h_beta
,
h_C
,
N
);
});
#endif // CUDA_VERSION >= 8000
}
...
...
@@ -292,8 +280,10 @@ void Blas<platform::CUDADeviceContext>::GEMM(bool transA, bool transB, int M,
}
else
{
#endif // CUDA_VERSION >= 8000
CUBlas
<
T
>::
GEMM
(
context_
.
cublas_handle
(),
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
alpha
,
B
,
ldb
,
A
,
lda
,
&
beta
,
C
,
ldc
);
context_
.
CublasCall
([
&
](
cublasHandle_t
handle
)
{
CUBlas
<
T
>::
GEMM
(
handle
,
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
alpha
,
B
,
ldb
,
A
,
lda
,
&
beta
,
C
,
ldc
);
});
#if CUDA_VERSION >= 8000
}
...
...
@@ -311,16 +301,19 @@ inline void Blas<platform::CUDADeviceContext>::GEMM(
cublasOperation_t
cuTransA
=
transA
?
CUBLAS_OP_T
:
CUBLAS_OP_N
;
cublasOperation_t
cuTransB
=
transB
?
CUBLAS_OP_T
:
CUBLAS_OP_N
;
CUBlas
<
platform
::
float16
>::
GEMM
(
context_
.
cublas_handle
(),
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
alpha
,
B
,
ldb
,
A
,
lda
,
&
beta
,
C
,
ldc
);
context_
.
CublasCall
([
&
](
cublasHandle_t
handle
)
{
CUBlas
<
platform
::
float16
>::
GEMM
(
handle
,
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
alpha
,
B
,
ldb
,
A
,
lda
,
&
beta
,
C
,
ldc
);
});
}
template
<
>
template
<
typename
T
>
void
Blas
<
platform
::
CUDADeviceContext
>::
AXPY
(
int
n
,
T
alpha
,
const
T
*
x
,
T
*
y
)
const
{
CUBlas
<
T
>::
AXPY
(
context_
.
cublas_handle
(),
n
,
&
alpha
,
x
,
1
,
y
,
1
);
context_
.
CublasCall
([
&
](
cublasHandle_t
handle
)
{
CUBlas
<
T
>::
AXPY
(
handle
,
n
,
&
alpha
,
x
,
1
,
y
,
1
);
});
}
template
<
>
...
...
@@ -330,8 +323,9 @@ void Blas<platform::CUDADeviceContext>::GEMV(bool trans_a, int M, int N,
T
beta
,
T
*
C
)
const
{
cublasOperation_t
cuTransA
=
!
trans_a
?
CUBLAS_OP_T
:
CUBLAS_OP_N
;
CUBlas
<
T
>::
GEMV
(
context_
.
cublas_handle
(),
cuTransA
,
N
,
M
,
&
alpha
,
A
,
N
,
B
,
1
,
&
beta
,
C
,
1
);
context_
.
CublasCall
([
&
](
cublasHandle_t
handle
)
{
CUBlas
<
T
>::
GEMV
(
handle
,
cuTransA
,
N
,
M
,
&
alpha
,
A
,
N
,
B
,
1
,
&
beta
,
C
,
1
);
});
}
template
<
>
...
...
@@ -353,28 +347,28 @@ void Blas<platform::CUDADeviceContext>::BatchedGEMM(
#if CUDA_VERSION >= 9010
if
(
FLAGS_enable_cublas_tensor_op_math
&&
std
::
is_same
<
T
,
float
>::
value
)
{
auto
cublas_call
=
[
&
]()
{
cublasGemmAlgo_t
algo
=
CUBLAS_GEMM_DFALT
;
bool
use_tensor_op_math
=
platform
::
TensorCoreAvailable
();
if
(
use_tensor_op_math
)
{
algo
=
CUBLAS_GEMM_DFALT_TENSOR_OP
;
}
VLOG
(
5
)
<<
"use_tensor_op_math: "
<<
(
use_tensor_op_math
?
"True"
:
"False"
);
cublasGemmAlgo_t
algo
=
CUBLAS_GEMM_DFALT
;
bool
use_tensor_op_math
=
context_
.
tensor_core_available
()
;
if
(
use_tensor_op_math
)
{
algo
=
CUBLAS_GEMM_DFALT_TENSOR_OP
;
}
VLOG
(
5
)
<<
"use_tensor_op_math: "
<<
(
use_tensor_op_math
?
"True"
:
"False"
);
context_
.
TensorCoreCublasCallIfAvailable
([
&
](
cublasHandle_t
handle
)
{
PADDLE_ENFORCE
(
platform
::
dynload
::
cublasGemmStridedBatchedEx
(
context_
.
cublas_handle
(),
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
alpha
,
B
,
CUDA_R_32F
,
ldb
,
strideB
,
A
,
CUDA_R_32F
,
lda
,
strideA
,
&
beta
,
C
,
CUDA_R_32F
,
ldc
,
strideC
,
batchCount
,
CUDA_R_32F
,
algo
));
};
auto
&
dev_ctx
=
const_cast
<
platform
::
CUDADeviceContext
&>
(
context_
);
dev_ctx
.
CublasCall
(
cublas_call
,
CUBLAS_TENSOR_OP_MATH
);
handle
,
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
alpha
,
B
,
CUDA_R_32F
,
ldb
,
strideB
,
A
,
CUDA_R_32F
,
lda
,
strideA
,
&
beta
,
C
,
CUDA_R_32F
,
ldc
,
strideC
,
batchCount
,
CUDA_R_32F
,
algo
));
});
}
else
{
#endif // CUDA_VERSION >= 9010
CUBlas
<
T
>::
GEMM_STRIDED_BATCH
(
context_
.
cublas_handle
(),
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
alpha
,
B
,
ldb
,
strideB
,
A
,
lda
,
strideA
,
&
beta
,
C
,
ldc
,
strideC
,
batchCount
);
context_
.
CublasCall
([
&
](
cublasHandle_t
handle
)
{
CUBlas
<
T
>::
GEMM_STRIDED_BATCH
(
handle
,
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
alpha
,
B
,
ldb
,
strideB
,
A
,
lda
,
strideA
,
&
beta
,
C
,
ldc
,
strideC
,
batchCount
);
});
#if CUDA_VERSION >= 9010
}
...
...
paddle/fluid/operators/math/sequence_pooling.cc
浏览文件 @
d0e3b240
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#include <string>
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence_pooling.h"
...
...
@@ -239,15 +240,33 @@ class SequencePoolFunctor<platform::CPUDeviceContext, T> {
last_pool
(
context
,
input
,
output
);
return
;
}
if
(
pooltype
==
"FIRST"
)
{
math
::
FirstSeqPoolFunctor
<
T
>
first_pool
;
first_pool
(
context
,
input
,
output
);
return
;
}
auto
lod
=
input
.
lod
()[
0
];
if
(
pooltype
==
"SUM"
)
{
auto
place
=
context
.
GetPlace
();
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
place
));
const
T
*
src
=
input
.
data
<
T
>
();
T
*
dst
=
output
->
mutable_data
<
T
>
(
place
);
jit
::
seq_pool_attr_t
attr
(
static_cast
<
int
>
(
input
.
numel
()
/
input
.
dims
()[
0
]),
jit
::
SeqPoolType
::
kSum
);
auto
seqpool
=
jit
::
Get
<
jit
::
kSeqPool
,
jit
::
SeqPoolTuples
<
T
>
,
platform
::
CPUPlace
>
(
attr
);
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
.
size
())
-
1
;
++
i
)
{
attr
.
h
=
static_cast
<
int
>
(
lod
[
i
+
1
]
-
lod
[
i
]);
seqpool
(
src
,
dst
,
&
attr
);
dst
+=
attr
.
w
;
src
+=
attr
.
h
*
attr
.
w
;
}
return
;
}
auto
&
place
=
*
context
.
eigen_device
();
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
.
size
())
-
1
;
++
i
)
{
Tensor
in_t
=
input
.
Slice
(
static_cast
<
int
>
(
lod
[
i
]),
static_cast
<
int
>
(
lod
[
i
+
1
]));
...
...
@@ -258,15 +277,6 @@ class SequencePoolFunctor<platform::CPUDeviceContext, T> {
auto
out_e
=
EigenVector
<
T
>::
Flatten
(
out_t
);
if
(
pooltype
==
"AVERAGE"
)
{
out_e
.
device
(
place
)
=
in_e
.
mean
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
}
else
if
(
pooltype
==
"SUM"
)
{
if
(
h
>
0
)
{
const
T
*
in_data
=
in_t
.
data
<
T
>
();
T
*
out_data
=
out_t
.
mutable_data
<
T
>
(
context
.
GetPlace
());
blas
.
VCOPY
(
w
,
in_data
,
out_data
);
for
(
int64_t
r
=
1
;
r
!=
h
;
++
r
)
{
blas
.
AXPY
(
w
,
1.
,
in_data
+
r
*
w
,
out_data
);
}
}
}
else
if
(
pooltype
==
"SQRT"
)
{
out_e
.
device
(
place
)
=
in_e
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}))
/
std
::
sqrt
(
static_cast
<
T
>
(
h
));
...
...
paddle/fluid/operators/ngraph/ops/binary_unnary_op.h
浏览文件 @
d0e3b240
...
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_NGRAPH
#pragma once
#include <string>
...
...
@@ -48,4 +47,3 @@ static void BuildUnaryNode(
}
// namespace ngraphs
}
// namespace operators
}
// namespace paddle
#endif
paddle/fluid/operators/ngraph/ops/elementwise_scalar_op.h
浏览文件 @
d0e3b240
...
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_NGRAPH
#pragma once
#include <string>
...
...
@@ -58,4 +57,3 @@ std::shared_ptr<ngraph::Node> ElementwiseScalar(
}
// namespace ngraphs
}
// namespace operators
}
// namespace paddle
#endif
paddle/fluid/operators/ngraph/ops/fill_constant_op.h
浏览文件 @
d0e3b240
...
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_NGRAPH
#pragma once
#include <string>
...
...
@@ -58,4 +57,3 @@ void BuildFillConstantNode(
}
// namespace ngraphs
}
// namespace operators
}
// namespace paddle
#endif
paddle/fluid/operators/ngraph/ops/mean_op.h
浏览文件 @
d0e3b240
...
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_NGRAPH
#pragma once
#include <functional>
...
...
@@ -65,4 +64,3 @@ void BuildMeanGradNode(
}
// namespace ngraphs
}
// namespace operators
}
// namespace paddle
#endif
paddle/fluid/operators/ngraph/ops/mul_op.h
浏览文件 @
d0e3b240
...
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_NGRAPH
#pragma once
#include <string>
...
...
@@ -131,4 +130,3 @@ static void BuildMulGradNode(
}
// namespace ngraphs
}
// namespace operators
}
// namespace paddle
#endif
paddle/fluid/operators/ngraph/ops/scale_op.h
浏览文件 @
d0e3b240
...
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_NGRAPH
#pragma once
#include <string>
...
...
@@ -38,4 +37,3 @@ void BuildScaleNode(
}
// namespace ngraphs
}
// namespace operators
}
// namespace paddle
#endif
paddle/fluid/operators/ngraph/ops/top_k_op.h
浏览文件 @
d0e3b240
...
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_NGRAPH
#pragma once
#include <string>
...
...
@@ -48,4 +47,3 @@ void BuildTopKNode(
}
// namespace ngraphs
}
// namespace operators
}
// namespace paddle
#endif
paddle/fluid/platform/cuda_helper.h
0 → 100644
浏览文件 @
d0e3b240
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <mutex> // NOLINT
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/macros.h"
#if CUDA_VERSION < 9000
enum
cublasMath_t
{
CUBLAS_DEFAULT_MATH
=
0
};
#endif
namespace
paddle
{
namespace
platform
{
class
CublasHandleHolder
{
public:
CublasHandleHolder
(
cudaStream_t
stream
,
cublasMath_t
math_type
)
{
PADDLE_ENFORCE
(
dynload
::
cublasCreate
(
&
handle_
));
PADDLE_ENFORCE
(
dynload
::
cublasSetStream
(
handle_
,
stream
));
#if CUDA_VERSION >= 9000
if
(
math_type
==
CUBLAS_TENSOR_OP_MATH
)
{
PADDLE_ENFORCE
(
dynload
::
cublasSetMathMode
(
handle_
,
CUBLAS_TENSOR_OP_MATH
));
}
#endif
}
~
CublasHandleHolder
()
{
PADDLE_ENFORCE
(
dynload
::
cublasDestroy
(
handle_
));
}
template
<
typename
Callback
>
inline
void
Call
(
Callback
&&
callback
)
const
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
mtx_
);
callback
(
handle_
);
}
private:
DISABLE_COPY_AND_ASSIGN
(
CublasHandleHolder
);
cublasHandle_t
handle_
;
mutable
std
::
mutex
mtx_
;
};
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/device_context.cc
浏览文件 @
d0e3b240
...
...
@@ -245,8 +245,15 @@ CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
eigen_stream_
.
reset
(
new
EigenCudaStreamDevice
());
eigen_stream_
->
Reinitialize
(
&
stream_
,
place
);
eigen_device_
.
reset
(
new
Eigen
::
GpuDevice
(
eigen_stream_
.
get
()));
PADDLE_ENFORCE
(
dynload
::
cublasCreate
(
&
cublas_handle_
));
PADDLE_ENFORCE
(
dynload
::
cublasSetStream
(
cublas_handle_
,
stream_
));
cublas_handle_
.
reset
(
new
CublasHandleHolder
(
stream_
,
CUBLAS_DEFAULT_MATH
));
if
(
TensorCoreAvailable
())
{
#if CUDA_VERSION >= 9000
cublas_tensor_core_handle_
.
reset
(
new
CublasHandleHolder
(
stream_
,
CUBLAS_TENSOR_OP_MATH
));
#endif
}
if
(
dynload
::
HasCUDNN
())
{
cudnn_holder_
.
reset
(
new
CudnnHolder
(
&
stream_
,
place
));
}
...
...
@@ -306,7 +313,8 @@ CUDADeviceContext::~CUDADeviceContext() {
SetDeviceId
(
place_
.
device
);
Wait
();
WaitStreamCallback
();
PADDLE_ENFORCE
(
dynload
::
cublasDestroy
(
cublas_handle_
));
cublas_handle_
.
reset
();
cublas_tensor_core_handle_
.
reset
();
eigen_stream_
.
reset
();
eigen_device_
.
reset
();
PADDLE_ENFORCE
(
cudaStreamDestroy
(
stream_
));
...
...
@@ -335,8 +343,8 @@ Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
return
eigen_device_
.
get
();
}
cublasHandle_t
CUDADeviceContext
::
cublas_hand
le
()
const
{
return
cublas_
handle_
;
bool
CUDADeviceContext
::
tensor_core_availab
le
()
const
{
return
cublas_
tensor_core_handle_
!=
nullptr
;
}
cudnnHandle_t
CUDADeviceContext
::
cudnn_handle
()
const
{
...
...
paddle/fluid/platform/device_context.h
浏览文件 @
d0e3b240
...
...
@@ -20,6 +20,7 @@ limitations under the License. */
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/platform/temporary_allocator.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cuda_helper.h"
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/gpu_info.h"
...
...
@@ -209,39 +210,6 @@ class CudnnWorkspaceHandle {
std
::
unique_ptr
<
std
::
lock_guard
<
std
::
mutex
>>
guard_
;
};
#if CUDA_VERSION >= 9000
class
ScopedCublasMathMode
{
public:
ScopedCublasMathMode
(
cublasHandle_t
handle
,
cublasMath_t
new_math_mode
)
:
handle_
(
handle
)
{
need_reset
=
false
;
PADDLE_ENFORCE
(
platform
::
dynload
::
cublasGetMathMode
(
handle_
,
&
old_math_mode_
),
"Failed to get old cublas math mode"
);
if
(
old_math_mode_
!=
new_math_mode
)
{
PADDLE_ENFORCE
(
platform
::
dynload
::
cublasSetMathMode
(
handle_
,
new_math_mode
),
"Failed to set old cublas math mode"
);
need_reset
=
true
;
}
}
~
ScopedCublasMathMode
()
{
if
(
need_reset
)
{
PADDLE_ENFORCE
(
platform
::
dynload
::
cublasSetMathMode
(
handle_
,
old_math_mode_
),
"Failed to set old cublas math mode"
);
}
}
private:
cublasHandle_t
handle_
;
cublasMath_t
old_math_mode_
;
bool
need_reset
;
};
#endif
class
CUDADeviceContext
:
public
DeviceContext
{
public:
explicit
CUDADeviceContext
(
CUDAPlace
place
);
...
...
@@ -262,8 +230,25 @@ class CUDADeviceContext : public DeviceContext {
/*! \brief Return eigen device in the device context. */
Eigen
::
GpuDevice
*
eigen_device
()
const
;
/*! \brief Return cublas handle in the device context. */
cublasHandle_t
cublas_handle
()
const
;
/*! \brief Call cublas function safely. */
template
<
typename
Callback
>
inline
void
CublasCall
(
Callback
&&
callback
)
const
{
cublas_handle_
->
Call
(
std
::
forward
<
Callback
>
(
callback
));
}
/*! \brief Check whether tensor core is supported */
bool
tensor_core_available
()
const
;
/*! \brief Call cublas function with Tensor Core safely. If
Tensor Core is not available, use DEFAULT_MATH instead. */
template
<
typename
Callback
>
inline
void
TensorCoreCublasCallIfAvailable
(
Callback
&&
callback
)
const
{
if
(
cublas_tensor_core_handle_
)
{
cublas_tensor_core_handle_
->
Call
(
std
::
forward
<
Callback
>
(
callback
));
}
else
{
cublas_handle_
->
Call
(
std
::
forward
<
Callback
>
(
callback
));
}
}
/*! \brief Return cudnn handle in the device context. */
cudnnHandle_t
cudnn_handle
()
const
;
...
...
@@ -282,7 +267,6 @@ class CUDADeviceContext : public DeviceContext {
template
<
typename
Callback
>
void
RecordEvent
(
cudaEvent_t
ev
,
Callback
callback
)
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
mtx_
);
callback
();
PADDLE_ENFORCE
(
cudaEventRecord
(
ev
,
stream_
));
}
...
...
@@ -294,18 +278,6 @@ class CUDADeviceContext : public DeviceContext {
void
WaitStreamCallback
()
const
{
callback_manager_
->
Wait
();
}
#if CUDA_VERSION >= 9000
/*! \brief CublasCall may need to change cublas's config,
* but the cublas may be hold by multi-thread, so we should
* add lock here. */
template
<
typename
Callback
>
void
CublasCall
(
Callback
callback
,
cublasMath_t
new_math
)
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
cublas_mtx_
);
ScopedCublasMathMode
scoped_cublas_math
(
cublas_handle_
,
new_math
);
callback
();
}
#endif
private:
CUDAPlace
place_
;
...
...
@@ -313,7 +285,9 @@ class CUDADeviceContext : public DeviceContext {
std
::
unique_ptr
<
EigenCudaStreamDevice
>
eigen_stream_
;
std
::
unique_ptr
<
CudnnHolder
>
cudnn_holder_
;
cudaStream_t
stream_
;
cublasHandle_t
cublas_handle_
;
std
::
unique_ptr
<
CublasHandleHolder
>
cublas_handle_
;
std
::
unique_ptr
<
CublasHandleHolder
>
cublas_tensor_core_handle_
;
int
compute_capability_
;
int
runtime_version_
;
...
...
@@ -321,12 +295,10 @@ class CUDADeviceContext : public DeviceContext {
int
multi_process_
;
int
max_threads_per_mp_
;
mutable
std
::
mutex
mtx_
;
// StreamCallbackManager is thread-safe
std
::
unique_ptr
<
StreamCallbackManager
>
callback_manager_
;
mutable
std
::
mutex
cublas_mtx_
;
DISABLE_COPY_AND_ASSIGN
(
CUDADeviceContext
)
;
};
template
<
>
...
...
paddle/fluid/platform/device_context_test.cu
浏览文件 @
d0e3b240
...
...
@@ -43,9 +43,6 @@ TEST(Device, CUDADeviceContext) {
ASSERT_NE
(
nullptr
,
gpu_device
);
cudnnHandle_t
cudnn_handle
=
device_context
->
cudnn_handle
();
ASSERT_NE
(
nullptr
,
cudnn_handle
);
cublasHandle_t
cublas_handle
=
device_context
->
cublas_handle
();
ASSERT_NE
(
nullptr
,
cublas_handle
);
ASSERT_NE
(
nullptr
,
device_context
->
stream
());
delete
device_context
;
}
}
...
...
python/paddle/fluid/__init__.py
浏览文件 @
d0e3b240
...
...
@@ -155,7 +155,7 @@ def __bootstrap__():
'fraction_of_gpu_memory_to_use'
,
'cudnn_deterministic'
,
'enable_cublas_tensor_op_math'
,
'conv_workspace_size_limit'
,
'cudnn_exhaustive_search'
,
'memory_optimize_debug'
,
'selected_gpus'
,
'
cudnn_exhaustive_search_times'
,
'
sync_nccl_allreduce'
'sync_nccl_allreduce'
]
core
.
init_gflags
([
sys
.
argv
[
0
]]
+
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录