提交 d080d3e6 编写于 作者: Q qiaolongfei

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into timeline-support-pure-cpu

......@@ -337,6 +337,34 @@ ExtractInputAndOutputOfSubGraph(std::vector<Node *> &graph) { // NOLINT
std::vector<Node *>(outputs.begin(), outputs.end()));
}
void FilterRedundantOutputOfSubGraph(DataFlowGraph *graph) {
std::vector<Node *> op_nodes;
for (auto &node : GraphTraits<DataFlowGraph>(graph).nodes_in_TS()) {
if (node.type() == Node::Type::kValue || node.deleted()) {
continue;
}
op_nodes.push_back(&node);
}
size_t op_num = op_nodes.size();
for (size_t i = 0; i < op_num; i++) {
if (op_nodes[i]->type() == Node::Type::kFunction) continue;
std::unordered_set<std::string> follow_up_input_names;
for (size_t j = i + 1; j < op_num; j++) {
for (auto *in : op_nodes[j]->inlinks) {
follow_up_input_names.insert(in->name());
}
}
std::vector<Node *> filtered_subgraph_outlinks;
for (auto *out : op_nodes[i]->outlinks) {
if (follow_up_input_names.count(out->name())) {
filtered_subgraph_outlinks.push_back(out);
}
}
PADDLE_ENFORCE_GE(filtered_subgraph_outlinks.size(), 1UL);
op_nodes[i]->outlinks = filtered_subgraph_outlinks;
}
}
} // namespace analysis
} // namespace inference
} // namespace paddle
......@@ -178,6 +178,7 @@ struct GraphTraits<DataFlowGraph> {
std::pair<std::vector<Node *>, std::vector<Node *>>
ExtractInputAndOutputOfSubGraph(std::vector<Node *> &graph); // NOLINT
void FilterRedundantOutputOfSubGraph(DataFlowGraph *graph);
} // namespace analysis
} // namespace inference
} // namespace paddle
......@@ -52,6 +52,7 @@ bool DataFlowGraphToFluidPass::Initialize(Argument *argument) {
bool DataFlowGraphToFluidPass::Finalize() { return true; }
void DataFlowGraphToFluidPass::Run(DataFlowGraph *graph) {
FilterRedundantOutputOfSubGraph(graph);
LOG(INFO) << "graph.inputs " << graph->inputs.size();
for (auto &node : GraphTraits<DataFlowGraph>(graph).nodes_in_TS()) {
if (node.deleted()) continue;
......
......@@ -46,9 +46,9 @@ std::string DFG_GraphvizDrawPass::Draw(DataFlowGraph *graph) {
for (size_t i = 0; i < graph->nodes.size(); i++) {
const Node &node = graph->nodes.Get(i);
if (!config_.display_deleted_node && node.deleted()) continue;
for (auto &in : node.inlinks) {
if (!config_.display_deleted_node && in->deleted()) continue;
dot.AddEdge(in->repr(), node.repr(), {});
for (auto &out : node.outlinks) {
if (!config_.display_deleted_node && out->deleted()) continue;
dot.AddEdge(node.repr(), out->repr(), {});
}
}
return dot.Build();
......
......@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <glog/logging.h>
#include "paddle/fluid/inference/api/paddle_inference_api.h"
namespace paddle {
......@@ -40,19 +41,36 @@ PaddleBuf::PaddleBuf(PaddleBuf&& other)
PaddleBuf::PaddleBuf(const PaddleBuf& other) { *this = other; }
PaddleBuf& PaddleBuf::operator=(const PaddleBuf& other) {
if (!other.memory_owned_) {
data_ = other.data_;
length_ = other.length_;
memory_owned_ = other.memory_owned_;
} else {
Resize(other.length());
memcpy(data_, other.data(), other.length());
length_ = other.length();
memory_owned_ = true;
}
return *this;
}
PaddleBuf& PaddleBuf::operator=(PaddleBuf&& other) {
// only the buffer with external memory can be copied
assert(!other.memory_owned_);
data_ = other.data_;
length_ = other.length_;
memory_owned_ = other.memory_owned_;
other.data_ = nullptr;
other.length_ = 0;
other.memory_owned_ = false;
return *this;
}
void PaddleBuf::Resize(size_t length) {
// Only the owned memory can be reset, the external memory can't be changed.
if (length_ == length) return;
assert(memory_owned_);
Free();
if (memory_owned_) {
Free();
}
data_ = new char[length];
length_ = length;
memory_owned_ = true;
......@@ -68,7 +86,7 @@ void PaddleBuf::Reset(void* data, size_t length) {
void PaddleBuf::Free() {
if (memory_owned_ && data_) {
assert(length_ > 0);
delete static_cast<char*>(data_);
delete[] static_cast<char*>(data_);
data_ = nullptr;
length_ = 0;
}
......
......@@ -40,11 +40,12 @@ class PaddleBuf {
// Copy only available when memory is managed externally.
explicit PaddleBuf(const PaddleBuf&);
PaddleBuf& operator=(const PaddleBuf&);
PaddleBuf& operator=(PaddleBuf&&);
// Do not own the memory.
PaddleBuf(void* data, size_t length)
: data_(data), length_(length), memory_owned_{false} {}
// Own memory.
explicit PaddleBuf(size_t length)
PaddleBuf(size_t length)
: data_(new char[length]), length_(length), memory_owned_(true) {}
// Resize to `length` bytes.
void Resize(size_t length);
......
......@@ -534,8 +534,8 @@ void ElemwiseGradCompute(const framework::ExecutionContext& ctx,
const framework::Tensor& dout, int axis,
framework::Tensor* dx, framework::Tensor* dy,
DX_OP dx_op, DY_OP dy_op) {
const framework::DDim x_dim = x.dims();
const framework::DDim y_dim = y.dims();
const framework::DDim& x_dim = x.dims();
const framework::DDim& y_dim = y.dims();
if (x.dims() == y.dims()) {
ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
ctx, x_dim, y_dim, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
......@@ -558,19 +558,19 @@ void ElemwiseExplicitGradCompute(const framework::ExecutionContext& ctx,
framework::Tensor* dx, framework::Tensor* dy,
DX_OP dx_op, DY_OP dy_op) {
if (dy == nullptr) {
const framework::DDim dx_dims = dout.dims();
const framework::DDim& dx_dims = dout.dims();
auto dy_dims = dx_dims;
ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
ctx, dx_dims, dy_dims, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
} else {
if (dout.dims() == dy->dims()) {
const framework::DDim dx_dims = dout.dims();
const framework::DDim dy_dims = dy->dims();
const framework::DDim& dx_dims = dout.dims();
const framework::DDim& dy_dims = dy->dims();
ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
ctx, dx_dims, dy_dims, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
} else { // Y is a scalar
auto dx_dims = dout.dims();
const framework::DDim dy_dims = dy->dims();
const framework::DDim& dy_dims = dy->dims();
ElemwiseGradComputeWithBroadcast<DeviceContext, T, DX_OP, DY_OP>(
ctx, dx_dims, dy_dims, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
}
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
......@@ -14,6 +14,8 @@ limitations under the License. */
#define EIGEN_USE_GPU
#include <cub/cub.cuh>
#include "paddle/fluid/operators/math/cross_entropy.h"
#include "paddle/fluid/operators/softmax_with_cross_entropy_op.h"
namespace paddle {
......@@ -53,8 +55,196 @@ __global__ void SoftCrossEntropyGradientKernel(T* logit_grad,
logit_grad[ids] = loss_grad[row_ids] * (logit_grad[ids] - labels[ids]);
}
}
} // namespace
static __device__ __forceinline__ float real_exp(float x) { return expf(x); }
static __device__ __forceinline__ double real_exp(double x) { return exp(x); }
static __device__ __forceinline__ float real_log(float x) {
return math::TolerableValue<float>()(logf(x));
}
static __device__ __forceinline__ double real_log(double x) {
return math::TolerableValue<double>()(log(x));
}
/** In the following codes, 3 CUDA kernels are implemented to calculate softmax
* and loss **/
/*
Supposing the x is `logits` and y is `labels`, the equations are as
followings:
cross\_entropy_i = \sum_{j}[- y_i_j * log({e^{x_i_j}/\sum_{j}e^{x_i_j}})]
= \sum_{j}[- y_i_j * log({e^{x_i_j - max_i}/\sum_{j}e^{x_i_j-max_i}})]
= \sum_{j}[-y_i_j * (x_i_j - max_i - log\sum_{j}e^{x_i_j - max_i})]
= \sum_{j}[-y_i_j * (x_i_j - max_i - logDiffMaxSum_i)]
= \sum_{j}(-y_i_j * tmp_i_j)
softmax_i_j = e^{tmp_i_j}
where:
max_i = \max_{j}{x_i_j}
logDiffMaxSum_i = log\sum_{j}e^{x_i_j - max_i}
tmp_i_j = x_i_j - max_i - logDiffMaxSum_i
Therefore, the calculation can be separated into 3 steps:
Step 1: row-wise operation to calculate max_i
Step 2: row-wise operation to calculate logDiffMaxSum_i
Step 3: caculate tmp_i_j, and finally get softmax_i_j and cross\_entropy_i
To save memory, we can share memory among max_i, logDiffMaxSum_i and
cross\_entropy_i.
In this way, the 3 steps should be changed to:
Step 1 (RowReductionForMax): row-wise operation to calculate max_i
Step 2 (RowReductionForDiffMaxSum): calculate immediate result of softmax'_i_j =
x_i_j - max_i, and row-wise operation to calculate logDiffMaxSum_i
Step 3 (RowReductionForSoftmaxAndCrossEntropy): calculate tmp_i_j = softmax'_i_j
- logDiffMaxSum_i, and finally get softmax_i_j and cross\_entropy_i
*/
// There are 3 kinds of reduce algorithms in cub:
// BLOCK_REDUCE_RAKING_COMMUTATIVE_ONLY
// BLOCK_REDUCE_RAKING
// BLOCK_REDUCE_WARP_REDUCTIONS (default)
template <typename T, int BlockDim>
using BlockReduce =
cub::BlockReduce<T, BlockDim /*, cub::BLOCK_REDUCE_WARP_REDUCTIONS*/>;
template <typename T, int BlockDim>
using BlockReduceTempStorage = typename BlockReduce<T, BlockDim>::TempStorage;
// Make sure that BlockDim <= feature_size
// This kernel is used to calculate the max element of each row
template <typename T, int BlockDim>
__global__ void RowReductionForMax(const T* logits_data, T* max_data,
int feature_size) {
__shared__ BlockReduceTempStorage<T, BlockDim> temp_storage;
auto beg_idx = feature_size * blockIdx.x + threadIdx.x;
auto end_idx = feature_size * (blockIdx.x + 1);
T cur_max = logits_data[beg_idx];
beg_idx += BlockDim;
while (beg_idx < end_idx) {
if (cur_max < logits_data[beg_idx]) {
cur_max = logits_data[beg_idx];
}
beg_idx += BlockDim;
}
cur_max = BlockReduce<T, BlockDim>(temp_storage).Reduce(cur_max, cub::Max());
if (threadIdx.x == 0) {
max_data[blockIdx.x] = cur_max < -64 ? -64 : cur_max;
}
}
// Make sure that BlockDim <= feature_size
template <typename T, int BlockDim>
__global__ void RowReductionForDiffMaxSum(const T* logits_data, T* max_data,
T* softmax, int feature_size) {
__shared__ BlockReduceTempStorage<T, BlockDim> temp_storage;
auto beg_idx = feature_size * blockIdx.x + threadIdx.x;
auto end_idx = feature_size * (blockIdx.x + 1);
auto block_max = max_data[blockIdx.x];
softmax[beg_idx] = logits_data[beg_idx] - block_max;
T diff_max_sum = real_exp(softmax[beg_idx]);
beg_idx += BlockDim;
while (beg_idx < end_idx) {
softmax[beg_idx] = logits_data[beg_idx] - block_max;
diff_max_sum += real_exp(softmax[beg_idx]);
beg_idx += BlockDim;
}
diff_max_sum =
BlockReduce<T, BlockDim>(temp_storage).Reduce(diff_max_sum, cub::Sum());
if (threadIdx.x == 0) max_data[blockIdx.x] = real_log(diff_max_sum);
}
// Make sure that BlockDim <= feature_size
template <typename T, int BlockDim>
__global__ void RowReductionForSoftmaxAndCrossEntropy(const T* logits_data,
const T* labels_data,
T* loss_data, T* softmax,
int feature_size) {
__shared__ BlockReduceTempStorage<T, BlockDim> temp_storage;
auto beg_idx = feature_size * blockIdx.x + threadIdx.x;
auto end_idx = feature_size * (blockIdx.x + 1);
// log_diff_max_sum shares memory with loss
auto block_log_diff_max_sum = loss_data[blockIdx.x];
auto tmp = softmax[beg_idx] - block_log_diff_max_sum;
softmax[beg_idx] = real_exp(tmp);
auto loss = -labels_data[beg_idx] * tmp;
beg_idx += BlockDim;
while (beg_idx < end_idx) {
tmp = softmax[beg_idx] - block_log_diff_max_sum;
softmax[beg_idx] = real_exp(tmp);
loss -= (labels_data[beg_idx] * tmp);
beg_idx += BlockDim;
}
loss = BlockReduce<T, BlockDim>(temp_storage).Reduce(loss, cub::Sum());
if (threadIdx.x == 0) loss_data[blockIdx.x] = loss;
}
template <typename T>
__global__ void SetSoftmaxToOneWhenFeatureSizeIsOne(T* out, int batch_size) {
auto idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < batch_size) out[idx] = static_cast<T>(1);
}
template <typename T>
static void SoftmaxWithCrossEntropyFusedKernel(const T* logits_data,
const T* labels_data,
T* softmax_data, T* loss_data,
int batch_size, int feature_size,
cudaStream_t stream) {
constexpr int kMaxBlockDim = 512;
int block_dim = feature_size >= kMaxBlockDim
? kMaxBlockDim
: (1 << static_cast<int>(std::log2(feature_size)));
#define CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(BlockDim) \
case BlockDim: \
RowReductionForMax<T, BlockDim><<<batch_size, BlockDim, 0, stream>>>( \
logits_data, loss_data, feature_size); \
RowReductionForDiffMaxSum<T, \
BlockDim><<<batch_size, BlockDim, 0, stream>>>( \
logits_data, loss_data, softmax_data, feature_size); \
RowReductionForSoftmaxAndCrossEntropy< \
T, BlockDim><<<batch_size, BlockDim, 0, stream>>>( \
logits_data, labels_data, loss_data, softmax_data, feature_size); \
break
switch (block_dim) {
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(512);
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(256);
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(128);
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(64);
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(32);
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(16);
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(8);
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(4);
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(2);
case 1:
SetSoftmaxToOneWhenFeatureSizeIsOne<<<(batch_size + kMaxBlockDim - 1) /
kMaxBlockDim,
kMaxBlockDim, 0, stream>>>(
softmax_data, batch_size);
cudaMemsetAsync(loss_data, 0, batch_size, stream);
break;
default:
PADDLE_THROW("BlockDim must be 2^n in softmax_with_cross_entropy_op");
break;
}
#undef CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL
}
template <typename T>
class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel<T> {
public:
......@@ -66,14 +256,24 @@ class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel<T> {
Tensor* softmax = context.Output<Tensor>("Softmax");
Tensor* loss = context.Output<Tensor>("Loss");
softmax->mutable_data<T>(context.GetPlace());
loss->mutable_data<T>(context.GetPlace());
math::SoftmaxFunctor<platform::CUDADeviceContext, T>()(
context.cuda_device_context(), logits, softmax);
math::CrossEntropyFunctor<platform::CUDADeviceContext, T>()(
context.cuda_device_context(), loss, softmax, labels,
context.Attr<bool>("soft_label"));
auto* softmax_data = softmax->mutable_data<T>(context.GetPlace());
auto* loss_data = loss->mutable_data<T>(context.GetPlace());
auto soft_label = context.Attr<bool>("soft_label");
if (soft_label) {
int batch_size = logits->dims()[0];
int feature_size = logits->dims()[1];
auto* logits_data = logits->data<T>();
auto* labels_data = labels->data<T>();
SoftmaxWithCrossEntropyFusedKernel(
logits_data, labels_data, softmax_data, loss_data, batch_size,
feature_size, context.cuda_device_context().stream());
} else {
math::SoftmaxCUDNNFunctor<T>()(context.cuda_device_context(), logits,
softmax);
math::CrossEntropyFunctor<platform::CUDADeviceContext, T>()(
context.cuda_device_context(), loss, softmax, labels, false);
}
}
};
......
......@@ -29,13 +29,13 @@ __all__ = ['test, get_dict', 'get_embedding', 'convert']
DATA_URL = 'http://www.cs.upc.edu/~srlconll/conll05st-tests.tar.gz'
DATA_MD5 = '387719152ae52d60422c016e92a742fc'
WORDDICT_URL = 'http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/wordDict.txt'
WORDDICT_URL = 'http://paddlemodels.bj.bcebos.com/conll05st%2FwordDict.txt'
WORDDICT_MD5 = 'ea7fb7d4c75cc6254716f0177a506baa'
VERBDICT_URL = 'http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/verbDict.txt'
VERBDICT_URL = 'http://paddlemodels.bj.bcebos.com/conll05st%2FverbDict.txt'
VERBDICT_MD5 = '0d2977293bbb6cbefab5b0f97db1e77c'
TRGDICT_URL = 'http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/targetDict.txt'
TRGDICT_URL = 'http://paddlemodels.bj.bcebos.com/conll05st%2FtargetDict.txt'
TRGDICT_MD5 = 'd8c7f03ceb5fc2e5a0fa7503a4353751'
EMB_URL = 'http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/emb'
EMB_URL = 'http://paddlemodels.bj.bcebos.com/conll05st%2Femb'
EMB_MD5 = 'bf436eb0faa1f6f9103017f8be57cdb7'
UNK_IDX = 0
......
......@@ -40,7 +40,7 @@ URL_TRAIN = ('http://paddlepaddle.cdn.bcebos.com/demo/'
'wmt_shrinked_data/wmt14.tgz')
MD5_TRAIN = '0791583d57d5beb693b9414c5b36798c'
# BLEU of this trained model is 26.92
URL_MODEL = 'http://paddlepaddle.bj.bcebos.com/demo/wmt_14/wmt14_model.tar.gz'
URL_MODEL = 'http://paddlemodels.bj.bcebos.com/wmt%2Fwmt14.tgz'
MD5_MODEL = '0cb4a5366189b6acba876491c8724fa3'
START = "<s>"
......
......@@ -51,17 +51,17 @@ class TranspilerTest(unittest.TestCase):
self.origin_prog = main.clone()
return main
def get_trainer(self, config=None):
t = self._transpiler_instance(config)
def get_trainer(self, config=None, sync_mode=True):
t = self._transpiler_instance(config, sync_mode)
return t.get_trainer_program()
def get_pserver(self, ep, config=None):
t = self._transpiler_instance(config)
def get_pserver(self, ep, config=None, sync_mode=True):
t = self._transpiler_instance(config, sync_mode)
pserver = t.get_pserver_program(ep)
startup = t.get_startup_program(ep, pserver)
return pserver, startup
def _transpiler_instance(self, config=None):
def _transpiler_instance(self, config=None, sync_mode=True):
if not self.transpiler:
main = self.get_main_program()
self.transpiler = fluid.DistributeTranspiler(config=config)
......@@ -69,7 +69,8 @@ class TranspilerTest(unittest.TestCase):
self.trainer_id,
program=main,
pservers=self.pserver_eps,
trainers=self.trainers)
trainers=self.trainers,
sync_mode=sync_mode)
return self.transpiler
......@@ -464,5 +465,76 @@ class TestDistLookupTable(TestDistLookupTableBase):
self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)
class TestAsyncLocalLookupTable(TestDistLookupTableBase):
def net_conf(self):
self.network_with_table(is_sparse=True, is_distributed=False)
def transpiler_test_impl(self):
config = fluid.DistributeTranspilerConfig()
pserver1, startup1 = self.get_pserver(self.pserver1_ep, config, False)
self.assertEqual(len(pserver1.blocks), 3)
# 0 listen_and_serv
# 1 optimize for fc_w or fc_b adam
self.assertEqual([op.type for op in pserver1.blocks[1].ops],
["adam", "scale", "scale"])
# 2 optimize for table adam
# NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
self.assertEqual([op.type for op in pserver1.blocks[2].ops],
["adam", "scale", "scale"])
trainer = self.get_trainer(config)
self.assertEqual(len(trainer.blocks), 1)
ops = [
'lookup_table', 'sequence_pool', 'lookup_table', 'sequence_pool',
'concat', 'mul', 'elementwise_add', 'cross_entropy', 'mean',
'fill_constant', 'mean_grad', 'cross_entropy_grad',
'elementwise_add_grad', 'send', 'mul_grad', 'send', 'concat_grad',
'sequence_pool_grad', 'lookup_table_grad', 'sequence_pool_grad',
'lookup_table_grad', 'sum', 'split_selected_rows', 'send', 'recv',
'recv', 'recv', 'concat'
]
self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)
class TestAsyncDistLookupTable(TestDistLookupTableBase):
def net_conf(self):
self.network_with_table(is_sparse=True, is_distributed=True)
def transpiler_test_impl(self):
config = fluid.DistributeTranspilerConfig()
pserver1, startup1 = self.get_pserver(self.pserver1_ep, config, False)
self.assertEqual(len(pserver1.blocks), 6)
# 0 listen_and_serv
# 1 optimize for fc_w or fc_b adam
self.assertEqual([op.type for op in pserver1.blocks[1].ops],
["adam", "scale", "scale"])
# 2 optimize for table sgd
self.assertEqual([op.type for op in pserver1.blocks[2].ops], ["sgd"])
# 3 prefetch -> lookup_sparse_table for data0
self.assertEqual([op.type for op in pserver1.blocks[3].ops],
["lookup_sparse_table"])
# 4 prefetch -> lookup_sparse_table for data1
self.assertEqual([op.type for op in pserver1.blocks[4].ops],
["lookup_sparse_table"])
# 5 save table
self.assertEqual([op.type for op in pserver1.blocks[5].ops], ["save"])
trainer = self.get_trainer(config)
self.assertEqual(len(trainer.blocks), 1)
ops = [
'split_ids', 'prefetch', 'merge_ids', 'sequence_pool', 'split_ids',
'prefetch', 'merge_ids', 'sequence_pool', 'concat', 'mul',
'elementwise_add', 'cross_entropy', 'mean', 'fill_constant',
'mean_grad', 'cross_entropy_grad', 'elementwise_add_grad', 'send',
'mul_grad', 'send', 'concat_grad', 'sequence_pool_grad',
'lookup_table_grad', 'sequence_pool_grad', 'lookup_table_grad',
'sum', 'split_ids', 'send', 'recv', 'recv'
]
self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)
if __name__ == "__main__":
unittest.main()
......@@ -293,14 +293,15 @@ class DistributeTranspiler(object):
RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
})
program.global_block().append_op(
type="fetch_barrier",
inputs={},
outputs={},
attrs={
"endpoints": pserver_endpoints,
RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
})
if self.sync_mode:
program.global_block().append_op(
type="fetch_barrier",
inputs={},
outputs={},
attrs={
"endpoints": pserver_endpoints,
RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
})
for varname, splited_var in self.param_var_mapping.iteritems():
if len(splited_var) <= 1:
......
......@@ -29,13 +29,13 @@ __all__ = ['test, get_dict', 'get_embedding', 'convert']
DATA_URL = 'http://www.cs.upc.edu/~srlconll/conll05st-tests.tar.gz'
DATA_MD5 = '387719152ae52d60422c016e92a742fc'
WORDDICT_URL = 'http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/wordDict.txt'
WORDDICT_URL = 'http://paddlemodels.bj.bcebos.com/conll05st%2FwordDict.txt'
WORDDICT_MD5 = 'ea7fb7d4c75cc6254716f0177a506baa'
VERBDICT_URL = 'http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/verbDict.txt'
VERBDICT_URL = 'http://paddlemodels.bj.bcebos.com/conll05st%2FverbDict.txt'
VERBDICT_MD5 = '0d2977293bbb6cbefab5b0f97db1e77c'
TRGDICT_URL = 'http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/targetDict.txt'
TRGDICT_URL = 'http://paddlemodels.bj.bcebos.com/conll05st%2FtargetDict.txt'
TRGDICT_MD5 = 'd8c7f03ceb5fc2e5a0fa7503a4353751'
EMB_URL = 'http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/emb'
EMB_URL = 'http://paddlemodels.bj.bcebos.com/conll05st%2Femb'
EMB_MD5 = 'bf436eb0faa1f6f9103017f8be57cdb7'
UNK_IDX = 0
......
......@@ -41,7 +41,7 @@ URL_TRAIN = ('http://paddlepaddle.cdn.bcebos.com/demo/'
'wmt_shrinked_data/wmt14.tgz')
MD5_TRAIN = '0791583d57d5beb693b9414c5b36798c'
# BLEU of this trained model is 26.92
URL_MODEL = 'http://paddlepaddle.bj.bcebos.com/demo/wmt_14/wmt14_model.tar.gz'
URL_MODEL = 'http://paddlemodels.bj.bcebos.com/wmt%2Fwmt14.tgz'
MD5_MODEL = '0cb4a5366189b6acba876491c8724fa3'
START = "<s>"
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册