提交 cc4a7661 编写于 作者: N nhzlx

merge develop

......@@ -140,5 +140,11 @@ def parse_args():
'--use_lars',
action='store_true',
help='If set, use lars for optimizers, ONLY support resnet module.')
parser.add_argument(
'--reduce_strategy',
type=str,
choices=['reduce', 'all_reduce'],
default='all_reduce',
help='Specify the reduce strategy, can be reduce, all_reduce')
args = parser.parse_args()
return args
......@@ -170,6 +170,14 @@ def train_parallel(train_args, test_args, args, train_prog, test_prog,
strategy = fluid.ExecutionStrategy()
strategy.num_threads = args.cpus
strategy.allow_op_delay = False
build_strategy = fluid.BuildStrategy()
if args.reduce_strategy == "reduce":
build_strategy.reduce_strategy = fluid.BuildStrategy(
).ReduceStrategy.Reduce
else:
build_strategy.reduce_strategy = fluid.BuildStrategy(
).ReduceStrategy.AllReduce
avg_loss = train_args[0]
if args.update_method == "pserver":
......@@ -184,6 +192,7 @@ def train_parallel(train_args, test_args, args, train_prog, test_prog,
avg_loss.name,
main_program=train_prog,
exec_strategy=strategy,
build_strategy=build_strategy,
num_trainers=num_trainers,
trainer_id=trainer_id)
......
......@@ -67,11 +67,14 @@ def cnn_model(data):
def get_model(args, is_train, main_prog, startup_prog):
# NOTE: mnist is small, we don't implement data sharding yet.
filelist = [
os.path.join(args.data_path, f) for f in os.listdir(args.data_path)
]
opt = None
data_file_handle = None
with fluid.program_guard(main_prog, startup_prog):
if args.use_reader_op:
filelist = [
os.path.join(args.data_path, f)
for f in os.listdir(args.data_path)
]
data_file_handle = fluid.layers.open_files(
filenames=filelist,
shapes=[[-1, 1, 28, 28], (-1, 1)],
......@@ -100,7 +103,7 @@ def get_model(args, is_train, main_prog, startup_prog):
if is_train:
opt = fluid.optimizer.AdamOptimizer(
learning_rate=0.001, beta1=0.9, beta2=0.999)
opt.minimize()
opt.minimize(avg_cost)
if args.memory_optimize:
fluid.memory_optimize(main_prog)
......
......@@ -207,7 +207,7 @@ def get_model(args, is_train, main_prog, startup_prog):
total_images = 1281167 / trainer_count
step = int(total_images / args.batch_size + 1)
step = int(total_images / (args.batch_size * args.gpus) + 1)
epochs = [30, 60, 90]
bd = [step * e for e in epochs]
base_lr = args.learning_rate
......
......@@ -16,7 +16,9 @@ find_library(TENSORRT_LIBRARY NAMES libnvinfer.so libnvinfer.a
DOC "Path to TensorRT library.")
if(TENSORRT_INCLUDE_DIR AND TENSORRT_LIBRARY)
if(WITH_DSO)
set(TENSORRT_FOUND ON)
endif(WITH DSO)
else()
set(TENSORRT_FOUND OFF)
endif()
......
......@@ -59,7 +59,7 @@ paddle.fluid.DistributeTranspiler.__init__ ArgSpec(args=['self', 'config'], vara
paddle.fluid.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DistributeTranspiler.get_pserver_programs ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.DistributeTranspiler.get_trainer_program ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DistributeTranspiler.get_trainer_program ArgSpec(args=['self', 'wait_port'], varargs=None, keywords=None, defaults=(True,))
paddle.fluid.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode', 'startup_program'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True, None))
paddle.fluid.InferenceTranspiler.__init__
paddle.fluid.InferenceTranspiler.transpile ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,))
......@@ -305,9 +305,9 @@ paddle.fluid.layers.target_assign ArgSpec(args=['input', 'matched_indices', 'neg
paddle.fluid.layers.detection_output ArgSpec(args=['loc', 'scores', 'prior_box', 'prior_box_var', 'background_label', 'nms_threshold', 'nms_top_k', 'keep_top_k', 'score_threshold', 'nms_eta'], varargs=None, keywords=None, defaults=(0, 0.3, 400, 200, 0.01, 1.0))
paddle.fluid.layers.ssd_loss ArgSpec(args=['location', 'confidence', 'gt_box', 'gt_label', 'prior_box', 'prior_box_var', 'background_label', 'overlap_threshold', 'neg_pos_ratio', 'neg_overlap', 'loc_loss_weight', 'conf_loss_weight', 'match_type', 'mining_type', 'normalize', 'sample_size'], varargs=None, keywords=None, defaults=(None, 0, 0.5, 3.0, 0.5, 1.0, 1.0, 'per_prediction', 'max_negative', True, None))
paddle.fluid.layers.detection_map ArgSpec(args=['detect_res', 'label', 'class_num', 'background_label', 'overlap_threshold', 'evaluate_difficult', 'has_state', 'input_states', 'out_states', 'ap_version'], varargs=None, keywords=None, defaults=(0, 0.3, True, None, None, None, 'integral'))
paddle.fluid.layers.rpn_target_assign ArgSpec(args=['loc', 'scores', 'anchor_box', 'anchor_var', 'gt_box', 'rpn_batch_size_per_im', 'fg_fraction', 'rpn_positive_overlap', 'rpn_negative_overlap'], varargs=None, keywords=None, defaults=(256, 0.25, 0.7, 0.3))
paddle.fluid.layers.rpn_target_assign ArgSpec(args=['bbox_pred', 'cls_logits', 'anchor_box', 'anchor_var', 'gt_boxes', 'is_crowd', 'im_info', 'rpn_batch_size_per_im', 'rpn_straddle_thresh', 'rpn_fg_fraction', 'rpn_positive_overlap', 'rpn_negative_overlap', 'use_random'], varargs=None, keywords=None, defaults=(256, 0.0, 0.5, 0.7, 0.3, True))
paddle.fluid.layers.anchor_generator ArgSpec(args=['input', 'anchor_sizes', 'aspect_ratios', 'variance', 'stride', 'offset', 'name'], varargs=None, keywords=None, defaults=(None, None, [0.1, 0.1, 0.2, 0.2], None, 0.5, None))
paddle.fluid.layers.generate_proposal_labels ArgSpec(args=['rpn_rois', 'gt_classes', 'gt_boxes', 'im_scales', 'batch_size_per_im', 'fg_fraction', 'fg_thresh', 'bg_thresh_hi', 'bg_thresh_lo', 'bbox_reg_weights', 'class_nums'], varargs=None, keywords=None, defaults=(256, 0.25, 0.25, 0.5, 0.0, [0.1, 0.1, 0.2, 0.2], None))
paddle.fluid.layers.generate_proposal_labels ArgSpec(args=['rpn_rois', 'gt_classes', 'is_crowd', 'gt_boxes', 'im_info', 'batch_size_per_im', 'fg_fraction', 'fg_thresh', 'bg_thresh_hi', 'bg_thresh_lo', 'bbox_reg_weights', 'class_nums', 'use_random'], varargs=None, keywords=None, defaults=(256, 0.25, 0.25, 0.5, 0.0, [0.1, 0.1, 0.2, 0.2], None, True))
paddle.fluid.layers.generate_proposals ArgSpec(args=['scores', 'bbox_deltas', 'im_info', 'anchors', 'variances', 'pre_nms_top_n', 'post_nms_top_n', 'nms_thresh', 'min_size', 'eta', 'name'], varargs=None, keywords=None, defaults=(6000, 1000, 0.5, 0.1, 1.0, None))
paddle.fluid.layers.iou_similarity ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.box_coder ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
......@@ -346,7 +346,7 @@ paddle.fluid.transpiler.DistributeTranspiler.__init__ ArgSpec(args=['self', 'con
paddle.fluid.transpiler.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.get_pserver_programs ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.transpiler.DistributeTranspiler.get_trainer_program ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.get_trainer_program ArgSpec(args=['self', 'wait_port'], varargs=None, keywords=None, defaults=(True,))
paddle.fluid.transpiler.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode', 'startup_program'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True, None))
paddle.fluid.transpiler.InferenceTranspiler.__init__
paddle.fluid.transpiler.InferenceTranspiler.transpile ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,))
......
......@@ -46,7 +46,8 @@ AllReduceOpHandle::AllReduceOpHandle(ir::Node *node,
#endif
void AllReduceOpHandle::RunImpl() {
platform::RecordEvent r("all_reduce", nullptr);
platform::RecordEvent record_event(Name(), dev_ctxes_.begin()->second);
if (NoDummyInputSize() == 1) {
return; // No need to all reduce when GPU count = 1;
} else {
......
......@@ -15,12 +15,15 @@
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
#include "paddle/fluid/framework/details/container_cast.h"
#include "paddle/fluid/framework/details/variable_visitor.h"
#include "paddle/fluid/platform/profiler.h"
namespace paddle {
namespace framework {
namespace details {
void BroadcastOpHandle::RunImpl() {
platform::RecordEvent record_event(Name(), dev_ctxes_.begin()->second);
if (places_.size() == 1) return;
// The input and output may have dummy vars.
......
......@@ -348,14 +348,31 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
size_t cur_device_id = 0;
bool is_forwarding = true;
bool is_dist_train = false;
for (ir::Node *node : sorted_ops) {
if (boost::get<int>(
node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
static_cast<int>(OpRole::kRPC)) {
CreateRPCOp(&result, node);
int op_dev_id = CreateRPCOp(&result, node);
PADDLE_ENFORCE(op_dev_id != -1,
"Can not schedule the RPC operator to the right place.");
if (node->Op()->Type() == "recv") {
auto recv_vars_attr =
boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
OpProtoAndCheckerMaker::OpRoleVarAttrName()));
PADDLE_ENFORCE(recv_vars_attr.size() == 2UL); // [parameter, gradient]
if (recv_vars_attr[0].find(".block") == std::string::npos) {
bcast_var_name_set[op_dev_id].emplace(recv_vars_attr[0]);
}
}
is_dist_train = true;
} else if (IsDistTrainOp(node, send_vars, recv_vars)) {
CreateDistTrainOp(&result, node);
int op_dev_id = CreateDistTrainOp(&result, node);
if (node->Op()->Type() == "concat") {
auto origin_param_name = node->Op()->OutputArgumentNames()[0];
bcast_var_name_set[op_dev_id].emplace(origin_param_name);
}
} else if (IsScaleLossOp(node)) {
// user can customize loss@grad if not use_default_grad_scale_
if (strategy_.gradient_scale_ !=
......@@ -414,7 +431,9 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
CreateReduceOp(&result, g_name, cur_device_id);
graph->Get<ShardedVarDevice>(kShardedVarDevice)
.emplace(g_name, cur_device_id);
bcast_var_name_set[cur_device_id].emplace(p_name);
if (!is_dist_train) {
bcast_var_name_set[cur_device_id].emplace(p_name);
}
break;
case BuildStrategy::ReduceStrategy::kAllReduce:
if (IsSparseGradient(g_name)) {
......@@ -436,14 +455,19 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
}
}
}
bool use_gpu = false;
#ifdef PADDLE_WITH_CUDA
use_gpu = nccl_ctxs_ != nullptr;
#endif
if (use_gpu && strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
// Insert BCast Ops
// Insert broadcast operators principle:
// 1. Broadcast optimized parameters in Reduce strategy;
// 2. No need broadcast optimized parameters in AllReduce strategy because of
// the optimization sub-graph would be run on every GPU;
// 3. Allways broadcast received parameters in Distribute Training.
if ((use_gpu &&
strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) ||
is_dist_train) {
for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
auto &to_bcast_set = bcast_var_name_set[dev_id];
for (auto &bcast_name : to_bcast_set) {
......@@ -675,8 +699,8 @@ VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(ir::Graph *result,
return var;
}
void MultiDevSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result,
ir::Node *node) const {
int MultiDevSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result,
ir::Node *node) const {
int op_dev_id = -1;
std::vector<std::string> input_var_names;
std::vector<std::string> output_var_names;
......@@ -719,6 +743,7 @@ void MultiDevSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result,
node->Op()->Type());
CreateComputationalOp(result, node, op_dev_id);
return op_dev_id;
}
void SetOpInputsAllPlaces(ir::Graph *result, ir::Node *node, int num_places) {
......@@ -737,8 +762,8 @@ void SetOpInputsAllPlaces(ir::Graph *result, ir::Node *node, int num_places) {
}
// Create RPC related op handles that connects its in ops and out ops.
void MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result,
ir::Node *node) const {
int MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result,
ir::Node *node) const {
int op_dev_id = -1;
if (node->Op()->Type() == "send") {
// TODO(paddle-dev): getting the first var is not safe.
......@@ -824,6 +849,7 @@ void MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result,
CreateOpOutput(result, op_handle, new_node, p, outvar_dev_id);
}
}
return op_dev_id;
}
bool MultiDevSSAGraphBuilder::IsScaleLossOp(ir::Node *node) const {
......
......@@ -54,8 +54,8 @@ class MultiDevSSAGraphBuilder : public ir::Pass {
bool IsScaleLossOp(ir::Node *node) const;
void CreateRPCOp(ir::Graph *result, ir::Node *node) const;
void CreateDistTrainOp(ir::Graph *result, ir::Node *node) const;
int CreateRPCOp(ir::Graph *result, ir::Node *node) const;
int CreateDistTrainOp(ir::Graph *result, ir::Node *node) const;
/**
* Is this operator as the end-point operator before/after send operator.
......
......@@ -27,7 +27,8 @@ namespace framework {
namespace details {
void ReduceOpHandle::RunImpl() {
platform::RecordEvent r("reduce", nullptr);
platform::RecordEvent record_event(Name(), dev_ctxes_.begin()->second);
if (places_.size() == 1) return;
// the input and output may have dummy var.
auto in_var_handles = DynamicCast<VarHandle>(inputs_);
......
......@@ -51,7 +51,7 @@ void ScaleLossGradOpHandle::RunImpl() {
->stream();
memory::Copy(boost::get<platform::CUDAPlace>(place_), tmp,
platform::CPUPlace(), &coeff_, sizeof(float), stream);
VLOG(1) << place_ << "RUN Scale loss grad op";
VLOG(10) << place_ << "RUN Scale loss grad op";
});
#endif
}
......
......@@ -58,7 +58,7 @@ std::unique_ptr<ir::Graph> ConvReLUFusePass::ApplyImpl(
desc.SetInput("Input", std::vector<std::string>({conv_relu_i_in}));
desc.SetInput("Filter", std::vector<std::string>({conv_relu_w_in}));
desc.SetInput("Bias", std::vector<std::string>({conv_relu_b_in}));
desc.SetOutput("Out", std::vector<std::string>({conv_relu_out}));
desc.SetOutput("Output", std::vector<std::string>({conv_relu_out}));
desc.SetType("conv2d");
for (auto& attr : conv->Op()->GetAttrMap()) {
desc.SetAttr(attr.first, attr.second);
......
......@@ -429,7 +429,7 @@ struct LSTM : public PatternBase {
struct GRU : public PatternBase {
GRU(PDPattern* pattern, const std::string& name_scope)
: PatternBase(pattern, name_scope, "lstm") {}
: PatternBase(pattern, name_scope, "gru") {}
PDNode* operator()(PDNode* x);
......
......@@ -72,6 +72,9 @@ class Analyzer : public OrderedRegistry<PassManager> {
"mul_gru_fuse_pass", //
"seq_concat_fc_fuse_pass", //
"fc_fuse_pass", //
#ifdef PADDLE_WITH_MKLDNN
"conv_relu_mkldnn_fuse_pass", //
#endif
}};
std::unordered_set<std::string> disabled_ir_passes_;
......
......@@ -120,13 +120,20 @@ void UnionContractedNodes(const std::unordered_map<int, BriefNode *> &node_map,
outputs.insert(node);
}
// update the dst and src node's inlinks and outlinks.
// update the dst and src node's inlinks and outlinks.
#ifdef __clang__
src_node->inlinks = std::vector<BriefNode *>(inputs.begin(), inputs.end());
src_node->outlinks = std::vector<BriefNode *>(outputs.begin(), outputs.end());
dst_node->inlinks.clear();
dst_node->outlinks.clear();
#else
src_node->inlinks =
std::move(std::vector<BriefNode *>(inputs.begin(), inputs.end()));
src_node->outlinks =
std::move(std::vector<BriefNode *>(outputs.begin(), outputs.end()));
dst_node->inlinks.clear();
dst_node->outlinks.clear();
#endif
auto inlink_or_outlink_cleaner = [&](std::vector<BriefNode *> &nodes) {
for (auto *&n : nodes) {
......
......@@ -77,6 +77,9 @@ bool AnalysisPredictor::Init(
OptimizeInferenceProgram();
ctx_ = executor_->Prepare(*inference_program_, 0);
if (config_._use_mkldnn) {
executor_->EnableMKLDNN(*inference_program_);
}
VLOG(5) << "to create variables";
PADDLE_ENFORCE(scope_.get());
......
......@@ -9,8 +9,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <glog/logging.h>
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
......@@ -64,13 +64,15 @@ PaddleBuf& PaddleBuf::operator=(PaddleBuf&& other) {
void PaddleBuf::Resize(size_t length) {
// Only the owned memory can be reset, the external memory can't be changed.
if (length_ == length) return;
if (length_ >= length) return;
if (memory_owned_) {
Free();
data_ = malloc(length);
length_ = length;
memory_owned_ = true;
} else {
PADDLE_THROW("The memory is allocated externally, can not Resized");
}
data_ = new char[length];
length_ = length;
memory_owned_ = true;
}
void PaddleBuf::Reset(void* data, size_t length) {
......@@ -82,8 +84,8 @@ void PaddleBuf::Reset(void* data, size_t length) {
void PaddleBuf::Free() {
if (memory_owned_ && data_) {
assert(length_ > 0);
delete[] static_cast<char*>(data_);
PADDLE_ENFORCE_GT(length_, 0);
free(static_cast<char*>(data_));
data_ = nullptr;
length_ = 0;
}
......
......@@ -106,6 +106,9 @@ bool NativePaddlePredictor::Init(
}
ctx_ = executor_->Prepare(*inference_program_, 0);
if (config_._use_mkldnn) {
executor_->EnableMKLDNN(*inference_program_);
}
executor_->CreateVariables(*inference_program_,
sub_scope_ ? sub_scope_ : scope_.get(), 0);
......
......@@ -123,10 +123,16 @@ std::string DescribeTensor(const PaddleTensor &tensor) {
}
void PrintTime(int batch_size, int repeat, int num_threads, int tid,
double latency) {
double latency, int epoch = 1) {
LOG(INFO) << "====== batch_size: " << batch_size << ", repeat: " << repeat
<< ", threads: " << num_threads << ", thread id: " << tid
<< ", latency: " << latency << "ms ======";
if (epoch > 1) {
int samples = batch_size * epoch;
LOG(INFO) << "====== sample number: " << samples
<< ", average latency of each sample: " << latency / samples
<< "ms ======";
}
}
} // namespace inference
......
......@@ -45,7 +45,7 @@ class PaddleBuf {
PaddleBuf(void* data, size_t length)
: data_(data), length_(length), memory_owned_{false} {}
// Own memory.
PaddleBuf(size_t length)
explicit PaddleBuf(size_t length)
: data_(new char[length]), length_(length), memory_owned_(true) {}
// Resize to `length` bytes.
void Resize(size_t length);
......@@ -121,6 +121,8 @@ struct NativeConfig : public PaddlePredictor::Config {
bool use_gpu{false};
int device{0};
float fraction_of_gpu_memory{-1.f}; // Negative to notify initialization.
// NOTE: NOT use it, just for the internal test, will discard later
bool _use_mkldnn{false};
// Specify the variable's name of each input.
bool specify_input_name{false};
......
function (inference_download_and_uncompress install_dir url)
get_filename_component(filename ${url} NAME)
message(STATUS "Download inference test stuff ${filename} from ${url}")
set(INFERENCE_URL "http://paddle-inference-dist.bj.bcebos.com")
set(INFERENCE_DEMO_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo")
set(INFERENCE_EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis_predictor)
function (inference_download_and_uncompress install_dir filename)
message(STATUS "Download inference test stuff from ${INFERENCE_URL}/${filename}")
execute_process(COMMAND bash -c "mkdir -p ${install_dir}")
execute_process(COMMAND bash -c "cd ${install_dir} && wget -q ${url}")
execute_process(COMMAND bash -c "cd ${install_dir} && wget -q ${INFERENCE_URL}/${filename}")
execute_process(COMMAND bash -c "cd ${install_dir} && tar xzf ${filename}")
message(STATUS "finish downloading ${filename}")
endfunction(inference_download_and_uncompress)
function(download_model_and_data install_dir model_url data_url)
function(download_model_and_data install_dir model_name data_name)
if (NOT EXISTS ${install_dir} AND WITH_INFERENCE)
inference_download_and_uncompress(${install_dir} ${model_url})
inference_download_and_uncompress(${install_dir} ${data_url})
inference_download_and_uncompress(${install_dir} ${model_name})
inference_download_and_uncompress(${install_dir} ${data_name})
endif()
endfunction()
# RNN1
set(RNN1_MODEL_URL "http://paddle-inference-dist.bj.bcebos.com/rnn1%2Fmodel.tar.gz")
set(RNN1_DATA_URL "http://paddle-inference-dist.bj.bcebos.com/rnn1%2Fdata.txt.tar.gz")
set(RNN1_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo/rnn1")
download_model_and_data(${RNN1_INSTALL_DIR} ${RNN1_MODEL_URL} ${RNN1_DATA_URL})
inference_analysis_test(test_analyzer_rnn1 SRCS analyzer_rnn1_tester.cc
EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis_predictor
ARGS --infer_model=${RNN1_INSTALL_DIR}/model
--infer_data=${RNN1_INSTALL_DIR}/data.txt)
# TODO: fix this test on MACOS
message(WARNING "These tests has been disabled in OSX before being fixed: \n test_analyzer_rnn1")
if(NOT APPLE)
set(RNN1_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/rnn1")
download_model_and_data(${RNN1_INSTALL_DIR} "rnn1%2Fmodel.tar.gz" "rnn1%2Fdata.txt.tar.gz")
inference_analysis_test(test_analyzer_rnn1 SRCS analyzer_rnn1_tester.cc
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS}
ARGS --infer_model=${RNN1_INSTALL_DIR}/model
--infer_data=${RNN1_INSTALL_DIR}/data.txt)
endif(NOT APPLE)
# RNN2
set(RNN2_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/rnn2")
download_model_and_data(${RNN2_INSTALL_DIR} "rnn2_model.tar.gz" "rnn2_data.txt.tar.gz")
inference_analysis_test(test_analyzer_rnn2 SRCS analyzer_rnn2_tester.cc
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS}
ARGS --infer_model=${RNN2_INSTALL_DIR}/model
--infer_data=${RNN2_INSTALL_DIR}/data.txt)
# chinese_ner
set(CHINESE_NER_MODEL_URL "http://paddle-inference-dist.bj.bcebos.com/chinese_ner_model.tar.gz")
set(CHINESE_NER_DATA_URL "http://paddle-inference-dist.bj.bcebos.com/chinese_ner-data.txt.tar.gz")
set(CHINESE_NER_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo/chinese_ner")
download_model_and_data(${CHINESE_NER_INSTALL_DIR} ${CHINESE_NER_MODEL_URL} ${CHINESE_NER_DATA_URL})
set(CHINESE_NER_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/chinese_ner")
download_model_and_data(${CHINESE_NER_INSTALL_DIR} "chinese_ner_model.tar.gz" "chinese_ner-data.txt.tar.gz")
inference_analysis_test(test_analyzer_ner SRCS analyzer_ner_tester.cc
EXTRA_DEPS paddle_inference_api paddle_fluid_api analysis_predictor
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS}
ARGS --infer_model=${CHINESE_NER_INSTALL_DIR}/model
--infer_data=${CHINESE_NER_INSTALL_DIR}/data.txt)
# lac
set(LAC_MODEL_URL "http://paddle-inference-dist.bj.bcebos.com/lac_model.tar.gz")
set(LAC_DATA_URL "http://paddle-inference-dist.bj.bcebos.com/lac_data.txt.tar.gz")
set(LAC_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo/lac")
download_model_and_data(${LAC_INSTALL_DIR} ${LAC_MODEL_URL} ${LAC_DATA_URL})
set(LAC_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/lac")
download_model_and_data(${LAC_INSTALL_DIR} "lac_model.tar.gz" "lac_data.txt.tar.gz")
inference_analysis_test(test_analyzer_lac SRCS analyzer_lac_tester.cc
EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis_predictor
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS}
ARGS --infer_model=${LAC_INSTALL_DIR}/model
--infer_data=${LAC_INSTALL_DIR}/data.txt)
# text_classification
set(TEXT_CLASSIFICATION_MODEL_URL "http://paddle-inference-dist.bj.bcebos.com/text-classification-Senta.tar.gz")
set(TEXT_CLASSIFICATION_DATA_URL "http://paddle-inference-dist.bj.bcebos.com/text_classification_data.txt.tar.gz")
set(TEXT_CLASSIFICATION_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo/text_classification")
download_model_and_data(${TEXT_CLASSIFICATION_INSTALL_DIR} ${TEXT_CLASSIFICATION_MODEL_URL} ${TEXT_CLASSIFICATION_DATA_URL})
inference_analysis_test(test_text_classification SRCS analyzer_text_classification_tester.cc
EXTRA_DEPS paddle_inference_api paddle_fluid_api analysis_predictor
ARGS --infer_model=${TEXT_CLASSIFICATION_INSTALL_DIR}/text-classification-Senta
--infer_data=${TEXT_CLASSIFICATION_INSTALL_DIR}/data.txt
--topn=1 # Just run top 1 batch.
)
set(TEXT_CLASSIFICATION_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/text_classification")
download_model_and_data(${TEXT_CLASSIFICATION_INSTALL_DIR} "text-classification-Senta.tar.gz" "text_classification_data.txt.tar.gz")
inference_analysis_test(test_analyzer_text_classification SRCS analyzer_text_classification_tester.cc
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS}
ARGS --infer_model=${TEXT_CLASSIFICATION_INSTALL_DIR}/model
--infer_data=${TEXT_CLASSIFICATION_INSTALL_DIR}/data.txt)
# ocr
set(OCR_MODEL_URL "http://paddlemodels.cdn.bcebos.com/inference-vis-demos%2Focr.tar.gz")
set(OCR_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo/ocr")
if (NOT EXISTS ${OCR_INSTALL_DIR} AND WITH_INFERENCE)
get_filename_component(filename ${OCR_MODEL_URL} NAME)
message(STATUS "Download inference test stuff ${filename} from ${OCR_MODEL_URL}")
execute_process(COMMAND bash -c "mkdir -p ${OCR_INSTALL_DIR}")
execute_process(COMMAND bash -c "cd ${OCR_INSTALL_DIR} && wget -q ${OCR_MODEL_URL}")
execute_process(COMMAND bash -c "cd ${OCR_INSTALL_DIR} && tar xzf ${filename}")
message(STATUS "finish downloading ${filename}")
endif()
inference_analysis_test(test_analyzer_ocr SRCS analyzer_vis_tester.cc
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS}
ARGS --infer_model=${OCR_INSTALL_DIR}/model
--infer_data=${OCR_INSTALL_DIR}/data.txt)
......@@ -12,21 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/analysis/analyzer.h"
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/platform/profiler.h"
DEFINE_string(infer_model, "", "model path for LAC");
DEFINE_string(infer_data, "", "data file for LAC");
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(burning, 0, "Burning before repeat.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace paddle {
namespace inference {
......@@ -124,48 +110,38 @@ const int64_t lac_ref_data[] = {24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25,
void TestLACPrediction(const std::string &model_path,
const std::string &data_file, const int batch_size,
const int repeat, bool test_all_data,
bool use_analysis = false) {
NativeConfig config;
config.model_dir = model_path;
config.use_gpu = false;
config.device = 0;
config.specify_input_name = true;
const int repeat, bool use_analysis = false) {
AnalysisConfig cfg;
cfg.model_dir = model_path;
cfg.use_gpu = false;
cfg.device = 0;
cfg.specify_input_name = true;
cfg.enable_ir_optim = true;
std::vector<PaddleTensor> input_slots, outputs_slots;
DataRecord data(data_file, batch_size);
GetOneBatch(&input_slots, &data, batch_size);
std::unique_ptr<PaddlePredictor> predictor;
if (use_analysis) {
AnalysisConfig cfg;
cfg.model_dir = model_path;
cfg.use_gpu = false;
cfg.device = 0;
cfg.specify_input_name = true;
cfg.enable_ir_optim = true;
predictor =
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(cfg);
} else {
predictor =
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(cfg);
}
for (int i = 0; i < FLAGS_burning; i++) {
predictor->Run(input_slots, &outputs_slots);
}
Timer timer;
if (test_all_data) {
double sum = 0;
LOG(INFO) << "Total number of samples: " << data.datasets.size();
for (int i = 0; i < repeat; i++) {
for (size_t bid = 0; bid < data.batched_datas.size(); ++bid) {
GetOneBatch(&input_slots, &data, batch_size);
timer.tic();
predictor->Run(input_slots, &outputs_slots);
sum += timer.toc();
}
if (FLAGS_test_all_data) {
LOG(INFO) << "test all data";
std::vector<std::vector<PaddleTensor>> input_slots_all;
for (size_t bid = 0; bid < data.batched_datas.size(); ++bid) {
GetOneBatch(&input_slots, &data, batch_size);
input_slots_all.emplace_back(input_slots);
}
PrintTime(batch_size, repeat, 1, 0, sum / repeat);
LOG(INFO) << "Average latency of each sample: "
<< sum / repeat / data.datasets.size() << " ms";
LOG(INFO) << "total number of samples: " << data.datasets.size();
TestPrediction(cfg, input_slots_all, &outputs_slots, FLAGS_num_threads);
return;
}
timer.tic();
......@@ -190,19 +166,10 @@ void TestLACPrediction(const std::string &model_path,
if (use_analysis) {
// run once for comparion as reference
auto ref_predictor =
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(cfg);
std::vector<PaddleTensor> ref_outputs_slots;
ref_predictor->Run(input_slots, &ref_outputs_slots);
EXPECT_EQ(ref_outputs_slots.size(), outputs_slots.size());
auto &ref_out = ref_outputs_slots[0];
size_t ref_size =
std::accumulate(ref_out.shape.begin(), ref_out.shape.end(), 1,
[](int a, int b) { return a * b; });
EXPECT_EQ(size, ref_size);
int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
for (size_t i = 0; i < size; ++i) {
EXPECT_EQ(pdata_ref[i], pdata[i]);
}
CompareResult(ref_outputs_slots, outputs_slots);
AnalysisPredictor *analysis_predictor =
dynamic_cast<AnalysisPredictor *>(predictor.get());
......@@ -231,13 +198,13 @@ void TestLACPrediction(const std::string &model_path,
TEST(Analyzer_LAC, native) {
LOG(INFO) << "LAC with native";
TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size,
FLAGS_repeat, FLAGS_test_all_data);
FLAGS_repeat);
}
TEST(Analyzer_LAC, analysis) {
LOG(INFO) << "LAC with analysis";
TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size,
FLAGS_repeat, FLAGS_test_all_data, true);
FLAGS_repeat, true);
}
} // namespace analysis
......
......@@ -12,20 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/analysis/analyzer.h"
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/platform/profiler.h"
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data path");
DEFINE_int32(batch_size, 10, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace paddle {
namespace inference {
......@@ -113,50 +100,35 @@ const int chinese_ner_result_data[] = {30, 45, 41, 48, 17, 26,
48, 39, 38, 16, 25};
void TestChineseNERPrediction(bool use_analysis) {
NativeConfig config;
config.prog_file = FLAGS_infer_model + "/__model__";
config.param_file = FLAGS_infer_model + "/param";
config.use_gpu = false;
config.device = 0;
config.specify_input_name = true;
AnalysisConfig cfg;
cfg.prog_file = FLAGS_infer_model + "/__model__";
cfg.param_file = FLAGS_infer_model + "/param";
cfg.use_gpu = false;
cfg.device = 0;
cfg.specify_input_name = true;
cfg.enable_ir_optim = true;
std::vector<PaddleTensor> input_slots, outputs;
std::unique_ptr<PaddlePredictor> predictor;
Timer timer;
if (use_analysis) {
AnalysisConfig cfg;
cfg.prog_file = FLAGS_infer_model + "/__model__";
cfg.param_file = FLAGS_infer_model + "/param";
cfg.use_gpu = false;
cfg.device = 0;
cfg.specify_input_name = true;
cfg.enable_ir_optim = true;
predictor =
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(cfg);
} else {
predictor =
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(cfg);
}
if (FLAGS_test_all_data) {
LOG(INFO) << "test all data";
double sum = 0;
size_t num_samples;
for (int i = 0; i < FLAGS_repeat; i++) {
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
// Just one batch, the num_samples remains the same.
num_samples = data.num_samples;
for (size_t bid = 0; bid < num_samples / FLAGS_batch_size; ++bid) {
PrepareInputs(&input_slots, &data, FLAGS_batch_size);
timer.tic();
predictor->Run(input_slots, &outputs);
sum += timer.toc();
}
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
std::vector<std::vector<PaddleTensor>> input_slots_all;
for (size_t bid = 0; bid < data.num_samples / FLAGS_batch_size; ++bid) {
PrepareInputs(&input_slots, &data, FLAGS_batch_size);
input_slots_all.emplace_back(input_slots);
}
LOG(INFO) << "total number of samples: " << num_samples;
PrintTime(FLAGS_batch_size, FLAGS_repeat, 1, 0, sum / FLAGS_repeat);
LOG(INFO) << "average latency of each sample: "
<< sum / FLAGS_repeat / num_samples;
LOG(INFO) << "total number of samples: " << data.num_samples;
TestPrediction(cfg, input_slots_all, &outputs, FLAGS_num_threads);
return;
}
// Prepare inputs.
......@@ -182,19 +154,10 @@ void TestChineseNERPrediction(bool use_analysis) {
if (use_analysis) {
// run once for comparion as reference
auto ref_predictor =
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(cfg);
std::vector<PaddleTensor> ref_outputs_slots;
ref_predictor->Run(input_slots, &ref_outputs_slots);
EXPECT_EQ(ref_outputs_slots.size(), outputs.size());
auto &ref_out = ref_outputs_slots[0];
size_t ref_size =
std::accumulate(ref_out.shape.begin(), ref_out.shape.end(), 1,
[](int a, int b) { return a * b; });
EXPECT_EQ(size, ref_size);
int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
for (size_t i = 0; i < size; ++i) {
EXPECT_EQ(pdata_ref[i], result[i]);
}
CompareResult(ref_outputs_slots, outputs);
AnalysisPredictor *analysis_predictor =
dynamic_cast<AnalysisPredictor *>(predictor.get());
......
......@@ -12,24 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/analysis/analyzer.h"
#include <google/protobuf/text_format.h>
#include <gtest/gtest.h>
#include <thread> // NOLINT
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data path");
DEFINE_int32(batch_size, 10, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace paddle {
namespace inference {
......@@ -164,26 +147,6 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
}
}
void CompareResult(const std::vector<PaddleTensor> &outputs,
const std::vector<PaddleTensor> &base_outputs) {
PADDLE_ENFORCE_GT(outputs.size(), 0);
PADDLE_ENFORCE_EQ(outputs.size(), base_outputs.size());
for (size_t i = 0; i < outputs.size(); i++) {
auto &out = outputs[i];
auto &base_out = base_outputs[i];
size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
[](int a, int b) { return a * b; });
size_t size1 = std::accumulate(base_out.shape.begin(), base_out.shape.end(),
1, [](int a, int b) { return a * b; });
PADDLE_ENFORCE_EQ(size, size1);
PADDLE_ENFORCE_GT(size, 0);
float *data = static_cast<float *>(out.data.data());
float *base_data = static_cast<float *>(base_out.data.data());
for (size_t i = 0; i < size; i++) {
EXPECT_NEAR(data[i], base_data[i], 1e-3);
}
}
}
// Test with a really complicate model.
void TestRNN1Prediction(bool use_analysis, bool activate_ir, int num_threads) {
AnalysisConfig config;
......@@ -198,7 +161,6 @@ void TestRNN1Prediction(bool use_analysis, bool activate_ir, int num_threads) {
config.ir_passes.clear(); // Do not exclude any pass.
int batch_size = FLAGS_batch_size;
int num_times = FLAGS_repeat;
auto base_predictor =
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
......@@ -213,45 +175,14 @@ void TestRNN1Prediction(bool use_analysis, bool activate_ir, int num_threads) {
base_predictor->Run(input_slots, &base_outputs);
std::vector<std::vector<PaddleTensor>> input_slots_all;
input_slots_all.emplace_back(input_slots);
if (num_threads == 1) {
// Prepare inputs.
Timer timer;
timer.tic();
for (int i = 0; i < num_times; i++) {
predictor->Run(input_slots, &outputs);
}
PrintTime(batch_size, num_times, 1, 0, timer.toc() / num_times);
TestOneThreadPrediction(config, input_slots_all, &outputs);
CompareResult(outputs, base_outputs);
} else {
std::vector<std::thread> threads;
std::vector<std::unique_ptr<PaddlePredictor>> predictors;
// TODO(yanchunwei): Bug here, the analyzer phase can't be parallelled
// because AttentionLSTM's hard code nodeid will be damanged.
for (int tid = 0; tid < num_threads; ++tid) {
predictors.emplace_back(
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
config));
}
for (int tid = 0; tid < num_threads; ++tid) {
threads.emplace_back([&, tid]() {
// Each thread should have local input_slots and outputs.
std::vector<PaddleTensor> input_slots;
DataRecord data(FLAGS_infer_data, batch_size);
PrepareInputs(&input_slots, &data, batch_size);
std::vector<PaddleTensor> outputs;
Timer timer;
timer.tic();
for (int i = 0; i < num_times; i++) {
predictors[tid]->Run(input_slots, &outputs);
}
PrintTime(batch_size, num_times, num_threads, tid,
timer.toc() / num_times);
CompareResult(outputs, base_outputs);
});
}
for (int i = 0; i < num_threads; ++i) {
threads[i].join();
}
// only return the output of first thread
TestMultiThreadPrediction(config, input_slots_all, &outputs, num_threads);
}
if (use_analysis && activate_ir) {
......@@ -293,8 +224,7 @@ TEST(Analyzer, RNN_tests) {
// Directly infer with the original model.
TestRNN1Prediction(false, false, i);
// Inference with the original model with the analysis turned on, the
// analysis
// module will transform the program to a data flow graph.
// analysis module will transform the program to a data flow graph.
TestRNN1Prediction(true, false, i);
// Inference with analysis and IR. The IR module will fuse some large
// kernels.
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/analysis/analyzer.h"
#include <google/protobuf/text_format.h>
#include <gtest/gtest.h>
#include <thread> // NOLINT
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data path");
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
namespace paddle {
namespace inference {
using namespace framework; // NOLINT
struct DataRecord {
std::vector<std::vector<std::vector<float>>> link_step_data_all;
std::vector<size_t> lod;
std::vector<std::vector<float>> rnn_link_data;
std::vector<float> result_data;
size_t batch_iter{0};
size_t batch_size{1};
DataRecord() = default;
explicit DataRecord(const std::string &path, int batch_size = 1)
: batch_size(batch_size) {
Load(path);
}
DataRecord NextBatch() {
DataRecord data;
size_t batch_end = batch_iter + batch_size;
// NOTE skip the final batch, if no enough data is provided.
if (batch_end <= link_step_data_all.size()) {
data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter,
link_step_data_all.begin() + batch_end);
// Prepare LoDs
data.lod.push_back(0);
CHECK(!data.link_step_data_all.empty()) << "empty";
for (size_t j = 0; j < data.link_step_data_all.size(); j++) {
for (const auto &d : data.link_step_data_all[j]) {
data.rnn_link_data.push_back(d);
// calculate lod
data.lod.push_back(data.lod.back() + 11);
}
}
}
batch_iter += batch_size;
return data;
}
void Load(const std::string &path) {
std::ifstream file(path);
std::string line;
int num_lines = 0;
while (std::getline(file, line)) {
num_lines++;
std::vector<std::string> data;
split(line, ':', &data);
if (num_lines % 2) { // feature
std::vector<std::string> feature_data;
split(data[1], ' ', &feature_data);
std::vector<std::vector<float>> link_step_data;
int feature_count = 1;
std::vector<float> feature;
for (auto &step_data : feature_data) {
std::vector<float> tmp;
split_to_float(step_data, ',', &tmp);
feature.insert(feature.end(), tmp.begin(), tmp.end());
if (feature_count % 11 == 0) { // each sample has 11 features
link_step_data.push_back(feature);
feature.clear();
}
feature_count++;
}
link_step_data_all.push_back(std::move(link_step_data));
} else { // result
std::vector<float> tmp;
split_to_float(data[1], ',', &tmp);
result_data.insert(result_data.end(), tmp.begin(), tmp.end());
}
}
}
};
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
int batch_size) {
PaddleTensor feed_tensor;
feed_tensor.name = "feed";
auto one_batch = data->NextBatch();
int token_size = one_batch.rnn_link_data.size();
// each token has 11 features, each feature's dim is 54.
std::vector<int> rnn_link_data_shape({token_size * 11, 54});
feed_tensor.shape = rnn_link_data_shape;
feed_tensor.lod.assign({one_batch.lod});
feed_tensor.dtype = PaddleDType::FLOAT32;
TensorAssignData<float>(&feed_tensor, one_batch.rnn_link_data);
// Set inputs.
input_slots->assign({feed_tensor});
}
void CompareResult(const std::vector<PaddleTensor> &outputs,
const std::vector<float> &base_result) {
PADDLE_ENFORCE_GT(outputs.size(), 0);
for (size_t i = 0; i < outputs.size(); i++) {
auto &out = outputs[i];
size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
[](int a, int b) { return a * b; });
PADDLE_ENFORCE_GT(size, 0);
float *data = static_cast<float *>(out.data.data());
for (size_t i = 0; i < size; i++) {
EXPECT_NEAR(data[i], base_result[i], 1e-3);
}
}
}
// Test with a really complicate model.
void TestRNN2Prediction() {
AnalysisConfig config;
config.prog_file = FLAGS_infer_model + "/__model__";
config.param_file = FLAGS_infer_model + "/param";
config.use_gpu = false;
config.device = 0;
config.specify_input_name = true;
config.enable_ir_optim = true;
PADDLE_ENFORCE(config.ir_mode ==
AnalysisConfig::IrPassMode::kExclude); // default
int batch_size = FLAGS_batch_size;
int num_times = FLAGS_repeat;
auto base_predictor =
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
auto predictor =
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
config);
std::vector<PaddleTensor> input_slots;
DataRecord data(FLAGS_infer_data, batch_size);
PrepareInputs(&input_slots, &data, batch_size);
std::vector<PaddleTensor> outputs, base_outputs;
Timer timer1;
timer1.tic();
for (int i = 0; i < num_times; i++) {
base_predictor->Run(input_slots, &base_outputs);
}
PrintTime(batch_size, num_times, 1, 0, timer1.toc() / num_times);
Timer timer2;
timer2.tic();
for (int i = 0; i < num_times; i++) {
predictor->Run(input_slots, &outputs);
}
PrintTime(batch_size, num_times, 1, 0, timer2.toc() / num_times);
CompareResult(base_outputs, data.result_data);
CompareResult(outputs, data.result_data);
}
TEST(Analyzer, rnn2) { TestRNN2Prediction(); }
} // namespace inference
} // namespace paddle
......@@ -12,23 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/analysis/analyzer.h"
#include <gflags/gflags.h>
#include <glog/logging.h> // use glog instead of PADDLE_ENFORCE to avoid importing other paddle header files.
#include <gtest/gtest.h>
#include <fstream>
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/inference/api/timer.h"
DEFINE_string(infer_model, "", "Directory of the inference model.");
DEFINE_string(infer_data, "", "Path of the dataset.");
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(repeat, 1, "How many times to repeat run.");
DEFINE_int32(topn, -1, "Run top n batches of data to save time");
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace paddle {
namespace inference {
......@@ -37,24 +21,25 @@ struct DataReader {
explicit DataReader(const std::string &path)
: file(new std::ifstream(path)) {}
bool NextBatch(PaddleTensor *tensor, int batch_size) {
bool NextBatch(std::vector<PaddleTensor> *input, int batch_size) {
PADDLE_ENFORCE_EQ(batch_size, 1);
std::string line;
tensor->lod.clear();
tensor->lod.emplace_back(std::vector<size_t>({0}));
PaddleTensor tensor;
tensor.dtype = PaddleDType::INT64;
tensor.lod.emplace_back(std::vector<size_t>({0}));
std::vector<int64_t> data;
for (int i = 0; i < batch_size; i++) {
if (!std::getline(*file, line)) return false;
inference::split_to_int64(line, ' ', &data);
}
tensor->lod.front().push_back(data.size());
tensor.lod.front().push_back(data.size());
tensor->data.Resize(data.size() * sizeof(int64_t));
memcpy(tensor->data.data(), data.data(), data.size() * sizeof(int64_t));
tensor->shape.clear();
tensor->shape.push_back(data.size());
tensor->shape.push_back(1);
tensor.data.Resize(data.size() * sizeof(int64_t));
memcpy(tensor.data.data(), data.data(), data.size() * sizeof(int64_t));
tensor.shape.push_back(data.size());
tensor.shape.push_back(1);
input->assign({tensor});
return true;
}
......@@ -68,32 +53,28 @@ void Main(int batch_size) {
config.model_dir = FLAGS_infer_model;
config.use_gpu = false;
config.enable_ir_optim = true;
auto predictor =
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
config);
std::vector<PaddleTensor> input_slots(1);
// one batch starts
// data --
auto &input = input_slots[0];
input.dtype = PaddleDType::INT64;
inference::Timer timer;
double sum = 0;
std::vector<PaddleTensor> output_slots;
std::vector<PaddleTensor> input_slots, output_slots;
DataReader reader(FLAGS_infer_data);
std::vector<std::vector<PaddleTensor>> input_slots_all;
int num_batches = 0;
for (int t = 0; t < FLAGS_repeat; t++) {
DataReader reader(FLAGS_infer_data);
while (reader.NextBatch(&input, FLAGS_batch_size)) {
if (FLAGS_topn > 0 && num_batches > FLAGS_topn) break;
timer.tic();
CHECK(predictor->Run(input_slots, &output_slots));
sum += timer.toc();
if (FLAGS_test_all_data) {
LOG(INFO) << "test all data";
int num_batches = 0;
while (reader.NextBatch(&input_slots, FLAGS_batch_size)) {
input_slots_all.emplace_back(input_slots);
++num_batches;
}
LOG(INFO) << "total number of samples: " << num_batches * FLAGS_batch_size;
TestPrediction(config, input_slots_all, &output_slots, FLAGS_num_threads);
return;
}
PrintTime(batch_size, FLAGS_repeat, 1, 0, sum / FLAGS_repeat);
// one batch starts
// data --
reader.NextBatch(&input_slots, FLAGS_batch_size);
input_slots_all.emplace_back(input_slots);
TestPrediction(config, input_slots_all, &output_slots, FLAGS_num_threads);
// Get output
LOG(INFO) << "get outputs " << output_slots.size();
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include <iostream>
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace paddle {
namespace inference {
namespace analysis {
struct Record {
std::vector<float> data;
std::vector<int32_t> shape;
};
Record ProcessALine(const std::string &line) {
VLOG(3) << "process a line";
std::vector<std::string> columns;
split(line, '\t', &columns);
CHECK_EQ(columns.size(), 2UL)
<< "data format error, should be <data>\t<shape>";
Record record;
std::vector<std::string> data_strs;
split(columns[0], ' ', &data_strs);
for (auto &d : data_strs) {
record.data.push_back(std::stof(d));
}
std::vector<std::string> shape_strs;
split(columns[1], ' ', &shape_strs);
for (auto &s : shape_strs) {
record.shape.push_back(std::stoi(s));
}
VLOG(3) << "data size " << record.data.size();
VLOG(3) << "data shape size " << record.shape.size();
return record;
}
/*
* Use the native and analysis fluid engine to inference the demo.
* ocr, mobilenet and se_resnext50
*/
void TestVisualPrediction(bool use_mkldnn) {
std::unique_ptr<PaddlePredictor> predictor;
AnalysisConfig cfg;
cfg.param_file = FLAGS_infer_model + "/__params__";
cfg.prog_file = FLAGS_infer_model + "/__model__";
cfg.use_gpu = false;
cfg._use_mkldnn = use_mkldnn;
cfg.device = 0;
cfg.enable_ir_optim = true;
// TODO(TJ): fix fusion gru
cfg.ir_passes.push_back("fc_gru_fuse_pass");
#ifdef PADDLE_WITH_MKLDNN
// disable mkldnn fuse since it should have some bugs
cfg.ir_passes.push_back("conv_relu_mkldnn_fuse_pass");
#endif
predictor =
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(cfg);
// Only have single batch of data.
std::string line;
std::ifstream file(FLAGS_infer_data);
std::getline(file, line);
auto record = ProcessALine(line);
file.close();
// Inference.
PaddleTensor input;
input.shape = record.shape;
input.data =
PaddleBuf(record.data.data(), record.data.size() * sizeof(float));
input.dtype = PaddleDType::FLOAT32;
std::vector<PaddleTensor> outputs_slots;
Timer timer;
timer.tic();
for (int i = 0; i < FLAGS_repeat; i++) {
predictor->Run({input}, &outputs_slots);
}
PrintTime(/*batch size*/ 1, FLAGS_repeat, /*num threads*/ 1, /*thread id*/ 0,
timer.toc() / FLAGS_repeat);
VLOG(3) << "output.size " << outputs_slots.size();
// run native as reference
auto ref_predictor =
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(cfg);
std::vector<PaddleTensor> ref_outputs_slots;
ref_predictor->Run({input}, &ref_outputs_slots);
CompareResult(outputs_slots, ref_outputs_slots);
// print what are fused
AnalysisPredictor *analysis_predictor =
dynamic_cast<AnalysisPredictor *>(predictor.get());
auto &fuse_statis = analysis_predictor->analysis_argument()
.Get<std::unordered_map<std::string, int>>(
framework::ir::kFuseStatisAttr);
for (auto &item : fuse_statis) {
LOG(INFO) << "fused " << item.first << " " << item.second;
}
int num_ops = 0;
for (auto &node :
analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) {
if (node->IsFunction()) {
++num_ops;
}
}
LOG(INFO) << "has num ops: " << num_ops;
}
TEST(Analyzer_vis, analysis) { TestVisualPrediction(/*use_mkldnn*/ false); }
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_vis, analysis_mkldnn) {
TestVisualPrediction(/*use_mkldnn*/ true);
}
#endif
} // namespace analysis
} // namespace inference
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <gtest/gtest.h>
#include <thread> // NOLINT
#include <vector>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/platform/profiler.h"
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data file");
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(burning, 0, "Burning before repeat.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
namespace paddle {
namespace inference {
void CompareResult(const std::vector<PaddleTensor> &outputs,
const std::vector<PaddleTensor> &ref_outputs) {
EXPECT_GT(outputs.size(), 0);
EXPECT_EQ(outputs.size(), ref_outputs.size());
for (size_t i = 0; i < outputs.size(); i++) {
auto &out = outputs[i];
auto &ref_out = ref_outputs[i];
size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
[](int a, int b) { return a * b; });
size_t ref_size =
std::accumulate(ref_out.shape.begin(), ref_out.shape.end(), 1,
[](int a, int b) { return a * b; });
EXPECT_GT(size, 0);
EXPECT_EQ(size, ref_size);
EXPECT_EQ(out.dtype, ref_out.dtype);
switch (out.dtype) {
case PaddleDType::INT64: {
int64_t *pdata = static_cast<int64_t *>(out.data.data());
int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
for (size_t j = 0; j < size; ++j) {
EXPECT_EQ(pdata_ref[j], pdata[j]);
}
break;
}
case PaddleDType::FLOAT32: {
float *pdata = static_cast<float *>(out.data.data());
float *pdata_ref = static_cast<float *>(ref_out.data.data());
for (size_t j = 0; j < size; ++j) {
EXPECT_NEAR(pdata_ref[j], pdata[j], 1e-3);
}
break;
}
}
}
}
void TestOneThreadPrediction(
AnalysisConfig config, const std::vector<std::vector<PaddleTensor>> inputs,
std::vector<PaddleTensor> *outputs) {
int batch_size = FLAGS_batch_size;
int num_times = FLAGS_repeat;
auto predictor =
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
config);
Timer timer;
timer.tic();
for (int i = 0; i < num_times; i++) {
for (size_t j = 0; j < inputs.size(); j++) {
predictor->Run(inputs[j], outputs);
}
}
PrintTime(batch_size, num_times, 1, 0, timer.toc() / num_times,
inputs.size());
}
void TestMultiThreadPrediction(
AnalysisConfig config, const std::vector<std::vector<PaddleTensor>> inputs,
std::vector<PaddleTensor> *outputs, int num_threads) {
int batch_size = FLAGS_batch_size;
int num_times = FLAGS_repeat;
std::vector<std::thread> threads;
std::vector<std::unique_ptr<PaddlePredictor>> predictors;
// TODO(yanchunwei): Bug here, the analyzer phase can't be parallelled
// because AttentionLSTM's hard code nodeid will be damanged.
for (int tid = 0; tid < num_threads; ++tid) {
predictors.emplace_back(
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
config));
}
for (int tid = 0; tid < num_threads; ++tid) {
threads.emplace_back([&, tid]() {
// Each thread should have local inputs and outputs.
// The inputs of each thread are all the same.
std::vector<std::vector<PaddleTensor>> inputs_tid = inputs;
std::vector<PaddleTensor> outputs_tid;
Timer timer;
timer.tic();
for (int i = 0; i < num_times; i++) {
for (size_t j = 0; j < inputs_tid.size(); j++) {
predictors[tid]->Run(inputs_tid[j], &outputs_tid);
}
}
PrintTime(batch_size, num_times, num_threads, tid,
timer.toc() / num_times, inputs_tid.size());
});
}
for (int i = 0; i < num_threads; ++i) {
threads[i].join();
}
}
void TestPrediction(AnalysisConfig config,
const std::vector<std::vector<PaddleTensor>> inputs,
std::vector<PaddleTensor> *outputs, int num_threads) {
if (num_threads == 1) {
TestOneThreadPrediction(config, inputs, outputs);
} else {
TestMultiThreadPrediction(config, inputs, outputs, num_threads);
}
}
} // namespace inference
} // namespace paddle
......@@ -296,6 +296,7 @@ op_library(flatten_op DEPS reshape_op)
op_library(sequence_pad_op DEPS sequence_padding)
op_library(unstack_op DEPS stack_op)
op_library(fake_quantize_op DEPS memory)
op_library(fusion_lstm_op DEPS cpu_lstm_compute)
if (WITH_GPU)
op_library(conv_op DEPS vol2col depthwise_conv im2col)
......
......@@ -300,10 +300,10 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
bool fuse_relu = ctx.Attr<bool>("fuse_relu");
bool fuse_eltwise = ctx.Attr<bool>("fuse_eltwise");
int groups = ctx.Attr<int>("groups");
// TODO(pzelazko-intel) add support for group convolution and dilation
PADDLE_ENFORCE(groups == 1, "group convolution is not implemented yet");
// TODO: add support for dilation
PADDLE_ENFORCE(
dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
"dilation in convolution is not implemented yet");
......@@ -314,6 +314,19 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
std::vector<int> weights_tz =
paddle::framework::vectorize2int(filter->dims());
int g = std::max(groups, 1);
if (g > 1) {
int o = weights_tz[0];
int i = weights_tz[1];
int h = weights_tz[2];
int w = weights_tz[3];
weights_tz.resize(5);
weights_tz[0] = g;
weights_tz[1] = o / g;
weights_tz[2] = i;
weights_tz[3] = h;
weights_tz[4] = w;
}
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
// Get unique name for storing MKLDNN primitives
......@@ -327,7 +340,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto user_src_md = platform::MKLDNNMemDesc(
{src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
auto user_weights_md = platform::MKLDNNMemDesc(
{weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
{weights_tz}, platform::MKLDNNGetDataType<T>(),
(g == 1) ? filter->format() : mkldnn::memory::format::goihw);
/* create memory descriptor for convolution without specified format
* ('any') which lets a primitive (convolution in this case) choose
......@@ -340,7 +354,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto src_md = platform::MKLDNNMemDesc(
src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
auto weights_md = platform::MKLDNNMemDesc(
weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
weights_tz, platform::MKLDNNGetDataType<T>(),
(g == 1) ? chosen_memory_format : mkldnn::memory::format::goihw);
std::vector<int> bias_tz; // TODO(mgallus): avoid empty vector creation.
// Currently used whenever bias is != nullptr.
auto dst_md = platform::MKLDNNMemDesc(
......@@ -352,12 +367,13 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
bias_tz = paddle::framework::vectorize2int(bias->dims());
auto bias_md = platform::MKLDNNMemDesc(
bias_tz, platform::MKLDNNGetDataType<T>(), memory::format::x);
conv_pd =
ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md, strides,
paddings, mkldnn_engine, fuse_relu);
conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
strides, paddings, mkldnn_engine,
fuse_relu, fuse_eltwise);
} else {
conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides,
paddings, mkldnn_engine, fuse_relu);
conv_pd =
ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
mkldnn_engine, fuse_relu, fuse_eltwise);
}
// Save conv_pd/src_memory/weights_memory for backward pass
dev_ctx.SetBlob(key_conv_pd, conv_pd);
......@@ -407,16 +423,26 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
}
private:
mkldnn::primitive_attr AddRelu() const {
// Fusion with ReLU layer is executed through the PostOps feature. Create a
// PostOps object and configure it to execute an eltwise relu operation.
mkldnn::primitive_attr CreatePostOps(bool fuse_relu,
bool fuse_eltwise) const {
mkldnn::primitive_attr conv_attr;
constexpr float scale = 1.0f;
constexpr float negative_slope = 0.0f;
constexpr float placeholder = 0.0f;
mkldnn::post_ops post_operations;
post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
negative_slope, placeholder);
// Fusion with Elementwise layer relies on adding a sum post-operation with
// the scale parameter. It is assumed that when fuse_eltwise is true, the
// Output tensor contains the data coming from residual connection. The
// result of this post_op is: Output = scale * Output + Conv_Out.
if (fuse_eltwise) {
post_operations.append_sum(1.0f);
}
// Fusion with ReLU layer is executed through the PostOps feature. Create a
// PostOps object and configure it to execute an eltwise relu operation.
if (fuse_relu) {
constexpr float scale = 1.0f;
constexpr float negative_slope = 0.0f;
constexpr float placeholder = 0.0f;
post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
negative_slope, placeholder);
}
conv_attr.set_post_ops(post_operations);
return conv_attr;
}
......@@ -425,8 +451,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
const memory::desc& dst, const std::vector<int>& strides,
const std::vector<int>& paddings,
const mkldnn::engine& engine,
const bool fuse_relu) const {
const mkldnn::engine& engine, const bool fuse_relu,
const bool fuse_eltwise) const {
memory::dims stride_dims = {strides[0], strides[1]};
memory::dims padding_dims = {paddings[0], paddings[1]};
......@@ -435,10 +461,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
dst, stride_dims, padding_dims, padding_dims,
mkldnn::padding_kind::zero);
mkldnn::primitive_attr conv_attr;
if (fuse_relu) {
conv_attr = AddRelu();
}
mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_eltwise);
auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
conv_desc, conv_attr, engine);
......@@ -452,8 +475,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
const memory::desc& bias, const memory::desc& dst,
const std::vector<int>& strides,
const std::vector<int>& paddings,
const mkldnn::engine& engine,
const bool fuse_relu) const {
const mkldnn::engine& engine, const bool fuse_relu,
const bool fuse_eltwise) const {
memory::dims stride_dims = {strides[0], strides[1]};
memory::dims padding_dims = {paddings[0], paddings[1]};
......@@ -462,10 +485,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
bias, dst, stride_dims, padding_dims, padding_dims,
mkldnn::padding_kind::zero);
mkldnn::primitive_attr conv_attr;
if (fuse_relu) {
conv_attr = AddRelu();
}
mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_eltwise);
auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
conv_desc, conv_attr, engine);
......
......@@ -164,6 +164,11 @@ void Conv2DOpMaker::Make() {
.SetDefault(false);
AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr<bool>("fuse_eltwise",
"(bool, default false) Only used in mkldnn kernel. Used "
"whenever convolution output is connected via skip connection "
"to a previous layer.")
.SetDefault(false);
AddAttr<std::string>(
"data_format",
"(string, default NCHW) Only used in "
......
......@@ -9,6 +9,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
......@@ -21,7 +22,7 @@ namespace operators {
*/
template <typename T>
inline void BoxToDelta(const int box_num, const framework::Tensor& ex_boxes,
const framework::Tensor& gt_boxes, const T* weights,
const framework::Tensor& gt_boxes, const float* weights,
const bool normalized, framework::Tensor* box_delta) {
auto ex_boxes_et = framework::EigenTensor<T, 2>::From(ex_boxes);
auto gt_boxes_et = framework::EigenTensor<T, 2>::From(gt_boxes);
......@@ -62,5 +63,35 @@ void Gather(const T* in, const int in_stride, const int* index, const int num,
}
}
template <typename T>
void BboxOverlaps(const framework::Tensor& r_boxes,
const framework::Tensor& c_boxes,
framework::Tensor* overlaps) {
auto r_boxes_et = framework::EigenTensor<T, 2>::From(r_boxes);
auto c_boxes_et = framework::EigenTensor<T, 2>::From(c_boxes);
auto overlaps_et = framework::EigenTensor<T, 2>::From(*overlaps);
int r_num = r_boxes.dims()[0];
int c_num = c_boxes.dims()[0];
auto zero = static_cast<T>(0.0);
T r_box_area, c_box_area, x_min, y_min, x_max, y_max, inter_w, inter_h,
inter_area;
for (int i = 0; i < r_num; ++i) {
r_box_area = (r_boxes_et(i, 2) - r_boxes_et(i, 0) + 1) *
(r_boxes_et(i, 3) - r_boxes_et(i, 1) + 1);
for (int j = 0; j < c_num; ++j) {
c_box_area = (c_boxes_et(j, 2) - c_boxes_et(j, 0) + 1) *
(c_boxes_et(j, 3) - c_boxes_et(j, 1) + 1);
x_min = std::max(r_boxes_et(i, 0), c_boxes_et(j, 0));
y_min = std::max(r_boxes_et(i, 1), c_boxes_et(j, 1));
x_max = std::min(r_boxes_et(i, 2), c_boxes_et(j, 2));
y_max = std::min(r_boxes_et(i, 3), c_boxes_et(j, 3));
inter_w = std::max(x_max - x_min + 1, zero);
inter_h = std::max(y_max - y_min + 1, zero);
inter_area = inter_w * inter_h;
overlaps_et(i, j) = inter_area / (r_box_area + c_box_area - inter_area);
}
}
}
} // namespace operators
} // namespace paddle
......@@ -42,10 +42,11 @@ class GenerateProposalLabelsOp : public framework::OperatorWithKernel {
"Input(RpnRois) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasInput("GtClasses"),
"Input(GtClasses) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasInput("IsCrowd"),
"Input(IsCrowd) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasInput("GtBoxes"),
"Input(GtBoxes) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasInput("ImScales"),
"Input(ImScales) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasInput("ImInfo"), "Input(ImInfo) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasOutput("Rois"),
"Output(Rois) of RpnTargetAssignOp should not be null");
......@@ -64,22 +65,21 @@ class GenerateProposalLabelsOp : public framework::OperatorWithKernel {
auto rpn_rois_dims = ctx->GetInputDim("RpnRois");
auto gt_classes_dims = ctx->GetInputDim("GtClasses");
auto is_crowd_dims = ctx->GetInputDim("IsCrowd");
auto gt_boxes_dims = ctx->GetInputDim("GtBoxes");
auto im_scales_dims = ctx->GetInputDim("ImScales");
auto im_info_dims = ctx->GetInputDim("ImInfo");
PADDLE_ENFORCE_EQ(rpn_rois_dims.size(), 2,
"The rank of Input(RpnRois) must be 2.");
PADDLE_ENFORCE_EQ(gt_classes_dims.size(), 1,
"The rank of Input(GtClasses) must be 1.");
PADDLE_ENFORCE_EQ(gt_boxes_dims.size(), 2,
"The rank of Input(GtBoxes) must be 2.");
PADDLE_ENFORCE_EQ(im_scales_dims.size(), 1,
"The rank of Input(ImScales) must be 1.");
PADDLE_ENFORCE_EQ(im_info_dims.size(), 2,
"The rank of Input(ImInfo) must be 2.");
int class_nums = ctx->Attrs().Get<int>("class_nums");
ctx->SetOutputDim("Rois", {-1, 4});
ctx->SetOutputDim("LabelsInt32", {-1});
ctx->SetOutputDim("LabelsInt32", {-1, 1});
ctx->SetOutputDim("BboxTargets", {-1, 4 * class_nums});
ctx->SetOutputDim("BboxInsideWeights", {-1, 4 * class_nums});
ctx->SetOutputDim("BboxOutsideWeights", {-1, 4 * class_nums});
......@@ -105,45 +105,18 @@ void Concat(const platform::CPUDeviceContext& context,
concat_functor(context, inputs, axis, out_tensor);
}
template <typename T>
void BboxOverlaps(const Tensor& r_boxes, const Tensor& c_boxes,
Tensor* overlaps) {
auto r_boxes_et = framework::EigenTensor<T, 2>::From(r_boxes);
auto c_boxes_et = framework::EigenTensor<T, 2>::From(c_boxes);
auto overlaps_et = framework::EigenTensor<T, 2>::From(*overlaps);
int r_num = r_boxes.dims()[0];
int c_num = c_boxes.dims()[0];
auto zero = static_cast<T>(0.0);
T r_box_area, c_box_area, x_min, y_min, x_max, y_max, inter_w, inter_h,
inter_area;
for (int i = 0; i < r_num; ++i) {
r_box_area = (r_boxes_et(i, 2) - r_boxes_et(i, 0) + 1) *
(r_boxes_et(i, 3) - r_boxes_et(i, 1) + 1);
for (int j = 0; j < c_num; ++j) {
c_box_area = (c_boxes_et(j, 2) - c_boxes_et(j, 0) + 1) *
(c_boxes_et(j, 3) - c_boxes_et(j, 1) + 1);
x_min = std::max(r_boxes_et(i, 0), c_boxes_et(j, 0));
y_min = std::max(r_boxes_et(i, 1), c_boxes_et(j, 1));
x_max = std::min(r_boxes_et(i, 2), c_boxes_et(j, 2));
y_max = std::min(r_boxes_et(i, 3), c_boxes_et(j, 3));
inter_w = std::max(x_max - x_min + 1, zero);
inter_h = std::max(y_max - y_min + 1, zero);
inter_area = inter_w * inter_h;
overlaps_et(i, j) = inter_area / (r_box_area + c_box_area - inter_area);
}
}
}
template <typename T>
std::vector<std::vector<int>> SampleFgBgGt(
const platform::CPUDeviceContext& context, Tensor* iou,
const int batch_size_per_im, const float fg_fraction, const float fg_thresh,
const float bg_thresh_hi, const float bg_thresh_lo,
std::minstd_rand engine) {
const Tensor& is_crowd, const int batch_size_per_im,
const float fg_fraction, const float fg_thresh, const float bg_thresh_hi,
const float bg_thresh_lo, std::minstd_rand engine, const bool use_random) {
std::vector<int> fg_inds;
std::vector<int> bg_inds;
std::vector<int> gt_inds;
T* proposal_to_gt_overlaps = iou->mutable_data<T>(context.GetPlace());
int64_t gt_num = is_crowd.numel();
const int* crowd_data = is_crowd.data<int>();
T* proposal_to_gt_overlaps = iou->data<T>();
int64_t row = iou->dims()[0];
int64_t col = iou->dims()[1];
float epsilon = 0.00001;
......@@ -152,6 +125,9 @@ std::vector<std::vector<int>> SampleFgBgGt(
for (int64_t i = 0; i < row; ++i) {
const T* v = proposal_to_gt_overlaps + i * col;
T max_overlap = *std::max_element(v, v + col);
if ((i < gt_num) && (crowd_data[i])) {
max_overlap = -1.0;
}
if (max_overlap > fg_thresh) {
for (int64_t j = 0; j < col; ++j) {
T val = proposal_to_gt_overlaps[i * col + j];
......@@ -170,17 +146,19 @@ std::vector<std::vector<int>> SampleFgBgGt(
}
// Reservoir Sampling
std::uniform_real_distribution<float> uniform(0, 1);
int fg_rois_per_im = std::floor(batch_size_per_im * fg_fraction);
int fg_rois_this_image = fg_inds.size();
int fg_rois_per_this_image = std::min(fg_rois_per_im, fg_rois_this_image);
std::uniform_real_distribution<float> uniform(0, 1);
const int64_t fg_size = static_cast<int64_t>(fg_inds.size());
if (fg_size > fg_rois_per_this_image) {
for (int64_t i = fg_rois_per_this_image; i < fg_size; ++i) {
int rng_ind = std::floor(uniform(engine) * i);
if (rng_ind < fg_rois_per_this_image) {
std::iter_swap(fg_inds.begin() + rng_ind, fg_inds.begin() + i);
std::iter_swap(gt_inds.begin() + rng_ind, gt_inds.begin() + i);
if (use_random) {
const int64_t fg_size = static_cast<int64_t>(fg_inds.size());
if (fg_size > fg_rois_per_this_image) {
for (int64_t i = fg_rois_per_this_image; i < fg_size; ++i) {
int rng_ind = std::floor(uniform(engine) * i);
if (rng_ind < fg_rois_per_this_image) {
std::iter_swap(fg_inds.begin() + rng_ind, fg_inds.begin() + i);
std::iter_swap(gt_inds.begin() + rng_ind, gt_inds.begin() + i);
}
}
}
}
......@@ -192,12 +170,14 @@ std::vector<std::vector<int>> SampleFgBgGt(
int bg_rois_per_image = batch_size_per_im - fg_rois_per_this_image;
int bg_rois_this_image = bg_inds.size();
int bg_rois_per_this_image = std::min(bg_rois_per_image, bg_rois_this_image);
const int64_t bg_size = static_cast<int64_t>(bg_inds.size());
if (bg_size > bg_rois_per_this_image) {
for (int64_t i = bg_rois_per_this_image; i < bg_size; ++i) {
int rng_ind = std::floor(uniform(engine) * i);
if (rng_ind < fg_rois_per_this_image)
std::iter_swap(bg_inds.begin() + rng_ind, bg_inds.begin() + i);
if (use_random) {
const int64_t bg_size = static_cast<int64_t>(bg_inds.size());
if (bg_size > bg_rois_per_this_image) {
for (int64_t i = bg_rois_per_this_image; i < bg_size; ++i) {
int rng_ind = std::floor(uniform(engine) * i);
if (rng_ind < fg_rois_per_this_image)
std::iter_swap(bg_inds.begin() + rng_ind, bg_inds.begin() + i);
}
}
}
std::vector<int> new_bg_inds(bg_inds.begin(),
......@@ -248,14 +228,14 @@ void GatherBoxesLabels(const platform::CPUDeviceContext& context,
template <typename T>
std::vector<Tensor> SampleRoisForOneImage(
const platform::CPUDeviceContext& context, Tensor* rpn_rois,
Tensor* gt_classes, Tensor* gt_boxes, Tensor* im_scale,
Tensor* gt_classes, Tensor* is_crowd, Tensor* gt_boxes, Tensor* im_info,
const int batch_size_per_im, const float fg_fraction, const float fg_thresh,
const float bg_thresh_hi, const float bg_thresh_lo,
const std::vector<float>& bbox_reg_weights, const int class_nums,
std::minstd_rand engine) {
std::minstd_rand engine, bool use_random) {
auto rpn_rois_et = framework::EigenTensor<T, 2>::From(*rpn_rois);
auto im_scale_data = im_scale->data<T>()[0];
rpn_rois_et = rpn_rois_et / im_scale_data;
auto im_scale = im_info->data<T>()[2];
rpn_rois_et = rpn_rois_et / im_scale;
Tensor boxes;
int proposals_num = gt_boxes->dims()[0] + rpn_rois->dims()[0];
......@@ -270,8 +250,8 @@ std::vector<Tensor> SampleRoisForOneImage(
// Generate proposal index
std::vector<std::vector<int>> fg_bg_gt = SampleFgBgGt<T>(
context, &proposal_to_gt_overlaps, batch_size_per_im, fg_fraction,
fg_thresh, bg_thresh_hi, bg_thresh_lo, engine);
context, &proposal_to_gt_overlaps, *is_crowd, batch_size_per_im,
fg_fraction, fg_thresh, bg_thresh_hi, bg_thresh_lo, engine, use_random);
std::vector<int> fg_inds = fg_bg_gt[0];
std::vector<int> bg_inds = fg_bg_gt[1];
std::vector<int> gt_inds = fg_bg_gt[2];
......@@ -291,15 +271,15 @@ std::vector<Tensor> SampleRoisForOneImage(
// Compute targets
Tensor bbox_targets_single;
bbox_targets_single.mutable_data<T>(bbox_dim, context.GetPlace());
BoxToDelta<T>(fg_num, sampled_boxes, sampled_gts, nullptr, false,
&bbox_targets_single);
BoxToDelta<T>(fg_num, sampled_boxes, sampled_gts, bbox_reg_weights.data(),
false, &bbox_targets_single);
// Scale rois
Tensor sampled_rois;
sampled_rois.mutable_data<T>(sampled_boxes.dims(), context.GetPlace());
auto sampled_rois_et = framework::EigenTensor<T, 2>::From(sampled_rois);
auto sampled_boxes_et = framework::EigenTensor<T, 2>::From(sampled_boxes);
sampled_rois_et = sampled_boxes_et * im_scale_data;
sampled_rois_et = sampled_boxes_et * im_scale;
// Expand box targets
Tensor bbox_targets, bbox_inside_weights, bbox_outside_weights;
......@@ -351,8 +331,9 @@ class GenerateProposalLabelsKernel : public framework::OpKernel<T> {
void Compute(const framework::ExecutionContext& context) const override {
auto* rpn_rois = context.Input<LoDTensor>("RpnRois");
auto* gt_classes = context.Input<LoDTensor>("GtClasses");
auto* is_crowd = context.Input<LoDTensor>("IsCrowd");
auto* gt_boxes = context.Input<LoDTensor>("GtBoxes");
auto* im_scales = context.Input<LoDTensor>("ImScales");
auto* im_info = context.Input<LoDTensor>("ImInfo");
auto* rois = context.Output<LoDTensor>("Rois");
auto* labels_int32 = context.Output<LoDTensor>("LabelsInt32");
......@@ -369,18 +350,21 @@ class GenerateProposalLabelsKernel : public framework::OpKernel<T> {
std::vector<float> bbox_reg_weights =
context.Attr<std::vector<float>>("bbox_reg_weights");
int class_nums = context.Attr<int>("class_nums");
bool use_random = context.Attr<bool>("use_random");
PADDLE_ENFORCE_EQ(rpn_rois->lod().size(), 1UL,
"GenerateProposalLabelsOp rpn_rois needs 1 level of LoD");
PADDLE_ENFORCE_EQ(
gt_classes->lod().size(), 1UL,
"GenerateProposalLabelsOp gt_classes needs 1 level of LoD");
PADDLE_ENFORCE_EQ(is_crowd->lod().size(), 1UL,
"GenerateProposalLabelsOp is_crowd needs 1 level of LoD");
PADDLE_ENFORCE_EQ(gt_boxes->lod().size(), 1UL,
"GenerateProposalLabelsOp gt_boxes needs 1 level of LoD");
int64_t n = static_cast<int64_t>(rpn_rois->lod().back().size() - 1);
rois->mutable_data<T>({n * batch_size_per_im, kBoxDim}, context.GetPlace());
labels_int32->mutable_data<int>({n * batch_size_per_im},
labels_int32->mutable_data<int>({n * batch_size_per_im, 1},
context.GetPlace());
bbox_targets->mutable_data<T>({n * batch_size_per_im, kBoxDim * class_nums},
context.GetPlace());
......@@ -391,8 +375,7 @@ class GenerateProposalLabelsKernel : public framework::OpKernel<T> {
std::random_device rnd;
std::minstd_rand engine;
int seed =
context.Attr<bool>("fix_seed") ? context.Attr<int>("seed") : rnd();
int seed = rnd();
engine.seed(seed);
framework::LoD lod;
......@@ -403,19 +386,23 @@ class GenerateProposalLabelsKernel : public framework::OpKernel<T> {
auto rpn_rois_lod = rpn_rois->lod().back();
auto gt_classes_lod = gt_classes->lod().back();
auto is_crowd_lod = is_crowd->lod().back();
auto gt_boxes_lod = gt_boxes->lod().back();
for (int i = 0; i < n; ++i) {
Tensor rpn_rois_slice =
rpn_rois->Slice(rpn_rois_lod[i], rpn_rois_lod[i + 1]);
Tensor gt_classes_slice =
gt_classes->Slice(gt_classes_lod[i], gt_classes_lod[i + 1]);
Tensor is_crowd_slice =
is_crowd->Slice(is_crowd_lod[i], is_crowd_lod[i + 1]);
Tensor gt_boxes_slice =
gt_boxes->Slice(gt_boxes_lod[i], gt_boxes_lod[i + 1]);
Tensor im_scales_slice = im_scales->Slice(i, i + 1);
Tensor im_info_slice = im_info->Slice(i, i + 1);
std::vector<Tensor> tensor_output = SampleRoisForOneImage<T>(
dev_ctx, &rpn_rois_slice, &gt_classes_slice, &gt_boxes_slice,
&im_scales_slice, batch_size_per_im, fg_fraction, fg_thresh,
bg_thresh_hi, bg_thresh_lo, bbox_reg_weights, class_nums, engine);
dev_ctx, &rpn_rois_slice, &gt_classes_slice, &is_crowd_slice,
&gt_boxes_slice, &im_info_slice, batch_size_per_im, fg_fraction,
fg_thresh, bg_thresh_hi, bg_thresh_lo, bbox_reg_weights, class_nums,
engine, use_random);
Tensor sampled_rois = tensor_output[0];
Tensor sampled_labels_int32 = tensor_output[1];
Tensor sampled_bbox_targets = tensor_output[2];
......@@ -442,7 +429,7 @@ class GenerateProposalLabelsKernel : public framework::OpKernel<T> {
bbox_inside_weights->set_lod(lod);
bbox_outside_weights->set_lod(lod);
rois->Resize({num_rois, kBoxDim});
labels_int32->Resize({num_rois});
labels_int32->Resize({num_rois, 1});
bbox_targets->Resize({num_rois, kBoxDim * class_nums});
bbox_inside_weights->Resize({num_rois, kBoxDim * class_nums});
bbox_outside_weights->Resize({num_rois, kBoxDim * class_nums});
......@@ -455,8 +442,9 @@ class GenerateProposalLabelsOpMaker : public framework::OpProtoAndCheckerMaker {
// TODO(buxingyuan): Add Document
AddInput("RpnRois", "RpnRois.");
AddInput("GtClasses", "GtClasses.");
AddInput("IsCrowd", "IsCrowd.");
AddInput("GtBoxes", "GtBoxes.");
AddInput("ImScales", "ImScales.");
AddInput("ImInfo", "ImInfo.");
AddOutput("Rois", "Rois.");
AddOutput("LabelsInt32", "LabelsInt32.");
......@@ -471,8 +459,7 @@ class GenerateProposalLabelsOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<float>("bg_thresh_lo", "bg_thresh_lo");
AddAttr<std::vector<float>>("bbox_reg_weights", "bbox_reg_weights");
AddAttr<int>("class_nums", "class_nums");
AddAttr<bool>("fix_seed", "fix_seed").SetDefault(false);
AddAttr<int>("seed", "seed").SetDefault(0);
AddAttr<bool>("use_random", "use_random").SetDefault(true);
AddComment(R"DOC(
Generate Proposals Labels Operator.
......
......@@ -89,12 +89,11 @@ void BoxCoder(const platform::DeviceContext &ctx, Tensor *all_anchors,
}
for (int64_t i = 0; i < row; ++i) {
T anchor_width = anchor_data[i * len + 2] - anchor_data[i * len];
T anchor_height = anchor_data[i * len + 3] - anchor_data[i * len + 1];
T anchor_width = anchor_data[i * len + 2] - anchor_data[i * len] + 1.0;
T anchor_height = anchor_data[i * len + 3] - anchor_data[i * len + 1] + 1.0;
T anchor_center_x = (anchor_data[i * len + 2] + anchor_data[i * len]) / 2;
T anchor_center_y =
(anchor_data[i * len + 3] + anchor_data[i * len + 1]) / 2;
T anchor_center_x = anchor_data[i * len] + 0.5 * anchor_width;
T anchor_center_y = anchor_data[i * len + 1] + 0.5 * anchor_height;
T bbox_center_x = 0, bbox_center_y = 0;
T bbox_width = 0, bbox_height = 0;
......@@ -106,25 +105,31 @@ void BoxCoder(const platform::DeviceContext &ctx, Tensor *all_anchors,
bbox_center_y = variances_data[i * len + 1] *
bbox_deltas_data[i * len + 1] * anchor_height +
anchor_center_y;
bbox_width = std::exp(variances_data[i * len + 2] *
bbox_deltas_data[i * len + 2]) *
bbox_width = std::exp(std::min<T>(variances_data[i * len + 2] *
bbox_deltas_data[i * len + 2],
std::log(1000.0 / 16.0))) *
anchor_width;
bbox_height = std::exp(variances_data[i * len + 3] *
bbox_deltas_data[i * len + 3]) *
bbox_height = std::exp(std::min<T>(variances_data[i * len + 3] *
bbox_deltas_data[i * len + 3],
std::log(1000.0 / 16.0))) *
anchor_height;
} else {
bbox_center_x =
bbox_deltas_data[i * len] * anchor_width + anchor_center_x;
bbox_center_y =
bbox_deltas_data[i * len + 1] * anchor_height + anchor_center_y;
bbox_width = std::exp(bbox_deltas_data[i * len + 2]) * anchor_width;
bbox_height = std::exp(bbox_deltas_data[i * len + 3]) * anchor_height;
bbox_width = std::exp(std::min<T>(bbox_deltas_data[i * len + 2],
std::log(1000.0 / 16.0))) *
anchor_width;
bbox_height = std::exp(std::min<T>(bbox_deltas_data[i * len + 3],
std::log(1000.0 / 16.0))) *
anchor_height;
}
proposals_data[i * len] = bbox_center_x - bbox_width / 2;
proposals_data[i * len + 1] = bbox_center_y - bbox_height / 2;
proposals_data[i * len + 2] = bbox_center_x + bbox_width / 2;
proposals_data[i * len + 3] = bbox_center_y + bbox_height / 2;
proposals_data[i * len + 2] = bbox_center_x + bbox_width / 2 - 1;
proposals_data[i * len + 3] = bbox_center_y + bbox_height / 2 - 1;
}
// return proposals;
}
......@@ -156,18 +161,23 @@ void FilterBoxes(const platform::DeviceContext &ctx, Tensor *boxes,
float min_size, const Tensor &im_info, Tensor *keep) {
const T *im_info_data = im_info.data<T>();
T *boxes_data = boxes->mutable_data<T>(ctx.GetPlace());
min_size *= im_info_data[2];
T im_scale = im_info_data[2];
keep->Resize({boxes->dims()[0], 1});
min_size = std::max(min_size, 1.0f);
int *keep_data = keep->mutable_data<int>(ctx.GetPlace());
int keep_len = 0;
for (int i = 0; i < boxes->dims()[0]; ++i) {
T ws = boxes_data[4 * i + 2] - boxes_data[4 * i] + 1;
T hs = boxes_data[4 * i + 3] - boxes_data[4 * i + 1] + 1;
T ws_origin_scale =
(boxes_data[4 * i + 2] - boxes_data[4 * i]) / im_scale + 1;
T hs_origin_scale =
(boxes_data[4 * i + 3] - boxes_data[4 * i + 1]) / im_scale + 1;
T x_ctr = boxes_data[4 * i] + ws / 2;
T y_ctr = boxes_data[4 * i + 1] + hs / 2;
if (ws >= min_size && hs >= min_size && x_ctr <= im_info_data[1] &&
y_ctr <= im_info_data[0]) {
if (ws_origin_scale >= min_size && hs_origin_scale >= min_size &&
x_ctr <= im_info_data[1] && y_ctr <= im_info_data[0]) {
keep_data[keep_len++] = i;
}
}
......@@ -218,8 +228,8 @@ T JaccardOverlap(const T *box1, const T *box2, const bool normalized) {
const T inter_ymin = std::max(box1[1], box2[1]);
const T inter_xmax = std::min(box1[2], box2[2]);
const T inter_ymax = std::min(box1[3], box2[3]);
const T inter_w = inter_xmax - inter_xmin;
const T inter_h = inter_ymax - inter_ymin;
const T inter_w = std::max(0.0f, inter_xmax - inter_xmin + 1);
const T inter_h = std::max(0.0f, inter_ymax - inter_ymin + 1);
const T inter_area = inter_w * inter_h;
const T bbox1_area = BBoxArea<T>(box1, normalized);
const T bbox2_area = BBoxArea<T>(box2, normalized);
......
......@@ -125,7 +125,7 @@ VarHandlePtr GRPCClient::AsyncGetVar(const std::string& ep,
VarHandlePtr h(new VarHandle(ep, "Get", var_name_val, p_ctx, p_scope));
s->Prepare(h, time_out);
framework::AsyncIO([var_name_val, p_scope, p_ctx, s, this] {
framework::AsyncIO([var_name_val, s, this] {
// prepare input
sendrecv::VariableMessage req;
req.set_varname(var_name_val);
......@@ -166,7 +166,7 @@ VarHandlePtr GRPCClient::AsyncPrefetchVar(const std::string& ep,
s->Prepare(h, time_out);
framework::AsyncIO([in_var_name_val, out_var_name_val, ep_val, p_scope, p_ctx,
time_out, s, this] {
s, this] {
auto* var = p_scope->FindVar(in_var_name_val);
::grpc::ByteBuffer req;
......@@ -290,12 +290,18 @@ void GRPCClient::Proceed() {
c->Finish(false);
}
delete c;
bool notify = false;
{
std::lock_guard<std::mutex> lk(sync_mutex_);
req_count_--;
notify = (req_count_ <= 0 || !c->status_.ok());
}
delete c;
if (notify) {
sync_cond_.notify_all();
}
sync_cond_.notify_all();
}
VLOG(3) << "GRPCClient Proceed end";
}
......
......@@ -82,8 +82,10 @@ class ProtoEncodeHelper {
: base_(buf), p_(buf), limit_(base_ + max_size) {}
~ProtoEncodeHelper() {
#define REPLACE_ENFORCE_GLOG 1
// Make sure callers didn't do operations that went over max_size promised
PADDLE_ENFORCE_LE(p_, limit_);
paddle::platform::throw_on_error(p_ <= limit_);
#undef REPLACE_ENFORCE_GLOG
}
const char* data() const { return base_; }
......
......@@ -56,7 +56,7 @@ class VarHandle {
const std::string& name,
const platform::DeviceContext* p_ctx = nullptr,
const framework::Scope* p_scope = nullptr)
: ok_(kVarHandleDefaultState) {
: status_(kDefaultState) {
ep_ = ep;
ctx_ = p_ctx;
scope_ = p_scope;
......@@ -68,18 +68,20 @@ class VarHandle {
public:
bool Wait() {
int ret = kDefaultState;
{
std::unique_lock<std::mutex> lk(sync_mutex_);
wait_cond_.wait(lk, [this] { return ok_ != kVarHandleDefaultState; });
wait_cond_.wait(lk, [this] { return status_ != kDefaultState; });
ret = status_;
}
VLOG(7) << "VarHandle wait:" << ok_;
return ok_ != 0;
VLOG(7) << "VarHandle wait:" << ret;
return ret != kErrorState;
}
void Finish(bool ok) {
{
std::unique_lock<std::mutex> lk(sync_mutex_);
ok_ = ok;
status_ = ok ? kFinishState : kErrorState;
}
VLOG(7) << "VarHandle finish:" << ok;
wait_cond_.notify_all();
......@@ -87,8 +89,8 @@ class VarHandle {
std::string String() const {
std::ostringstream s;
s << method_ << " name:[" << name_ << "], ep:[" << ep_ << "], ok:[" << ok_
<< "]";
s << method_ << " name:[" << name_ << "], ep:[" << ep_ << "], status:["
<< status_ << "]";
return s.str();
}
......@@ -111,9 +113,13 @@ class VarHandle {
protected:
std::mutex sync_mutex_;
std::condition_variable wait_cond_;
int ok_;
static const int kVarHandleDefaultState = -1;
enum VarHandleStatus {
kDefaultState = -1,
kErrorState = 0,
kFinishState = 1,
};
VarHandleStatus status_;
private:
DISABLE_COPY_AND_ASSIGN(VarHandle);
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#include "paddle/fluid/operators/fusion_lstm_op.h"
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/cpu_lstm_compute.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
......@@ -269,7 +270,6 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
blas.GEMM(CblasNoTrans, CblasNoTrans, bs, D4, D, static_cast<T>(1), prev, D, \
wh_data, D4, static_cast<T>(1), out, D4)
// gates: W_ch, W_ih, W_fh, W_oh
#define GET_Ct(ct_1, gates, ct) \
/* C_t = C_t-1 * fgated + cand_gated * igated*/ \
act_cand(D, gates, gates); \
......@@ -395,11 +395,22 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
}
}
} else {
// TODO(TJ): unly workaround, clean me
std::function<void(T*, const T*, T*, T*)> compute_ctht;
if (platform::jit::MayIUse(platform::jit::avx) &&
act_gate_str == "sigmoid" && act_cand_str == "tanh" &&
act_cell_str == "tanh" && D == 8) {
compute_ctht = math::lstm_compute_ctht<T>;
} else {
compute_ctht = [&](T* gates, const T* ct_1, T* ct, T* ht) {
COMPUTE_CtHt(gates, ct_1, ct, ht);
};
}
for (int i = 0; i < N; ++i) {
PROCESS_H0C0
for (int step = tstart; step < seq_len; ++step) {
GEMM_WH_ADDON(1, prev_h_data, xx_data);
COMPUTE_CtHt(xx_data, prev_c_data, c_out_data, h_out_data);
compute_ctht(xx_data, prev_c_data, c_out_data, h_out_data);
MOVE_ONE_STEP;
}
}
......@@ -532,12 +543,23 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
MOVE_ONE_STEP;
}
} else {
// TODO(TJ): unly workaround, clean me
std::function<void(T*, const T*, T*, T*)> compute_ctht;
if (platform::jit::MayIUse(platform::jit::avx) &&
act_gate_str == "sigmoid" && act_cand_str == "tanh" &&
act_cell_str == "tanh" && D == 8) {
compute_ctht = math::lstm_compute_ctht<T>;
} else {
compute_ctht = [&](T* gates, const T* ct_1, T* ct, T* ht) {
COMPUTE_CtHt(gates, ct_1, ct, ht);
};
}
for (int step = tstart; step < max_seq_len; ++step) {
const int cur_bs = batch_starts[step + 1] - batch_starts[step];
GEMM_WH_ADDON(cur_bs, prev_h_data, batched_input_data);
DEFINE_CUR;
for (int i = 0; i < cur_bs; ++i) {
COMPUTE_CtHt(cur_in_data, cur_prev_c_data, cur_c_out_data,
compute_ctht(cur_in_data, cur_prev_c_data, cur_c_out_data,
cur_h_out_data);
MOVE_ONE_BATCH;
}
......
......@@ -59,17 +59,16 @@ static void ParallelExecuteBlocks(
framework::ProgramDesc *program, framework::Scope *scope) {
std::vector<std::future<void>> fs;
for (size_t idx : parallel_blkids) {
fs.push_back(
framework::Async([&executor, &prepared, &program, &scope, idx]() {
int run_block = idx; // thread local
try {
VLOG(3) << "running server block: " << run_block
<< "pointer: " << prepared[run_block].get();
executor->RunPreparedContext(prepared[run_block].get(), scope);
} catch (const std::exception &e) {
LOG(ERROR) << "run sub program error " << e.what();
}
}));
fs.push_back(framework::Async([&executor, &prepared, &scope, idx]() {
int run_block = idx; // thread local
try {
VLOG(3) << "running server block: " << run_block
<< "pointer: " << prepared[run_block].get();
executor->RunPreparedContext(prepared[run_block].get(), scope);
} catch (const std::exception &e) {
LOG(ERROR) << "run sub program error " << e.what();
}
}));
}
for (size_t i = 0; i < fs.size(); ++i) fs[i].wait();
}
......
......@@ -45,6 +45,8 @@ math_library(im2col)
if (NOT WIN32) # windows do not support avx functions yet.
math_library(gru_compute DEPS activation_functions math_function)
math_library(lstm_compute DEPS activation_functions)
# TODO(TJ): ugly workaround, clean me
cc_library(cpu_lstm_compute SRCS cpu_lstm_compute.cc DEPS activation_functions cblas cpu_info)
endif (NOT WIN32)
cc_library(blas SRCS blas.cc DEPS cblas framework_proto device_context)
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/cpu_lstm_compute.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/platform/cpu_info.h"
#ifdef __AVX__
#include <immintrin.h>
#endif
namespace paddle {
namespace operators {
namespace math {
// TODO(TJ): ugly workaround, clean me
template <typename T>
void lstm_compute_ctht(T* gates, const T* ct_1, T* ct, T* ht) {
// gates: W_ch, W_ih, W_fh, W_oh
vec_sigmoid<T, platform::jit::avx>(24, gates + 8, gates + 8);
vec_tanh<T, platform::jit::avx>(8, gates, gates);
const T *i = gates + 8, *f = gates + 16, *o = gates + 24;
const T min = SIGMOID_THRESHOLD_MIN;
const T max = SIGMOID_THRESHOLD_MAX;
for (int d = 0; d < 8; ++d) {
// C_t = C_t-1 * fgated + cand_gated * igated
ct[d] = ct_1[d] * f[d] + gates[d] * i[d];
// H_t = act_cell(C_t) * ogated
T tmp = ct[d] * 2;
tmp = static_cast<T>(0) - ((tmp < min) ? min : ((tmp > max) ? max : tmp));
vec_exp<T>(1, &tmp, &tmp);
tmp = static_cast<T>(2) / (static_cast<T>(1) + tmp) - static_cast<T>(1);
ht[d] = tmp * o[d];
}
}
#ifdef __AVX__
namespace detail {
namespace forward {
namespace avx {
__m256 Sigmoid(const __m256 a);
__m256 Tanh(const __m256 a);
} // namespace avx
} // namespace forward
} // namespace detail
template <>
void lstm_compute_ctht<float>(float* gates, const float* ct_1, float* ct,
float* ht) {
namespace act = detail::forward::avx;
// gates: W_ch, W_ih, W_fh, W_oh
__m256 c, i, f, o;
c = _mm256_loadu_ps(gates);
i = _mm256_loadu_ps(gates + 8);
f = _mm256_loadu_ps(gates + 16);
o = _mm256_loadu_ps(gates + 24);
/* C_t = C_t-1 * fgated + cand_gated * igated*/
c = _mm256_mul_ps(act::Tanh(c), act::Sigmoid(i));
i = _mm256_loadu_ps(ct_1);
f = _mm256_mul_ps(i, act::Sigmoid(f));
f = _mm256_add_ps(c, f);
_mm256_storeu_ps(ct, f);
/* H_t = act_cell(C_t) * ogated */
o = _mm256_mul_ps(act::Tanh(f), act::Sigmoid(o));
_mm256_storeu_ps(ht, o);
}
#endif
template void lstm_compute_ctht<float>(float* gates, const float* ct_1,
float* ct, float* ht);
template void lstm_compute_ctht<double>(double* gates, const double* ct_1,
double* ct, double* ht);
} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
namespace paddle {
namespace operators {
namespace math {
// TODO(TJ): ugly workaround, clean me
template <typename T>
void lstm_compute_ctht(T* gates, const T* ct_1, T* ct, T* ht);
} // namespace math
} // namespace operators
} // namespace paddle
......@@ -17,6 +17,7 @@ limitations under the License. */
#include <functional>
#include <string>
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/enforce.h"
#ifdef __AVX__
#include <immintrin.h>
#endif
......@@ -476,7 +477,7 @@ class VecActivations {
} else if (type == "identity" || type == "") {
return vec_identity<T, isa>;
}
LOG(FATAL) << "Not support type: " << type;
PADDLE_THROW("Not support type: %s", type);
}
};
......
......@@ -103,6 +103,58 @@ class MaxSeqPoolGradFunctor {
}
};
template <typename T>
class LastSeqPoolFunctor {
public:
void operator()(const platform::CPUDeviceContext& context,
const framework::LoDTensor& input,
framework::Tensor* output) {
// Create pointers to input and output data
auto* in_data = input.data<T>();
auto* out_data = output->data<T>();
// Calculate the size of each item in sequence
int64_t item_size = input.numel() / input.dims()[0];
auto lod = input.lod()[0];
int seq_num = static_cast<int>(lod.size()) - 1;
for (int i = 0; i < seq_num; ++i) {
// Calculate the length of each sequence
int64_t seq_len = static_cast<int64_t>(lod[i + 1] - lod[i]);
// Point to the begin of next sequence
in_data += seq_len * item_size;
// Copy the last item of sequence to output
std::memcpy(out_data, (in_data - item_size), item_size * sizeof(T));
out_data += item_size;
}
}
};
template <typename T>
class FirstSeqPoolFunctor {
public:
void operator()(const platform::CPUDeviceContext& context,
const framework::LoDTensor& input,
framework::Tensor* output) {
// Create pointers to input and output data
auto* in_data = input.data<T>();
auto* out_data = output->data<T>();
// Calculate the size of each item in sequence
int64_t item_size = input.numel() / input.dims()[0];
auto lod = input.lod()[0];
int seq_num = static_cast<int>(lod.size()) - 1;
for (int i = 0; i < seq_num; ++i) {
// Calculate the length of each sequence
int64_t seq_len = static_cast<int64_t>(lod[i + 1] - lod[i]);
// Copy the first item of sequence to output
std::memcpy(out_data, in_data, item_size * sizeof(T));
// Point to the next sequence
in_data += seq_len * item_size;
out_data += item_size;
}
}
};
template <typename T>
class SequencePoolFunctor<platform::CPUDeviceContext, T> {
public:
......@@ -116,6 +168,16 @@ class SequencePoolFunctor<platform::CPUDeviceContext, T> {
max_pool(context, input, output, index);
return;
}
if (pooltype == "LAST") {
math::LastSeqPoolFunctor<T> last_pool;
last_pool(context, input, output);
return;
}
if (pooltype == "FIRST") {
math::FirstSeqPoolFunctor<T> first_pool;
first_pool(context, input, output);
return;
}
auto lod = input.lod()[0];
auto& place = *context.eigen_device();
for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
......@@ -133,10 +195,6 @@ class SequencePoolFunctor<platform::CPUDeviceContext, T> {
} else if (pooltype == "SQRT") {
out_e.device(place) = in_e.sum(Eigen::array<int, 1>({{0}})) /
std::sqrt(static_cast<T>(h));
} else if (pooltype == "LAST") {
out_e.device(place) = in_e.chip(h - 1, 0);
} else if (pooltype == "FIRST") {
out_e.device(place) = in_e.chip(0, 0);
} else {
PADDLE_THROW("unsupported pooling pooltype");
}
......
......@@ -71,8 +71,7 @@ class MaxOutOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of MaxoutOp"
"should not be null.");
"Input(X) of MaxoutOpshould not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of MaxoutOp should not be null.");
auto in_x_dims = ctx->GetInputDim("X");
......@@ -90,9 +89,10 @@ class MaxOutOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of MaxOutOpGrad must not be null.");
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
"Input(X@GRAD) should not be null.");
"Output(Grad@X) of MaxOutOpGrad should not be null.");
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}
};
......
......@@ -26,10 +26,13 @@ class PReluOp : public framework::OperatorWithKernel {
std::string mode = ctx->Attrs().Get<std::string>("mode");
auto x_dim = ctx->GetInputDim("X");
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
PADDLE_ENFORCE(ctx->HasInput("Alpha"), "Input(Alpha) should not be null");
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of PreluOp should not be null");
PADDLE_ENFORCE(ctx->HasInput("Alpha"),
"Input(Alpha) of PreluOp should not be null");
PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of PreluOp should not be null");
if (mode == "all") {
PADDLE_ENFORCE(product(ctx->GetInputDim("Alpha")) == 1,
"For mode 'all', size of weight Alpha must be one.");
......
......@@ -42,7 +42,7 @@ class RNNMemoryHelperOp : public framework::OperatorBase {
auto *out_tensor = out_var->GetMutable<framework::LoDTensor>();
auto &mem_tensor = mem_var->Get<framework::LoDTensor>();
out_tensor->ShareDataWith(mem_tensor);
framework::TensorCopySync(mem_tensor, dev_place, out_tensor);
out_tensor->set_lod(mem_tensor.lod());
}
};
......@@ -50,8 +50,10 @@ class RNNMemoryHelperOp : public framework::OperatorBase {
class RNNMemoryHelperOpShapeInference : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "");
PADDLE_ENFORCE(ctx->HasOutput("Out"), "");
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of rnn_memory_helper op should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output of rnn_memory_helper op should not be null.");
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
ctx->ShareLoD("X", /*->*/ "Out");
}
......@@ -107,7 +109,7 @@ class RNNMemoryHelperGradOp : public framework::OperatorBase {
} else {
auto &out_grad_tensor = out_grad_var->Get<framework::LoDTensor>();
auto *in_grad_tensor = in_grad_var->GetMutable<framework::LoDTensor>();
in_grad_tensor->ShareDataWith(out_grad_tensor);
framework::TensorCopySync(out_grad_tensor, dev_place, in_grad_tensor);
in_grad_tensor->set_lod(out_grad_tensor.lod());
}
}
......@@ -133,8 +135,11 @@ class RNNMemoryHelperGradOpShapeInference : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *ctx) const override {
auto x_grad_name = framework::GradVarName("X");
PADDLE_ENFORCE(ctx->HasOutput(x_grad_name), "");
PADDLE_ENFORCE(ctx->HasInput("X"), "");
PADDLE_ENFORCE(ctx->HasOutput(x_grad_name),
"Gradient of Input(X) in rnn_memory_helper_grad of should "
"not be null.");
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of rnn_memory_helper_grad of should not be null.");
ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
ctx->ShareLoD("X", /*->*/ x_grad_name);
}
......
......@@ -25,7 +25,7 @@ class SliceOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Input"),
"Input (Input) of slice op should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
......@@ -58,7 +58,7 @@ class SliceOp : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Input")->type()),
ctx.GetPlace());
......@@ -87,13 +87,13 @@ Slice Operator.
Produces a slice of the input tensor along multiple axes. Similar to numpy:
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
Slice uses `axes`, `starts` and `ends` attributes to specify the start and
Slice uses `axes`, `starts` and `ends` attributes to specify the start and
end dimension for each axis in the list of axes, it uses this information
to slice the input data tensor. If a negative value is passed for any of
the start or end indices, it represents number of elements before the end
to slice the input data tensor. If a negative value is passed for any of
the start or end indices, it represents number of elements before the end
of that dimension. If the value passed to start or end is larger than
the n (the number of elements in this dimension), it represents n.
For slicing to the end of a dimension with unknown size, it is recommended
the n (the number of elements in this dimension), it represents n.
For slicing to the end of a dimension with unknown size, it is recommended
to pass in INT_MAX. If axes are omitted, they are set to [0, ..., ndim-1].
Following examples will explain how slice works:
......@@ -119,15 +119,54 @@ Following examples will explain how slice works:
}
};
class SliceOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Input"), "Input should not be null");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto x_dims = ctx->GetInputDim("Input");
auto x_grad_name = framework::GradVarName("Input");
if (ctx->HasOutput(x_grad_name)) {
ctx->SetOutputDim(x_grad_name, x_dims);
}
}
};
class SliceOpGradMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
auto* bind = new framework::OpDesc();
bind->SetInput("Input", Input("Input"));
bind->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
bind->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
bind->SetAttrMap(Attrs());
bind->SetType("slice_grad");
return std::unique_ptr<framework::OpDesc>(bind);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(slice, ops::SliceOp, ops::SliceOpMaker,
paddle::framework::EmptyGradOpMaker);
ops::SliceOpGradMaker);
REGISTER_OPERATOR(slice_grad, ops::SliceOpGrad);
REGISTER_OP_CPU_KERNEL(
slice, ops::SliceKernel<paddle::platform::CPUDeviceContext, int>,
ops::SliceKernel<paddle::platform::CPUDeviceContext, int64_t>,
ops::SliceKernel<paddle::platform::CPUDeviceContext, float>,
ops::SliceKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
slice_grad, ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int>,
ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
ops::SliceGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::SliceGradKernel<paddle::platform::CPUDeviceContext, double>);
......@@ -20,3 +20,10 @@ REGISTER_OP_CUDA_KERNEL(
ops::SliceKernel<paddle::platform::CUDADeviceContext, double>,
ops::SliceKernel<paddle::platform::CUDADeviceContext, int>,
ops::SliceKernel<paddle::platform::CUDADeviceContext, int64_t>);
REGISTER_OP_CUDA_KERNEL(
slice_grad,
ops::SliceGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::SliceGradKernel<paddle::platform::CUDADeviceContext, double>,
ops::SliceGradKernel<paddle::platform::CUDADeviceContext, int>,
ops::SliceGradKernel<paddle::platform::CUDADeviceContext, int64_t>);
......@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <algorithm>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
......@@ -84,5 +85,79 @@ class SliceKernel : public framework::OpKernel<T> {
out_t.device(place) = in_t.slice(offsets, extents);
}
};
template <typename DeviceContext, typename T>
class SliceGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
size_t rank = ctx.Input<framework::Tensor>(framework::GradVarName("Out"))
->dims()
.size();
switch (rank) {
case 1:
SliceCompute<1>(ctx);
break;
case 2:
SliceCompute<2>(ctx);
break;
case 3:
SliceCompute<3>(ctx);
break;
case 4:
SliceCompute<4>(ctx);
break;
case 5:
SliceCompute<5>(ctx);
break;
case 6:
SliceCompute<6>(ctx);
break;
}
}
private:
template <size_t D>
void SliceCompute(const framework::ExecutionContext& context) const {
auto& place =
*context.template device_context<DeviceContext>().eigen_device();
auto* d_out =
context.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* d_input =
context.Output<framework::Tensor>(framework::GradVarName("Input"));
d_input->mutable_data<T>(context.GetPlace());
auto out_dims = d_out->dims();
auto in_dims = d_input->dims();
auto axes = context.Attr<std::vector<int>>("axes");
auto starts = context.Attr<std::vector<int>>("starts");
auto offsets = Eigen::array<int, D>();
auto extents = Eigen::array<int, D>();
for (size_t i = 0; i < D; ++i) {
offsets[i] = 0;
extents[i] = out_dims[i];
}
int start;
for (size_t i = 0; i < axes.size(); ++i) {
start = starts[i];
if (start < 0) {
start = (start + in_dims[axes[i]]);
}
start = std::max(start, 0);
offsets[axes[i]] = start;
}
Eigen::array<std::pair<int, int>, D> paddings;
for (size_t i = 0; i < paddings.size(); ++i) {
paddings[i].first = offsets[i];
paddings[i].second = (in_dims[i] - out_dims[i]) - offsets[i];
}
auto d_in_t =
framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
*d_input);
auto d_out_t =
framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
*d_out);
d_in_t.device(place) = d_out_t.pad(paddings, 0);
}
};
} // namespace operators
} // namespace paddle
......@@ -683,7 +683,6 @@ All parameter, weight, gradient are variables in Paddle.
const std::string &, Scope *, std::vector<Scope *> &,
const ExecutionStrategy &, const BuildStrategy &, size_t,
size_t>())
.def("_bcast_params", &ParallelExecutor::BCastParamsToDevices)
// NOTE: even we return a vec<Scope*>* to Python use reference policy.
// We still cannot get local_scope from this vector, since the element
// of vec<Scope*> will be freed by Python GC. We can only return Scope*
......
cc_library(stringpiece SRCS piece.cc)
cc_library(pretty_log SRCS pretty_log.cc)
cc_test(test_pretty_log SRCS pretty_log.cc)
cc_test(stringpiece_test SRCS piece_test.cc DEPS stringpiece glog gflags)
cc_test(stringprintf_test SRCS printf_test.cc DEPS glog gflags)
cc_test(to_string_test SRCS to_string_test.cc)
......@@ -33,6 +33,7 @@ function print_usage() {
${BLUE}single_test${NONE}: run a single unit test
${BLUE}bind_test${NONE}: parallel tests bind to different GPU
${BLUE}doc${NONE}: generate paddle documents
${BLUE}gen_doc_lib${NONE}: generate paddle documents library
${BLUE}html${NONE}: convert C++ source code into HTML
${BLUE}dockerfile${NONE}: generate paddle release dockerfile
${BLUE}capi${NONE}: generate paddle CAPI package
......@@ -67,26 +68,44 @@ function cmake_gen() {
# Support build for all python versions, currently
# including cp27-cp27m and cp27-cp27mu.
PYTHON_FLAGS=""
if [ "$1" != "" ]; then
echo "using python abi: $1"
if [ "$1" == "cp27-cp27m" ]; then
export LD_LIBRARY_PATH=/opt/_internal/cpython-2.7.11-ucs2/lib:${LD_LIBRARY_PATH#/opt/_internal/cpython-2.7.11-ucs4/lib:}
export PATH=/opt/python/cp27-cp27m/bin/:${PATH}
PYTHON_FLAGS="-DPYTHON_EXECUTABLE:FILEPATH=/opt/python/cp27-cp27m/bin/python
-DPYTHON_INCLUDE_DIR:PATH=/opt/python/cp27-cp27m/include/python2.7
-DPYTHON_LIBRARIES:FILEPATH=/opt/_internal/cpython-2.7.11-ucs2/lib/libpython2.7.so"
elif [ "$1" == "cp27-cp27mu" ]; then
export LD_LIBRARY_PATH=/opt/_internal/cpython-2.7.11-ucs4/lib:${LD_LIBRARY_PATH#/opt/_internal/cpython-2.7.11-ucs2/lib:}
export PATH=/opt/python/cp27-cp27mu/bin/:${PATH}
PYTHON_FLAGS="-DPYTHON_EXECUTABLE:FILEPATH=/opt/python/cp27-cp27mu/bin/python
-DPYTHON_INCLUDE_DIR:PATH=/opt/python/cp27-cp27mu/include/python2.7
-DPYTHON_LIBRARIES:FILEPATH=/opt/_internal/cpython-2.7.11-ucs4/lib/libpython2.7.so"
elif [ "$1" == "cp35-cp35m" ]; then
export LD_LIBRARY_PATH=/opt/_internal/cpython-3.5.1/lib/:${LD_LIBRARY_PATH}
export PATH=/opt/_internal/cpython-3.5.1/bin/:${PATH}
export PYTHON_FLAGS="-DPYTHON_EXECUTABLE:FILEPATH=/opt/_internal/cpython-3.5.1/bin/python3
SYSTEM=`uname -s`
if [ "$SYSTEM" == "Darwin" ]; then
if [[ "$1" == "cp27-cp27m" ]] || [[ "$1" == "" ]]; then
echo "using python abi: $1"
if [ -d "/Library/Frameworks/Python.framework/Versions/2.7" ]; then
export LD_LIBRARY_PATH=/Library/Frameworks/Python.framework/Versions/2.7
export DYLD_LIBRARY_PATH=/Library/Frameworks/Python.framework/Versions/2.7
export PATH=/Library/Frameworks/Python.framework/Versions/2.7/bin/:${PATH}
PYTHON_FLAGS="-DPYTHON_EXECUTABLE:FILEPATH=/Library/Frameworks/Python.framework/Versions/2.7/bin/python2.7
-DPYTHON_INCLUDE_DIR:PATH=/Library/Frameworks/Python.framework/Versions/2.7/include/python2.7
-DPYTHON_LIBRARY:FILEPATH=/Library/Frameworks/Python.framework/Versions/2.7/lib/libpython2.7.dylib"
else
exit 1
fi
# TODO: qiyang add python3 part here
fi
else
if [ "$1" != "" ]; then
echo "using python abi: $1"
if [ "$1" == "cp27-cp27m" ]; then
export LD_LIBRARY_PATH=/opt/_internal/cpython-2.7.11-ucs2/lib:${LD_LIBRARY_PATH#/opt/_internal/cpython-2.7.11-ucs4/lib:}
export PATH=/opt/python/cp27-cp27m/bin/:${PATH}
PYTHON_FLAGS="-DPYTHON_EXECUTABLE:FILEPATH=/opt/python/cp27-cp27m/bin/python
-DPYTHON_INCLUDE_DIR:PATH=/opt/python/cp27-cp27m/include/python2.7
-DPYTHON_LIBRARIES:FILEPATH=/opt/_internal/cpython-2.7.11-ucs2/lib/libpython2.7.so"
elif [ "$1" == "cp27-cp27mu" ]; then
export LD_LIBRARY_PATH=/opt/_internal/cpython-2.7.11-ucs4/lib:${LD_LIBRARY_PATH#/opt/_internal/cpython-2.7.11-ucs2/lib:}
export PATH=/opt/python/cp27-cp27mu/bin/:${PATH}
PYTHON_FLAGS="-DPYTHON_EXECUTABLE:FILEPATH=/opt/python/cp27-cp27mu/bin/python
-DPYTHON_INCLUDE_DIR:PATH=/opt/python/cp27-cp27mu/include/python2.7
-DPYTHON_LIBRARIES:FILEPATH=/opt/_internal/cpython-2.7.11-ucs4/lib/libpython2.7.so"
elif [ "$1" == "cp35-cp35m" ]; then
export LD_LIBRARY_PATH=/opt/_internal/cpython-3.5.1/lib/:${LD_LIBRARY_PATH}
export PATH=/opt/_internal/cpython-3.5.1/bin/:${PATH}
export PYTHON_FLAGS="-DPYTHON_EXECUTABLE:FILEPATH=/opt/_internal/cpython-3.5.1/bin/python3
-DPYTHON_INCLUDE_DIR:PATH=/opt/_internal/cpython-3.5.1/include/python3.5m
-DPYTHON_LIBRARIES:FILEPATH=/opt/_internal/cpython-3.5.1/lib/libpython3.so"
fi
fi
fi
......@@ -200,6 +219,19 @@ EOF
make install -j `nproc`
}
function build_mac() {
mkdir -p ${PADDLE_ROOT}/build
cd ${PADDLE_ROOT}/build
cat <<EOF
============================================
Building in /paddle/build ...
============================================
EOF
make clean
sudo make -j 8
sudo make install -j 8
}
function build_android() {
if [ $ANDROID_ABI == "arm64-v8a" ]; then
ANDROID_ARCH=arm64
......@@ -323,6 +355,27 @@ EOF
fi
}
function run_mac_test() {
mkdir -p ${PADDLE_ROOT}/build
cd ${PADDLE_ROOT}/build
if [ ${WITH_TESTING:-ON} == "ON" ] ; then
cat <<EOF
========================================
Running unit tests ...
========================================
EOF
# TODO: jiabin need to refine this part when these tests fixed on mac
ctest --output-on-failure -j8
# make install should also be test when unittest
make install -j 8
pip install /usr/local/opt/paddle/share/wheels/*.whl
if [[ ${WITH_FLUID_ONLY:-OFF} == "OFF" ]] ; then
paddle version
fi
fi
}
function assert_api_not_changed() {
mkdir -p ${PADDLE_ROOT}/build/.check_api_workspace
cd ${PADDLE_ROOT}/build/.check_api_workspace
......@@ -431,24 +484,42 @@ EOF
linkchecker doc/v2/cn/html/index.html
linkchecker doc/v2/api/en/html/index.html
if [[ "$TRAVIS_PULL_REQUEST" != "false" ]]; then exit 0; fi;
}
# Deploy to the the content server if its a "develop" or "release/version" branch
# The "develop_doc" branch is reserved to test full deploy process without impacting the real content.
if [ "$TRAVIS_BRANCH" == "develop_doc" ]; then
PPO_SCRIPT_BRANCH=develop
elif [[ "$TRAVIS_BRANCH" == "develop" || "$TRAVIS_BRANCH" =~ ^v|release/[[:digit:]]+\.[[:digit:]]+(\.[[:digit:]]+)?(-\S*)?$ ]]; then
PPO_SCRIPT_BRANCH=master
else
# Early exit, this branch doesn't require documentation build
return 0;
fi
# Fetch the paddlepaddle.org deploy_docs.sh from the appopriate branch
export DEPLOY_DOCS_SH=https://raw.githubusercontent.com/PaddlePaddle/PaddlePaddle.org/$PPO_SCRIPT_BRANCH/scripts/deploy/deploy_docs.sh
export PYTHONPATH=$PYTHONPATH:${PADDLE_ROOT}/build/python:/paddle/build/python
cd ..
curl $DEPLOY_DOCS_SH | bash -s $CONTENT_DEC_PASSWD $TRAVIS_BRANCH ${PADDLE_ROOT} ${PADDLE_ROOT}/build/doc/ ${PPO_SCRIPT_BRANCH}
cd -
function gen_doc_lib() {
mkdir -p ${PADDLE_ROOT}/build
cd ${PADDLE_ROOT}/build
cat <<EOF
========================================
Building documentation library ...
In /paddle/build
========================================
EOF
cmake .. \
-DCMAKE_BUILD_TYPE=Release \
-DWITH_DOC=ON \
-DWITH_GPU=OFF \
-DWITH_MKL=OFF \
-DWITH_FLUID_ONLY=ON
local LIB_TYPE=$1
case $LIB_TYPE in
full)
# Build full Paddle Python module. Will timeout without caching 'copy_paddle_pybind' first
make -j `nproc` gen_proto_py framework_py_proto copy_paddle_pybind paddle_python
;;
pybind)
# Build paddle pybind library. Takes 49 minutes to build. Might timeout
make -j `nproc` copy_paddle_pybind
;;
proto)
# Even smaller library.
make -j `nproc` framework_py_proto
;;
*)
exit 0
;;
esac
}
function gen_html() {
......@@ -608,6 +679,9 @@ function main() {
doc)
gen_docs
;;
gen_doc_lib)
gen_doc_lib $2
;;
html)
gen_html
;;
......@@ -637,6 +711,11 @@ function main() {
test_fluid_inference_lib
assert_api_spec_approvals
;;
maccheck)
cmake_gen ${PYTHON_ABI:-""}
build_mac
run_mac_test
;;
*)
print_usage
exit 0
......
......@@ -55,15 +55,19 @@ for _OP in set(__auto__):
globals()[_OP] = generate_layer_fn(_OP)
def rpn_target_assign(loc,
scores,
def rpn_target_assign(bbox_pred,
cls_logits,
anchor_box,
anchor_var,
gt_box,
gt_boxes,
is_crowd,
im_info,
rpn_batch_size_per_im=256,
fg_fraction=0.25,
rpn_straddle_thresh=0.0,
rpn_fg_fraction=0.5,
rpn_positive_overlap=0.7,
rpn_negative_overlap=0.3):
rpn_negative_overlap=0.3,
use_random=True):
"""
** Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection. **
......@@ -83,14 +87,13 @@ def rpn_target_assign(loc,
the positive anchors.
Args:
loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
predicted locations of M bounding bboxes. N is the batch size,
and each bounding box has four coordinate values and the layout
is [xmin, ymin, xmax, ymax].
scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
predicted confidence predictions. N is the batch size, C is the
class number, M is number of bounding boxes. For each category
there are total M scores which corresponding M bounding boxes.
cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
predicted confidence predictions. N is the batch size, 1 is the
frontground and background sigmoid, M is number of bounding boxes.
anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
each box is represented as [xmin, ymin, xmax, ymax],
[xmin, ymin] is the left top coordinate of the anchor box,
......@@ -99,11 +102,16 @@ def rpn_target_assign(loc,
coordinate of the anchor box.
anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded
variances of anchors.
gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
gt_boxes (Variable): The ground-truth boudding boxes (bboxes) are a 2D
LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
bboxes of mini-batch input.
is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
3 is the height, width and scale.
rpn_batch_size_per_im(int): Total number of RPN examples per image.
fg_fraction(float): Target fraction of RoI minibatch that is labeled
rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
by straddle_thresh pixels.
rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
foreground (i.e. class > 0), 0-th class is background.
rpn_positive_overlap(float): Minimum overlap required between an anchor
and ground-truth box for the (anchor, gt box) pair to be a positive
......@@ -129,45 +137,48 @@ def rpn_target_assign(loc,
Examples:
.. code-block:: python
loc = layers.data(name='location', shape=[2, 80],
bbox_pred = layers.data(name='bbox_pred', shape=[100, 4],
append_batch_size=False, dtype='float32')
scores = layers.data(name='scores', shape=[2, 40],
cls_logits = layers.data(name='cls_logits', shape=[100, 1],
append_batch_size=False, dtype='float32')
anchor_box = layers.data(name='anchor_box', shape=[20, 4],
append_batch_size=False, dtype='float32')
gt_box = layers.data(name='gt_box', shape=[10, 4],
gt_boxes = layers.data(name='gt_boxes', shape=[10, 4],
append_batch_size=False, dtype='float32')
loc_pred, score_pred, loc_target, score_target =
fluid.layers.detection_output(loc=location,
scores=scores,
fluid.layers.rpn_target_assign(bbox_pred=bbox_pred,
cls_logits=cls_logits,
anchor_box=anchor_box,
gt_box=gt_box)
gt_boxes=gt_boxes)
"""
helper = LayerHelper('rpn_target_assign', **locals())
# Compute overlaps between the prior boxes and the gt boxes overlaps
iou = iou_similarity(x=gt_box, y=anchor_box)
# Assign target label to anchors
loc_index = helper.create_tmp_variable(dtype='int32')
score_index = helper.create_tmp_variable(dtype='int32')
target_label = helper.create_tmp_variable(dtype='int64')
target_label = helper.create_tmp_variable(dtype='int32')
target_bbox = helper.create_tmp_variable(dtype=anchor_box.dtype)
helper.append_op(
type="rpn_target_assign",
inputs={'Anchor': anchor_box,
'GtBox': gt_box,
'DistMat': iou},
inputs={
'Anchor': anchor_box,
'GtBoxes': gt_boxes,
'IsCrowd': is_crowd,
'ImInfo': im_info
},
outputs={
'LocationIndex': loc_index,
'ScoreIndex': score_index,
'TargetLabel': target_label,
'TargetBBox': target_bbox,
'TargetBBox': target_bbox
},
attrs={
'rpn_batch_size_per_im': rpn_batch_size_per_im,
'rpn_straddle_thresh': rpn_straddle_thresh,
'rpn_positive_overlap': rpn_positive_overlap,
'rpn_negative_overlap': rpn_negative_overlap,
'fg_fraction': fg_fraction
'rpn_fg_fraction': rpn_fg_fraction,
'use_random': use_random
})
loc_index.stop_gradient = True
......@@ -175,12 +186,12 @@ def rpn_target_assign(loc,
target_label.stop_gradient = True
target_bbox.stop_gradient = True
scores = nn.reshape(x=scores, shape=(-1, 1))
loc = nn.reshape(x=loc, shape=(-1, 4))
predicted_scores = nn.gather(scores, score_index)
predicted_location = nn.gather(loc, loc_index)
cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
predicted_cls_logits = nn.gather(cls_logits, score_index)
predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
return predicted_scores, predicted_location, target_label, target_bbox
return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox
def detection_output(loc,
......@@ -1258,15 +1269,17 @@ def anchor_generator(input,
def generate_proposal_labels(rpn_rois,
gt_classes,
is_crowd,
gt_boxes,
im_scales,
im_info,
batch_size_per_im=256,
fg_fraction=0.25,
fg_thresh=0.25,
bg_thresh_hi=0.5,
bg_thresh_lo=0.0,
bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
class_nums=None):
class_nums=None,
use_random=True):
"""
** Generate proposal labels Faster-RCNN **
TODO(buxingyuan): Add Document
......@@ -1285,8 +1298,9 @@ def generate_proposal_labels(rpn_rois,
inputs={
'RpnRois': rpn_rois,
'GtClasses': gt_classes,
'IsCrowd': is_crowd,
'GtBoxes': gt_boxes,
'ImScales': im_scales
'ImInfo': im_info
},
outputs={
'Rois': rois,
......@@ -1302,7 +1316,8 @@ def generate_proposal_labels(rpn_rois,
'bg_thresh_hi': bg_thresh_hi,
'bg_thresh_lo': bg_thresh_lo,
'bbox_reg_weights': bbox_reg_weights,
'class_nums': class_nums
'class_nums': class_nums,
'use_random': use_random
})
rois.stop_gradient = True
......
......@@ -142,11 +142,6 @@ class ParallelExecutor(object):
main = main if main else framework.default_main_program()
if scope == None:
scope = executor.global_scope()
# FIXME(Yancey1989): it's a temporary approach to determinate the distribute
# train program, call self.bcast_param() at the end of each mini-batch.
self.is_dist = True if "recv" in [
op.type for op in main.global_block().ops
] else False
if share_vars_from and not isinstance(share_vars_from,
ParallelExecutor):
......@@ -286,21 +281,11 @@ class ParallelExecutor(object):
self.executor.run(fetch_list, fetch_var_name)
arr = self.scope.find_var(fetch_var_name).get_lod_tensor_array()
if self.is_dist:
self._bcast_params()
if return_numpy:
return executor.as_numpy(arr)
return [arr[i] for i in range(len(arr))]
def _bcast_params(self):
"""
Broadcast the parameters to other devices. It is used during
distributed training.
"""
self.executor._bcast_params(set(self.persistable_vars))
@property
def device_count(self):
return len(self._act_places)
......@@ -148,51 +148,60 @@ class TestAnchorGenerator(unittest.TestCase):
class TestGenerateProposalLabels(unittest.TestCase):
def test_generate_proposal_labels(self):
rpn_rois = layers.data(
name='rpn_rois',
shape=[4, 4],
dtype='float32',
lod_level=1,
append_batch_size=False)
gt_classes = layers.data(
name='gt_classes',
shape=[6],
dtype='int32',
lod_level=1,
append_batch_size=False)
gt_boxes = layers.data(
name='gt_boxes',
shape=[6, 4],
dtype='float32',
lod_level=1,
append_batch_size=False)
im_scales = layers.data(
name='im_scales',
shape=[1],
dtype='float32',
lod_level=1,
append_batch_size=False)
class_nums = 5
rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights = fluid.layers.generate_proposal_labels(
rpn_rois=rpn_rois,
gt_classes=gt_classes,
gt_boxes=gt_boxes,
im_scales=im_scales,
batch_size_per_im=2,
fg_fraction=0.5,
fg_thresh=0.5,
bg_thresh_hi=0.5,
bg_thresh_lo=0.0,
bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
class_nums=class_nums)
assert rois.shape[1] == 4
assert rois.shape[0] == labels_int32.shape[0]
assert rois.shape[0] == bbox_targets.shape[0]
assert rois.shape[0] == bbox_inside_weights.shape[0]
assert rois.shape[0] == bbox_outside_weights.shape[0]
assert bbox_targets.shape[1] == 4 * class_nums
assert bbox_inside_weights.shape[1] == 4 * class_nums
assert bbox_outside_weights.shape[1] == 4 * class_nums
program = Program()
with program_guard(program):
rpn_rois = layers.data(
name='rpn_rois',
shape=[4, 4],
dtype='float32',
lod_level=1,
append_batch_size=False)
gt_classes = layers.data(
name='gt_classes',
shape=[6],
dtype='int32',
lod_level=1,
append_batch_size=False)
is_crowd = layers.data(
name='is_crowd',
shape=[6],
dtype='int32',
lod_level=1,
append_batch_size=False)
gt_boxes = layers.data(
name='gt_boxes',
shape=[6, 4],
dtype='float32',
lod_level=1,
append_batch_size=False)
im_info = layers.data(
name='im_info',
shape=[1, 3],
dtype='float32',
lod_level=1,
append_batch_size=False)
class_nums = 5
rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights = fluid.layers.generate_proposal_labels(
rpn_rois=rpn_rois,
gt_classes=gt_classes,
is_crowd=is_crowd,
gt_boxes=gt_boxes,
im_info=im_info,
batch_size_per_im=2,
fg_fraction=0.5,
fg_thresh=0.5,
bg_thresh_hi=0.5,
bg_thresh_lo=0.0,
bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
class_nums=class_nums)
assert rois.shape[1] == 4
assert rois.shape[0] == labels_int32.shape[0]
assert rois.shape[0] == bbox_targets.shape[0]
assert rois.shape[0] == bbox_inside_weights.shape[0]
assert rois.shape[0] == bbox_outside_weights.shape[0]
assert bbox_targets.shape[1] == 4 * class_nums
assert bbox_inside_weights.shape[1] == 4 * class_nums
assert bbox_outside_weights.shape[1] == 4 * class_nums
class TestMultiBoxHead(unittest.TestCase):
......@@ -254,18 +263,18 @@ class TestRpnTargetAssign(unittest.TestCase):
def test_rpn_target_assign(self):
program = Program()
with program_guard(program):
loc_shape = [10, 50, 4]
score_shape = [10, 50, 2]
bbox_pred_shape = [10, 50, 4]
cls_logits_shape = [10, 50, 2]
anchor_shape = [50, 4]
loc = layers.data(
name='loc',
shape=loc_shape,
bbox_pred = layers.data(
name='bbox_pred',
shape=bbox_pred_shape,
append_batch_size=False,
dtype='float32')
scores = layers.data(
name='scores',
shape=score_shape,
cls_logits = layers.data(
name='cls_logits',
shape=cls_logits_shape,
append_batch_size=False,
dtype='float32')
anchor_box = layers.data(
......@@ -278,17 +287,31 @@ class TestRpnTargetAssign(unittest.TestCase):
shape=anchor_shape,
append_batch_size=False,
dtype='float32')
gt_box = layers.data(
name='gt_box', shape=[4], lod_level=1, dtype='float32')
gt_boxes = layers.data(
name='gt_boxes', shape=[4], lod_level=1, dtype='float32')
is_crowd = layers.data(
name='is_crowd',
shape=[10],
dtype='int32',
lod_level=1,
append_batch_size=False)
im_info = layers.data(
name='im_info',
shape=[1, 3],
dtype='float32',
lod_level=1,
append_batch_size=False)
pred_scores, pred_loc, tgt_lbl, tgt_bbox = layers.rpn_target_assign(
loc=loc,
scores=scores,
bbox_pred=bbox_pred,
cls_logits=cls_logits,
anchor_box=anchor_box,
anchor_var=anchor_var,
gt_box=gt_box,
gt_boxes=gt_boxes,
is_crowd=is_crowd,
im_info=im_info,
rpn_batch_size_per_im=256,
fg_fraction=0.25,
rpn_straddle_thresh=0.0,
rpn_fg_fraction=0.5,
rpn_positive_overlap=0.7,
rpn_negative_overlap=0.3)
......
......@@ -28,9 +28,18 @@ list(REMOVE_ITEM TEST_OPS test_cond_op) # FIXME(qijun): https://github.com/Paddl
list(REMOVE_ITEM TEST_OPS op_test) # op_test is a helper python file, not a test
list(REMOVE_ITEM TEST_OPS decorators) # decorators is a helper python file, not a test
message(WARNING "These tests has been disabled in OSX before being fixed: \n test_detection_map_op \n test_desc_clone \n test_debugger \n test_program_code \n test_dist_transformer \n test_dist_se_resnext")
if(APPLE)
# this op is not support on mac
list(REMOVE_ITEM TEST_OPS test_fusion_seqexpand_concat_fc_op)
# TODO: add the unitest back when it fixed
list(REMOVE_ITEM TEST_OPS test_detection_map_op)
list(REMOVE_ITEM TEST_OPS test_desc_clone)
list(REMOVE_ITEM TEST_OPS test_debugger)
list(REMOVE_ITEM TEST_OPS test_program_code)
list(REMOVE_ITEM TEST_OPS test_dist_transformer)
list(REMOVE_ITEM TEST_OPS test_dist_se_resnext)
endif()
function(py_test_modules TARGET_NAME)
......@@ -50,6 +59,7 @@ function(py_test_modules TARGET_NAME)
endfunction()
list(REMOVE_ITEM TEST_OPS test_warpctc_op)
list(REMOVE_ITEM TEST_OPS test_dist_train)
list(REMOVE_ITEM TEST_OPS test_dist_transpiler)
list(REMOVE_ITEM TEST_OPS test_parallel_executor_crf)
list(REMOVE_ITEM TEST_OPS test_parallel_executor_fetch_feed)
list(REMOVE_ITEM TEST_OPS test_dist_se_resnext)
......@@ -65,11 +75,12 @@ if(WITH_DISTRIBUTE)
set_tests_properties(test_listen_and_serv_op PROPERTIES TIMEOUT 20)
set_tests_properties(test_dist_mnist PROPERTIES TIMEOUT 200)
set_tests_properties(test_dist_word2vec PROPERTIES TIMEOUT 200)
py_test_modules(test_dist_transpiler MODULES test_dist_transpiler)
py_test_modules(test_dist_transformer MODULES test_dist_transformer SERIAL)
py_test_modules(test_dist_se_resnext MODULES test_dist_se_resnext SERIAL)
endif()
py_test_modules(test_parallel_executor_crf MODULES test_parallel_executor_crf SERIAL)
py_test_modules(test_parallel_executor_fetch_feed MODULES test_parallel_executor_fetch_feed SERIAL)
set_tests_properties(test_parallel_executor_fetch_feed PROPERTIES TIMEOUT 150)
py_test_modules(test_dist_transformer MODULES test_dist_transformer SERIAL)
py_test_modules(test_dist_se_resnext MODULES test_dist_se_resnext SERIAL)
py_test_modules(test_parallel_executor_transformer MODULES test_parallel_executor_transformer SERIAL)
py_test_modules(test_image_classification_resnet MODULES test_image_classification_resnet SERIAL)
......@@ -92,7 +92,7 @@ class TrainTaskConfig(object):
src_vocab_fpath = data_path + "vocab.bpe.32000"
trg_vocab_fpath = data_path + "vocab.bpe.32000"
train_file_pattern = data_path + "train.tok.clean.bpe.32000.en-de"
val_file_pattern = data_path + "newstest2013.tok.bpe.32000.en-de"
val_file_pattern = data_path + "newstest2013.tok.bpe.32000.en-de.cut"
pool_size = 2000
sort_type = None
local = True
......@@ -624,11 +624,12 @@ def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler,
init = True
# Validate and save the model for inference.
if TrainTaskConfig.val_file_pattern is not None:
val_avg_cost, val_ppl = test()
print("[%f]" % val_avg_cost)
else:
assert (False)
if batch_id == 0 or batch_id == 4:
if TrainTaskConfig.val_file_pattern is not None:
val_avg_cost, val_ppl = test()
print("[%f]" % val_avg_cost)
else:
assert (False)
#import transformer_reader as reader
......@@ -1701,8 +1702,9 @@ class DistTransformer2x2(TestDistRunnerBase):
exe.run(startup_prog)
exe.run(pserver_prog)
def run_trainer(self, place, args):
def run_trainer(self, use_cuda, args):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
TrainTaskConfig.use_gpu = use_cuda
sum_cost, avg_cost, predict, token_num, local_lr_scheduler = get_model(
args.is_dist, not args.sync_mode)
......
......@@ -61,9 +61,10 @@ class TestDistRunnerBase(object):
exe.run(startup_prog)
exe.run(pserver_prog)
def run_trainer(self, place, args):
def run_trainer(self, use_cuda, args):
import paddle
import paddle.fluid as fluid
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
self.get_model(batch_size=2)
if args.mem_opt:
......@@ -91,7 +92,7 @@ class TestDistRunnerBase(object):
build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce
exe = fluid.ParallelExecutor(
True,
use_cuda,
loss_name=avg_cost.name,
exec_strategy=strategy,
build_strategy=build_stra)
......@@ -142,9 +143,8 @@ def runtime_main(test_class):
if args.role == "pserver" and args.is_dist:
model.run_pserver(args)
else:
p = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
model.run_trainer(p, args)
use_cuda = True if core.is_compiled_with_cuda() else False
model.run_trainer(use_cuda, args)
import paddle.compat as cpt
......@@ -225,11 +225,12 @@ class TestDistBase(unittest.TestCase):
def check_with_place(self, model_file, delta=1e-3, check_error_log=False):
# TODO(typhoonzero): should auto adapt GPU count on the machine.
required_envs = {
"PATH": os.getenv("PATH"),
"PYTHONPATH": os.getenv("PYTHONPATH"),
"LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH"),
"PATH": os.getenv("PATH", ""),
"PYTHONPATH": os.getenv("PYTHONPATH", ""),
"LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
"FLAGS_fraction_of_gpu_memory_to_use": "0.15",
"FLAGS_cudnn_deterministic": "1"
"FLAGS_cudnn_deterministic": "1",
"CPU_NUM": "1"
}
if check_error_log:
......
......@@ -14,6 +14,7 @@
from __future__ import print_function
import os
import unittest
import paddle
from test_dist_base import TestDistBase
......@@ -44,6 +45,14 @@ def download_files():
test_url = url_prefix + 'newstest2013.tok.bpe.32000.en-de'
test_md5 = '9dd74a266dbdb25314183899f269b4a2'
paddle.dataset.common.download(test_url, 'test_dist_transformer', test_md5)
# cut test data for faster CI
orig_path = os.path.join(paddle.dataset.common.DATA_HOME,
"test_dist_transformer",
"newstest2013.tok.bpe.32000.en-de")
head_path = os.path.join(paddle.dataset.common.DATA_HOME,
"test_dist_transformer",
"newstest2013.tok.bpe.32000.en-de.cut")
os.system("head -n10 %s > %s" % (orig_path, head_path))
class TestDistTransformer2x2Sync(TestDistBase):
......
......@@ -62,7 +62,7 @@ class TranspilerTest(unittest.TestCase):
t = self._transpiler_instance(config)
trainer_main = t.get_trainer_program()
trainer_main = t.get_trainer_program(wait_port=False)
trainer_startup = fluid.default_startup_program()
assert (src.num_blocks == 1)
......
......@@ -20,10 +20,10 @@ import paddle.fluid as fluid
from op_test import OpTest
def generate_proposal_labels_in_python(
rpn_rois, gt_classes, gt_boxes, im_scales, batch_size_per_im,
fg_fraction, fg_thresh, bg_thresh_hi, bg_thresh_lo, bbox_reg_weights,
class_nums):
def generate_proposal_labels_in_python(rpn_rois, gt_classes, is_crowd, gt_boxes,
im_info, batch_size_per_im, fg_fraction,
fg_thresh, bg_thresh_hi, bg_thresh_lo,
bbox_reg_weights, class_nums):
rois = []
labels_int32 = []
bbox_targets = []
......@@ -31,13 +31,13 @@ def generate_proposal_labels_in_python(
bbox_outside_weights = []
lod = []
assert len(rpn_rois) == len(
im_scales), 'batch size of rpn_rois and ground_truth is not matched'
im_info), 'batch size of rpn_rois and ground_truth is not matched'
for im_i in range(len(im_scales)):
for im_i in range(len(im_info)):
frcn_blobs = _sample_rois(
rpn_rois[im_i], gt_classes[im_i], gt_boxes[im_i], im_scales[im_i],
batch_size_per_im, fg_fraction, fg_thresh, bg_thresh_hi,
bg_thresh_lo, bbox_reg_weights, class_nums)
rpn_rois[im_i], gt_classes[im_i], is_crowd[im_i], gt_boxes[im_i],
im_info[im_i], batch_size_per_im, fg_fraction, fg_thresh,
bg_thresh_hi, bg_thresh_lo, bbox_reg_weights, class_nums)
lod.append(frcn_blobs['rois'].shape[0])
......@@ -50,13 +50,14 @@ def generate_proposal_labels_in_python(
return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights, lod
def _sample_rois(rpn_rois, gt_classes, gt_boxes, im_scale, batch_size_per_im,
fg_fraction, fg_thresh, bg_thresh_hi, bg_thresh_lo,
bbox_reg_weights, class_nums):
def _sample_rois(rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
batch_size_per_im, fg_fraction, fg_thresh, bg_thresh_hi,
bg_thresh_lo, bbox_reg_weights, class_nums):
rois_per_image = int(batch_size_per_im)
fg_rois_per_im = int(np.round(fg_fraction * rois_per_image))
# Roidb
im_scale = im_info[2]
inv_im_scale = 1. / im_scale
rpn_rois = rpn_rois * inv_im_scale
......@@ -78,6 +79,9 @@ def _sample_rois(rpn_rois, gt_classes, gt_boxes, im_scale, batch_size_per_im,
box_to_gt_ind_map[overlapped_boxes_ind] = overlaps_argmax[
overlapped_boxes_ind]
crowd_ind = np.where(is_crowd)[0]
gt_overlaps[crowd_ind] = -1
max_overlaps = gt_overlaps.max(axis=1)
max_classes = gt_overlaps.argmax(axis=1)
......@@ -85,9 +89,10 @@ def _sample_rois(rpn_rois, gt_classes, gt_boxes, im_scale, batch_size_per_im,
fg_inds = np.where(max_overlaps >= fg_thresh)[0]
fg_rois_per_this_image = np.minimum(fg_rois_per_im, fg_inds.shape[0])
# Sample foreground if there are too many
if fg_inds.shape[0] > fg_rois_per_this_image:
fg_inds = np.random.choice(
fg_inds, size=fg_rois_per_this_image, replace=False)
# if fg_inds.shape[0] > fg_rois_per_this_image:
# fg_inds = np.random.choice(
# fg_inds, size=fg_rois_per_this_image, replace=False)
fg_inds = fg_inds[:fg_rois_per_this_image]
# Background
bg_inds = np.where((max_overlaps < bg_thresh_hi) & (max_overlaps >=
......@@ -96,9 +101,10 @@ def _sample_rois(rpn_rois, gt_classes, gt_boxes, im_scale, batch_size_per_im,
bg_rois_per_this_image = np.minimum(bg_rois_per_this_image,
bg_inds.shape[0])
# Sample background if there are too many
if bg_inds.shape[0] > bg_rois_per_this_image:
bg_inds = np.random.choice(
bg_inds, size=bg_rois_per_this_image, replace=False)
# if bg_inds.shape[0] > bg_rois_per_this_image:
# bg_inds = np.random.choice(
# bg_inds, size=bg_rois_per_this_image, replace=False)
bg_inds = bg_inds[:bg_rois_per_this_image]
keep_inds = np.append(fg_inds, bg_inds)
sampled_labels = max_classes[keep_inds]
......@@ -208,8 +214,9 @@ class TestGenerateProposalLabelsOp(OpTest):
self.inputs = {
'RpnRois': (self.rpn_rois[0], self.rpn_rois_lod),
'GtClasses': (self.gt_classes[0], self.gts_lod),
'IsCrowd': (self.is_crowd[0], self.gts_lod),
'GtBoxes': (self.gt_boxes[0], self.gts_lod),
'ImScales': self.im_scales[0]
'ImInfo': self.im_info
}
self.attrs = {
'batch_size_per_im': self.batch_size_per_im,
......@@ -218,14 +225,15 @@ class TestGenerateProposalLabelsOp(OpTest):
'bg_thresh_hi': self.bg_thresh_hi,
'bg_thresh_lo': self.bg_thresh_lo,
'bbox_reg_weights': self.bbox_reg_weights,
'class_nums': self.class_nums
'class_nums': self.class_nums,
'use_random': False
}
self.outputs = {
'Rois': (self.rois[0], [self.lod]),
'LabelsInt32': (self.labels_int32[0], [self.lod]),
'BboxTargets': (self.bbox_targets[0], [self.lod]),
'BboxInsideWeights': (self.bbox_inside_weights[0], [self.lod]),
'BboxOutsideWeights': (self.bbox_outside_weights[0], [self.lod]),
'Rois': (self.rois, [self.lod]),
'LabelsInt32': (self.labels_int32, [self.lod]),
'BboxTargets': (self.bbox_targets, [self.lod]),
'BboxInsideWeights': (self.bbox_inside_weights, [self.lod]),
'BboxOutsideWeights': (self.bbox_outside_weights, [self.lod]),
}
def test_check_output(self):
......@@ -236,8 +244,8 @@ class TestGenerateProposalLabelsOp(OpTest):
self.set_data()
def init_test_params(self):
self.batch_size_per_im = 10
self.fg_fraction = 1.0
self.batch_size_per_im = 512
self.fg_fraction = 0.25
self.fg_thresh = 0.5
self.bg_thresh_hi = 0.5
self.bg_thresh_lo = 0.0
......@@ -246,14 +254,14 @@ class TestGenerateProposalLabelsOp(OpTest):
def init_test_input(self):
np.random.seed(0)
image_nums = 1
gt_nums = 6 # Keep same with batch_size_per_im for unittest
proposal_nums = self.batch_size_per_im - gt_nums
images_shape = []
self.im_scales = []
for i in range(image_nums):
images_shape.append(np.random.randint(200, size=2))
self.im_scales.append(np.ones((1)).astype(np.float32))
proposal_nums = 2000 #self.batch_size_per_im - gt_nums
images_shape = [[64, 64]]
self.im_info = np.ones((len(images_shape), 3)).astype(np.float32)
for i in range(len(images_shape)):
self.im_info[i, 0] = images_shape[i][0]
self.im_info[i, 1] = images_shape[i][1]
self.im_info[i, 2] = 0.8 #scale
self.rpn_rois, self.rpn_rois_lod = _generate_proposals(images_shape,
proposal_nums)
......@@ -261,16 +269,23 @@ class TestGenerateProposalLabelsOp(OpTest):
images_shape, self.class_nums, gt_nums)
self.gt_classes = [gt['gt_classes'] for gt in ground_truth]
self.gt_boxes = [gt['boxes'] for gt in ground_truth]
self.is_crowd = [gt['is_crowd'] for gt in ground_truth]
def init_test_output(self):
self.rois, self.labels_int32, self.bbox_targets, \
self.bbox_inside_weights, self.bbox_outside_weights, \
self.lod = generate_proposal_labels_in_python(
self.rpn_rois, self.gt_classes, self.gt_boxes, self.im_scales,
self.rpn_rois, self.gt_classes, self.is_crowd, self.gt_boxes, self.im_info,
self.batch_size_per_im, self.fg_fraction,
self.fg_thresh, self.bg_thresh_hi, self.bg_thresh_lo,
self.bbox_reg_weights, self.class_nums
)
self.rois = np.vstack(self.rois)
self.labels_int32 = np.hstack(self.labels_int32)
self.labels_int32 = self.labels_int32[:, np.newaxis]
self.bbox_targets = np.vstack(self.bbox_targets)
self.bbox_inside_weights = np.vstack(self.bbox_inside_weights)
self.bbox_outside_weights = np.vstack(self.bbox_outside_weights)
def _generate_proposals(images_shape, proposal_nums):
......@@ -280,7 +295,7 @@ def _generate_proposals(images_shape, proposal_nums):
for i, image_shape in enumerate(images_shape):
proposals = _generate_boxes(image_shape, proposal_nums)
rpn_rois.append(proposals)
num_proposals += len(proposals)
num_proposals = len(proposals)
rpn_rois_lod.append(num_proposals)
return rpn_rois, [rpn_rois_lod]
......@@ -294,7 +309,11 @@ def _generate_groundtruth(images_shape, class_nums, gt_nums):
gt_classes = np.random.randint(
low=1, high=class_nums, size=gt_nums).astype(np.int32)
gt_boxes = _generate_boxes(image_shape, gt_nums)
ground_truth.append(dict(gt_classes=gt_classes, boxes=gt_boxes))
is_crowd = np.zeros((gt_nums), dtype=np.int32)
is_crowd[0] = 1
ground_truth.append(
dict(
gt_classes=gt_classes, boxes=gt_boxes, is_crowd=is_crowd))
num_gts += len(gt_classes)
gts_lod.append(num_gts)
return ground_truth, [gts_lod]
......
......@@ -114,10 +114,10 @@ def box_coder(all_anchors, bbox_deltas, variances):
#anchor_loc: width, height, center_x, center_y
anchor_loc = np.zeros_like(bbox_deltas, dtype=np.float32)
anchor_loc[:, 0] = all_anchors[:, 2] - all_anchors[:, 0]
anchor_loc[:, 1] = all_anchors[:, 3] - all_anchors[:, 1]
anchor_loc[:, 2] = (all_anchors[:, 2] + all_anchors[:, 0]) / 2
anchor_loc[:, 3] = (all_anchors[:, 3] + all_anchors[:, 1]) / 2
anchor_loc[:, 0] = all_anchors[:, 2] - all_anchors[:, 0] + 1
anchor_loc[:, 1] = all_anchors[:, 3] - all_anchors[:, 1] + 1
anchor_loc[:, 2] = all_anchors[:, 0] + 0.5 * anchor_loc[:, 0]
anchor_loc[:, 3] = all_anchors[:, 1] + 0.5 * anchor_loc[:, 1]
#predicted bbox: bbox_center_x, bbox_center_y, bbox_width, bbox_height
pred_bbox = np.zeros_like(bbox_deltas, dtype=np.float32)
......@@ -127,23 +127,29 @@ def box_coder(all_anchors, bbox_deltas, variances):
i, 0] + anchor_loc[i, 2]
pred_bbox[i, 1] = variances[i, 1] * bbox_deltas[i, 1] * anchor_loc[
i, 1] + anchor_loc[i, 3]
pred_bbox[i, 2] = math.exp(variances[i, 2] *
bbox_deltas[i, 2]) * anchor_loc[i, 0]
pred_bbox[i, 3] = math.exp(variances[i, 3] *
bbox_deltas[i, 3]) * anchor_loc[i, 1]
pred_bbox[i, 2] = math.exp(
min(variances[i, 2] * bbox_deltas[i, 2], math.log(
1000 / 16.0))) * anchor_loc[i, 0]
pred_bbox[i, 3] = math.exp(
min(variances[i, 3] * bbox_deltas[i, 3], math.log(
1000 / 16.0))) * anchor_loc[i, 1]
else:
for i in range(bbox_deltas.shape[0]):
pred_bbox[i, 0] = bbox_deltas[i, 0] * anchor_loc[i, 0] + anchor_loc[
i, 2]
pred_bbox[i, 1] = bbox_deltas[i, 1] * anchor_loc[i, 1] + anchor_loc[
i, 3]
pred_bbox[i, 2] = math.exp(bbox_deltas[i, 2]) * anchor_loc[i, 0]
pred_bbox[i, 3] = math.exp(bbox_deltas[i, 3]) * anchor_loc[i, 1]
pred_bbox[i, 2] = math.exp(
min(bbox_deltas[i, 2], math.log(1000 / 16.0))) * anchor_loc[i,
0]
pred_bbox[i, 3] = math.exp(
min(bbox_deltas[i, 3], math.log(1000 / 16.0))) * anchor_loc[i,
1]
proposals[:, 0] = pred_bbox[:, 0] - pred_bbox[:, 2] / 2
proposals[:, 1] = pred_bbox[:, 1] - pred_bbox[:, 3] / 2
proposals[:, 2] = pred_bbox[:, 0] + pred_bbox[:, 2] / 2
proposals[:, 3] = pred_bbox[:, 1] + pred_bbox[:, 3] / 2
proposals[:, 2] = pred_bbox[:, 0] + pred_bbox[:, 2] / 2 - 1
proposals[:, 3] = pred_bbox[:, 1] + pred_bbox[:, 3] / 2 - 1
return proposals
......@@ -170,13 +176,16 @@ def filter_boxes(boxes, min_size, im_info):
"""Only keep boxes with both sides >= min_size and center within the image.
"""
# Scale min_size to match image scale
min_size *= im_info[2]
im_scale = im_info[2]
min_size = max(min_size, 1.0)
ws = boxes[:, 2] - boxes[:, 0] + 1
hs = boxes[:, 3] - boxes[:, 1] + 1
ws_orig_scale = (boxes[:, 2] - boxes[:, 0]) / im_scale + 1
hs_orig_scale = (boxes[:, 3] - boxes[:, 1]) / im_scale + 1
x_ctr = boxes[:, 0] + ws / 2.
y_ctr = boxes[:, 1] + hs / 2.
keep = np.where((ws >= min_size) & (hs >= min_size) & (x_ctr < im_info[1]) &
(y_ctr < im_info[0]))[0]
keep = np.where((ws_orig_scale >= min_size) & (hs_orig_scale >= min_size) &
(x_ctr < im_info[1]) & (y_ctr < im_info[0]))[0]
return keep
......@@ -204,7 +213,7 @@ def iou(box_a, box_b):
xb = min(xmax_a, xmax_b)
yb = min(ymax_a, ymax_b)
inter_area = max(xb - xa, 0.0) * max(yb - ya, 0.0)
inter_area = max(xb - xa + 1, 0.0) * max(yb - ya + 1, 0.0)
iou_ratio = inter_area / (area_a + area_b - inter_area)
......
......@@ -19,48 +19,58 @@ import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
from test_anchor_generator_op import anchor_generator_in_python
from test_generate_proposal_labels import _generate_groundtruth
from test_generate_proposal_labels import _bbox_overlaps, _box_to_delta
def rpn_target_assign(gt_anchor_iou, rpn_batch_size_per_im,
rpn_positive_overlap, rpn_negative_overlap, fg_fraction):
iou = np.transpose(gt_anchor_iou)
anchor_to_gt_max = iou.max(axis=1)
anchor_to_gt_argmax = iou.argmax(axis=1)
gt_to_anchor_argmax = iou.argmax(axis=0)
gt_to_anchor_max = iou[gt_to_anchor_argmax, np.arange(iou.shape[1])]
anchors_with_max_overlap = np.where(iou == gt_to_anchor_max)[0]
tgt_lbl = np.ones((iou.shape[0], ), dtype=np.int32) * -1
tgt_lbl[anchors_with_max_overlap] = 1
tgt_lbl[anchor_to_gt_max >= rpn_positive_overlap] = 1
num_fg = int(fg_fraction * rpn_batch_size_per_im)
fg_inds = np.where(tgt_lbl == 1)[0]
if len(fg_inds) > num_fg:
from test_generate_proposal_labels_op import _generate_groundtruth
from test_generate_proposal_labels_op import _bbox_overlaps, _box_to_delta
def rpn_target_assign(anchor_by_gt_overlap,
rpn_batch_size_per_im,
rpn_positive_overlap,
rpn_negative_overlap,
rpn_fg_fraction,
use_random=True):
anchor_to_gt_argmax = anchor_by_gt_overlap.argmax(axis=1)
anchor_to_gt_max = anchor_by_gt_overlap[np.arange(
anchor_by_gt_overlap.shape[0]), anchor_to_gt_argmax]
gt_to_anchor_argmax = anchor_by_gt_overlap.argmax(axis=0)
gt_to_anchor_max = anchor_by_gt_overlap[gt_to_anchor_argmax, np.arange(
anchor_by_gt_overlap.shape[1])]
anchors_with_max_overlap = np.where(
anchor_by_gt_overlap == gt_to_anchor_max)[0]
labels = np.ones((anchor_by_gt_overlap.shape[0], ), dtype=np.int32) * -1
labels[anchors_with_max_overlap] = 1
labels[anchor_to_gt_max >= rpn_positive_overlap] = 1
num_fg = int(rpn_fg_fraction * rpn_batch_size_per_im)
fg_inds = np.where(labels == 1)[0]
if len(fg_inds) > num_fg and use_random:
disable_inds = np.random.choice(
fg_inds, size=(len(fg_inds) - num_fg), replace=False)
tgt_lbl[disable_inds] = -1
fg_inds = np.where(tgt_lbl == 1)[0]
else:
disable_inds = fg_inds[num_fg:]
labels[disable_inds] = -1
fg_inds = np.where(labels == 1)[0]
num_bg = rpn_batch_size_per_im - np.sum(tgt_lbl == 1)
num_bg = rpn_batch_size_per_im - np.sum(labels == 1)
bg_inds = np.where(anchor_to_gt_max < rpn_negative_overlap)[0]
tgt_lbl[bg_inds] = 0
if len(bg_inds) > num_bg:
if len(bg_inds) > num_bg and use_random:
enable_inds = bg_inds[np.random.randint(len(bg_inds), size=num_bg)]
tgt_lbl[enable_inds] = 0
bg_inds = np.where(tgt_lbl == 0)[0]
tgt_lbl[bg_inds] = 0
else:
enable_inds = bg_inds[:num_bg]
labels[enable_inds] = 0
fg_inds = np.where(labels == 1)[0]
bg_inds = np.where(labels == 0)[0]
loc_index = fg_inds
score_index = np.hstack((fg_inds, bg_inds))
tgt_lbl = np.expand_dims(tgt_lbl, axis=1)
labels = labels[score_index]
assert not np.any(labels == -1), "Wrong labels with -1"
gt_inds = anchor_to_gt_argmax[fg_inds]
return loc_index, score_index, tgt_lbl, gt_inds
return loc_index, score_index, labels, gt_inds
def get_anchor(n, c, h, w):
......@@ -75,85 +85,129 @@ def get_anchor(n, c, h, w):
return anchors
def rpn_blob(anchor, gt_boxes, iou, lod, rpn_batch_size_per_im,
rpn_positive_overlap, rpn_negative_overlap, fg_fraction):
loc_indexes = []
score_indexes = []
tmp_tgt_labels = []
tgt_bboxes = []
anchor_num = anchor.shape[0]
def rpn_target_assign_in_python(all_anchors,
gt_boxes,
is_crowd,
im_info,
lod,
rpn_straddle_thresh,
rpn_batch_size_per_im,
rpn_positive_overlap,
rpn_negative_overlap,
rpn_fg_fraction,
use_random=True):
anchor_num = all_anchors.shape[0]
batch_size = len(lod) - 1
for i in range(batch_size):
im_height = im_info[i][0]
im_width = im_info[i][1]
im_scale = im_info[i][2]
if rpn_straddle_thresh >= 0:
# Only keep anchors inside the image by a margin of straddle_thresh
inds_inside = np.where(
(all_anchors[:, 0] >= -rpn_straddle_thresh) &
(all_anchors[:, 1] >= -rpn_straddle_thresh) & (
all_anchors[:, 2] < im_width + rpn_straddle_thresh) & (
all_anchors[:, 3] < im_height + rpn_straddle_thresh))[0]
# keep only inside anchors
inside_anchors = all_anchors[inds_inside, :]
else:
inds_inside = np.arange(all_anchors.shape[0])
inside_anchors = all_anchors
b, e = lod[i], lod[i + 1]
iou_slice = iou[b:e, :]
bboxes_slice = gt_boxes[b:e, :]
gt_boxes_slice = gt_boxes[b:e, :] * im_scale
is_crowd_slice = is_crowd[b:e]
loc_idx, score_idx, tgt_lbl, gt_inds = rpn_target_assign(
iou_slice, rpn_batch_size_per_im, rpn_positive_overlap,
rpn_negative_overlap, fg_fraction)
not_crowd_inds = np.where(is_crowd_slice == 0)[0]
gt_boxes_slice = gt_boxes_slice[not_crowd_inds]
iou = _bbox_overlaps(inside_anchors, gt_boxes_slice)
fg_bboxes = bboxes_slice[gt_inds]
fg_anchors = anchor[loc_idx]
box_deltas = _box_to_delta(fg_anchors, fg_bboxes, [1., 1., 1., 1.])
loc_inds, score_inds, labels, gt_inds = rpn_target_assign(
iou, rpn_batch_size_per_im, rpn_positive_overlap,
rpn_negative_overlap, rpn_fg_fraction, use_random)
# unmap to all anchor
loc_inds = inds_inside[loc_inds]
score_inds = inds_inside[score_inds]
sampled_gt = gt_boxes_slice[gt_inds]
sampled_anchor = all_anchors[loc_inds]
box_deltas = _box_to_delta(sampled_anchor, sampled_gt, [1., 1., 1., 1.])
if i == 0:
loc_indexes = loc_idx
score_indexes = score_idx
tmp_tgt_labels = tgt_lbl
loc_indexes = loc_inds
score_indexes = score_inds
tgt_labels = labels
tgt_bboxes = box_deltas
else:
loc_indexes = np.concatenate(
[loc_indexes, loc_idx + i * anchor_num])
[loc_indexes, loc_inds + i * anchor_num])
score_indexes = np.concatenate(
[score_indexes, score_idx + i * anchor_num])
tmp_tgt_labels = np.concatenate([tmp_tgt_labels, tgt_lbl])
[score_indexes, score_inds + i * anchor_num])
tgt_labels = np.concatenate([tgt_labels, labels])
tgt_bboxes = np.vstack([tgt_bboxes, box_deltas])
tgt_labels = tmp_tgt_labels[score_indexes]
return loc_indexes, score_indexes, tgt_bboxes, tgt_labels
class TestRpnTargetAssignOp(OpTest):
def setUp(self):
n, c, h, w = 2, 4, 14, 14
anchor = get_anchor(n, c, h, w)
all_anchors = get_anchor(n, c, h, w)
gt_num = 10
anchor = anchor.reshape(-1, 4)
anchor_num = anchor.shape[0]
im_shapes = [[64, 64], [64, 64]]
gt_box, lod = _generate_groundtruth(im_shapes, 3, 4)
bbox = np.vstack([v['boxes'] for v in gt_box])
iou = _bbox_overlaps(bbox, anchor)
anchor = anchor.astype('float32')
bbox = bbox.astype('float32')
iou = iou.astype('float32')
loc_index, score_index, tgt_bbox, tgt_lbl = rpn_blob(
anchor, bbox, iou, [0, 4, 8], 25600, 0.95, 0.03, 0.25)
all_anchors = all_anchors.reshape(-1, 4)
anchor_num = all_anchors.shape[0]
images_shape = [[64, 64], [64, 64]]
#images_shape = [[64, 64]]
groundtruth, lod = _generate_groundtruth(images_shape, 3, 4)
lod = [0, 4, 8]
#lod = [0, 4]
im_info = np.ones((len(images_shape), 3)).astype(np.float32)
for i in range(len(images_shape)):
im_info[i, 0] = images_shape[i][0]
im_info[i, 1] = images_shape[i][1]
im_info[i, 2] = 0.8 #scale
gt_boxes = np.vstack([v['boxes'] for v in groundtruth])
is_crowd = np.hstack([v['is_crowd'] for v in groundtruth])
all_anchors = all_anchors.astype('float32')
gt_boxes = gt_boxes.astype('float32')
rpn_straddle_thresh = 0.0
rpn_batch_size_per_im = 256
rpn_positive_overlap = 0.7
rpn_negative_overlap = 0.3
rpn_fg_fraction = 0.5
use_random = False
loc_index, score_index, tgt_bbox, labels = rpn_target_assign_in_python(
all_anchors, gt_boxes, is_crowd, im_info, lod, rpn_straddle_thresh,
rpn_batch_size_per_im, rpn_positive_overlap, rpn_negative_overlap,
rpn_fg_fraction, use_random)
labels = labels[:, np.newaxis]
self.op_type = "rpn_target_assign"
self.inputs = {
'Anchor': anchor,
'GtBox': (bbox, [[4, 4]]),
'DistMat': (iou, [[4, 4]]),
'Anchor': all_anchors,
'GtBoxes': (gt_boxes, [[4, 4]]),
'IsCrowd': (is_crowd, [[4, 4]]),
'ImInfo': (im_info, [[1, 1]])
}
self.attrs = {
'rpn_batch_size_per_im': 25600,
'rpn_positive_overlap': 0.95,
'rpn_negative_overlap': 0.03,
'fg_fraction': 0.25,
'fix_seed': True
'rpn_batch_size_per_im': rpn_batch_size_per_im,
'rpn_straddle_thresh': rpn_straddle_thresh,
'rpn_positive_overlap': rpn_positive_overlap,
'rpn_negative_overlap': rpn_negative_overlap,
'rpn_fg_fraction': rpn_fg_fraction,
'use_random': use_random
}
self.outputs = {
'LocationIndex': loc_index.astype('int32'),
'ScoreIndex': score_index.astype('int32'),
'TargetBBox': tgt_bbox.astype('float32'),
'TargetLabel': tgt_lbl.astype('int64'),
'TargetLabel': labels.astype('int32')
}
def test_check_output(self):
......
......@@ -41,6 +41,9 @@ class TestSliceOp(OpTest):
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['Input'], 'Out', max_relative_error=0.006)
class TestCase1(TestSliceOp):
def config(self):
......
......@@ -16,3 +16,4 @@ from __future__ import print_function
from .program_utils import *
from .ufind import *
from .checkport import *
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import time
import socket
from contextlib import closing
def wait_server_ready(endpoints):
"""
Wait until parameter servers are ready, use connext_ex to detect
port readiness.
Args:
endpoints (list): endpoints string list, like:
["127.0.0.1:8080", "127.0.0.1:8081"]
Examples:
.. code-block:: python
wait_server_ready(["127.0.0.1:8080", "127.0.0.1:8081"])
"""
while True:
all_ok = True
for ep in endpoints:
ip_port = ep.split(":")
with closing(socket.socket(socket.AF_INET,
socket.SOCK_STREAM)) as sock:
sock.settimeout(2)
result = sock.connect_ex((ip_port[0], int(ip_port[1])))
if result != 0:
all_ok = False
if not all_ok:
sys.stderr.write("pserver not ready, wait 3 sec to retry...\n")
sys.stderr.flush()
time.sleep(3)
else:
break
......@@ -381,7 +381,7 @@ class DistributeTranspiler(object):
pserver_endpoints)
self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
def get_trainer_program(self):
def get_trainer_program(self, wait_port=True):
"""
Get transpiled trainer side program.
......@@ -393,6 +393,9 @@ class DistributeTranspiler(object):
delete_ops(self.origin_program.global_block(), self.optimize_ops)
self.origin_program.__str__()
if wait_port:
wait_server_ready(self.pserver_endpoints)
return self.origin_program
def _get_trainer_startup_program(self, recv_vars, eplist):
......
......@@ -65,8 +65,43 @@ class InferenceTranspiler(object):
if use_mkldnn:
self._fuse_conv_bias_mkldnn(program)
self._fuse_conv_relu_mkldnn(program)
self._fuse_conv_eltwise_mkldnn(program)
self._fuse_conv_relu_mkldnn(
program) # ResNet residual block merging
self._fuse_bn_relu_mkldnn(program)
def _fuse_conv_eltwise_mkldnn(self, program):
'''
Transpile the program fusing elementwise_add into conv for MKLDNN
program. Elementwise add following convolution OP can be fused by adding
'fuse_eltwise' attribute to convolution OP and replacing its output
Tensor with second parameter of elementwise_add.
The result of fuse is:
- before:
- conv->elementwise_add->any_other_op
- after:
- conv->any_other_op
:param program: program to transpile
:type program: Program
'''
self.block = program.block(0)
i = 0
while i < len(self.block.ops):
current_op = self.block.ops[i]
if current_op.type in ['conv2d']:
next_op = self.block.ops[i + 1]
if next_op.type == 'elementwise_add':
self._fuse_conv_eltwise(current_op, next_op)
self.block._remove_op(i + 1) # Remove elementwise_add
i = i + 1
self._adjust_input()
self._remove_unused_var()
# TODO(luotao): use clone() method to flush the program.desc in force,
# since some large program.desc will not be flushed immediately.
# And a better solution will be considered later.
program = program.clone()
def _fuse_conv_relu_mkldnn(self, program):
'''
Transpile the program by fused relu activation for MKLDNN program.
......@@ -88,9 +123,9 @@ class InferenceTranspiler(object):
if current_op.type in ['conv2d']:
next_op = self.block.ops[i + 1]
if next_op.type == 'relu':
# modify conv OP to include relu
# modify bnorm OP to include relu
current_op.set_attr("fuse_relu", True)
# remove conv OP
# remove relu OP
self.block._remove_op(i + 1)
i = i + 1
......@@ -409,6 +444,20 @@ class InferenceTranspiler(object):
outputs={"Output": out_var},
attrs=attrs)
def _fuse_conv_eltwise(self, conv_op, eltwise_op):
'''
fuse the conv op with elementwise_add
:param conv_op: convolution operator
:type conv_op: Operator
:param eltwise_op: operator adding data from skip connection
:type eltwise_op: Operator
'''
conv_op.set_attr("fuse_eltwise", True)
self.input_map[conv_op.output("Output")[0]] = eltwise_op.input("Y")[0]
self.input_map[eltwise_op.output("Out")[0]] = eltwise_op.input("Y")[0]
def _adjust_input(self):
for i in range(len(self.block.ops)):
current_op = self.block.ops[i]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册